perf vendor events intel: Refresh skylake metrics and events

Update the skylake metrics and events using the new tooling from:

  https://github.com/intel/perfmon

The metrics are unchanged but the formulas differ due to parentheses,
use of exponents and removal of redundant operations like "* 1".  The
events are unchanged but unused json values are removed. The
formatting changes increase consistency across the json files.

Signed-off-by: Ian Rogers <irogers@google.com>
Acked-by: Kan Liang <kan.liang@linux.intel.com>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Caleb Biggers <caleb.biggers@intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: John Garry <john.g.garry@oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Perry Taylor <perry.taylor@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Xing Zhengjun <zhengjun.xing@linux.intel.com>
Link: https://lore.kernel.org/r/20221215065510.1621979-18-irogers@google.com
Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
This commit is contained in:
Ian Rogers 2022-12-14 22:55:04 -08:00 committed by Arnaldo Carvalho de Melo
parent 1b91a994a2
commit 00ca782ec9
10 changed files with 103 additions and 1494 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,8 +1,6 @@
[
{
"BriefDescription": "Counts once for most SIMD 128-bit packed computational double precision floating-point instructions retired. Counts twice for DPP and FM(N)ADD/SUB instructions retired.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xC7",
"EventName": "FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE",
"PublicDescription": "Counts once for most SIMD 128-bit packed computational double precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 2 computation operations, one for each element. Applies to packed double precision floating-point instructions: ADD SUB HADD HSUB SUBADD MUL DIV MIN MAX SQRT DPP FM(N)ADD/SUB. DPP and FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element. The DAZ and FTZ flags in the MXCSR register need to be set when using these events.",
@ -11,8 +9,6 @@
},
{
"BriefDescription": "Counts once for most SIMD 128-bit packed computational single precision floating-point instruction retired. Counts twice for DPP and FM(N)ADD/SUB instructions retired.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xC7",
"EventName": "FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE",
"PublicDescription": "Counts once for most SIMD 128-bit packed computational single precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 4 computation operations, one for each element. Applies to packed single precision floating-point instructions: ADD SUB HADD HSUB SUBADD MUL DIV MIN MAX SQRT RSQRT RCP DPP FM(N)ADD/SUB. DPP and FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element. The DAZ and FTZ flags in the MXCSR register need to be set when using these events.",
@ -21,8 +17,6 @@
},
{
"BriefDescription": "Counts once for most SIMD 256-bit packed double computational precision floating-point instructions retired. Counts twice for DPP and FM(N)ADD/SUB instructions retired.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xC7",
"EventName": "FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE",
"PublicDescription": "Counts once for most SIMD 256-bit packed double computational precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 4 computation operations, one for each element. Applies to packed double precision floating-point instructions: ADD SUB HADD HSUB SUBADD MUL DIV MIN MAX SQRT FM(N)ADD/SUB. FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element. The DAZ and FTZ flags in the MXCSR register need to be set when using these events.",
@ -31,8 +25,6 @@
},
{
"BriefDescription": "Counts once for most SIMD 256-bit packed single computational precision floating-point instructions retired. Counts twice for DPP and FM(N)ADD/SUB instructions retired.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xC7",
"EventName": "FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE",
"PublicDescription": "Counts once for most SIMD 256-bit packed single computational precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 8 computation operations, one for each element. Applies to packed single precision floating-point instructions: ADD SUB HADD HSUB SUBADD MUL DIV MIN MAX SQRT RSQRT RCP DPP FM(N)ADD/SUB. DPP and FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element. The DAZ and FTZ flags in the MXCSR register need to be set when using these events.",
@ -41,8 +33,6 @@
},
{
"BriefDescription": "Counts once for most SIMD scalar computational double precision floating-point instructions retired. Counts twice for DPP and FM(N)ADD/SUB instructions retired.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xC7",
"EventName": "FP_ARITH_INST_RETIRED.SCALAR_DOUBLE",
"PublicDescription": "Counts once for most SIMD scalar computational double precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 1 computational operation. Applies to SIMD scalar double precision floating-point instructions: ADD SUB MUL DIV MIN MAX SQRT FM(N)ADD/SUB. FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element. The DAZ and FTZ flags in the MXCSR register need to be set when using these events.",
@ -51,8 +41,6 @@
},
{
"BriefDescription": "Counts once for most SIMD scalar computational single precision floating-point instructions retired. Counts twice for DPP and FM(N)ADD/SUB instructions retired.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xC7",
"EventName": "FP_ARITH_INST_RETIRED.SCALAR_SINGLE",
"PublicDescription": "Counts once for most SIMD scalar computational single precision floating-point instructions retired; some instructions will count twice as noted below. Each count represents 1 computational operation. Applies to SIMD scalar single precision floating-point instructions: ADD SUB MUL DIV MIN MAX SQRT RSQRT RCP FM(N)ADD/SUB. FM(N)ADD/SUB instructions count twice as they perform 2 calculations per element. The DAZ and FTZ flags in the MXCSR register need to be set when using these events.",
@ -61,8 +49,6 @@
},
{
"BriefDescription": "Cycles with any input/output SSE or FP assist",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0xCA",
"EventName": "FP_ASSIST.ANY",

View File

@ -1,8 +1,6 @@
[
{
"BriefDescription": "Counts the total number when the front end is resteered, mainly when the BPU cannot provide a correct prediction and this is corrected by other branch handling mechanisms at the front end.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xE6",
"EventName": "BACLEARS.ANY",
"PublicDescription": "Counts the number of times the front-end is resteered when it finds a branch instruction in a fetch line. This occurs for the first time a branch instruction is fetched or when the branch is not tracked by the BPU (Branch Prediction Unit) anymore.",
@ -11,8 +9,6 @@
},
{
"BriefDescription": "Decode Stream Buffer (DSB)-to-MITE switches",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xAB",
"EventName": "DSB2MITE_SWITCHES.COUNT",
"PublicDescription": "This event counts the number of the Decode Stream Buffer (DSB)-to-MITE switches including all misses because of missing Decode Stream Buffer (DSB) cache and u-arch forced misses.\nNote: Invoking MITE requires two or three cycles delay.",
@ -21,8 +17,6 @@
},
{
"BriefDescription": "Decode Stream Buffer (DSB)-to-MITE switch true penalty cycles.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xAB",
"EventName": "DSB2MITE_SWITCHES.PENALTY_CYCLES",
"PublicDescription": "Counts Decode Stream Buffer (DSB)-to-MITE switch true penalty cycles. These cycles do not include uops routed through because of the switch itself, for example, when Instruction Decode Queue (IDQ) pre-allocation is unavailable, or Instruction Decode Queue (IDQ) is full. SBD-to-MITE switch true penalty cycles happen after the merge mux (MM) receives Decode Stream Buffer (DSB) Sync-indication until receiving the first MITE uop. MM is placed before Instruction Decode Queue (IDQ) to merge uops being fed from the MITE and Decode Stream Buffer (DSB) paths. Decode Stream Buffer (DSB) inserts the Sync-indication whenever a Decode Stream Buffer (DSB)-to-MITE switch occurs.Penalty: A Decode Stream Buffer (DSB) hit followed by a Decode Stream Buffer (DSB) miss can cost up to six cycles in which no uops are delivered to the IDQ. Most often, such switches from the Decode Stream Buffer (DSB) to the legacy pipeline cost 02 cycles.",
@ -31,8 +25,6 @@
},
{
"BriefDescription": "Retired Instructions who experienced DSB miss.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xC6",
"EventName": "FRONTEND_RETIRED.ANY_DSB_MISS",
"MSRIndex": "0x3F7",
@ -40,13 +32,10 @@
"PEBS": "1",
"PublicDescription": "Counts retired Instructions that experienced DSB (Decode stream buffer i.e. the decoded instruction-cache) miss.",
"SampleAfterValue": "100007",
"TakenAlone": "1",
"UMask": "0x1"
},
{
"BriefDescription": "Retired Instructions who experienced a critical DSB miss.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xC6",
"EventName": "FRONTEND_RETIRED.DSB_MISS",
"MSRIndex": "0x3F7",
@ -54,13 +43,10 @@
"PEBS": "1",
"PublicDescription": "Number of retired Instructions that experienced a critical DSB (Decode stream buffer i.e. the decoded instruction-cache) miss. Critical means stalls were exposed to the back-end as a result of the DSB miss.",
"SampleAfterValue": "100007",
"TakenAlone": "1",
"UMask": "0x1"
},
{
"BriefDescription": "Retired Instructions who experienced iTLB true miss.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xC6",
"EventName": "FRONTEND_RETIRED.ITLB_MISS",
"MSRIndex": "0x3F7",
@ -68,39 +54,30 @@
"PEBS": "1",
"PublicDescription": "Counts retired Instructions that experienced iTLB (Instruction TLB) true miss.",
"SampleAfterValue": "100007",
"TakenAlone": "1",
"UMask": "0x1"
},
{
"BriefDescription": "Retired Instructions who experienced Instruction L1 Cache true miss.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xC6",
"EventName": "FRONTEND_RETIRED.L1I_MISS",
"MSRIndex": "0x3F7",
"MSRValue": "0x12",
"PEBS": "1",
"SampleAfterValue": "100007",
"TakenAlone": "1",
"UMask": "0x1"
},
{
"BriefDescription": "Retired Instructions who experienced Instruction L2 Cache true miss.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xC6",
"EventName": "FRONTEND_RETIRED.L2_MISS",
"MSRIndex": "0x3F7",
"MSRValue": "0x13",
"PEBS": "1",
"SampleAfterValue": "100007",
"TakenAlone": "1",
"UMask": "0x1"
},
{
"BriefDescription": "Retired instructions after front-end starvation of at least 1 cycle",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xc6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_1",
"MSRIndex": "0x3F7",
@ -108,26 +85,20 @@
"PEBS": "2",
"PublicDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of at least 1 cycle which was not interrupted by a back-end stall.",
"SampleAfterValue": "100007",
"TakenAlone": "1",
"UMask": "0x1"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 128 cycles which was not interrupted by a back-end stall.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xC6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_128",
"MSRIndex": "0x3F7",
"MSRValue": "0x408006",
"PEBS": "1",
"SampleAfterValue": "100007",
"TakenAlone": "1",
"UMask": "0x1"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 16 cycles which was not interrupted by a back-end stall.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xC6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_16",
"MSRIndex": "0x3F7",
@ -135,39 +106,30 @@
"PEBS": "1",
"PublicDescription": "Counts retired instructions that are delivered to the back-end after a front-end stall of at least 16 cycles. During this period the front-end delivered no uops.",
"SampleAfterValue": "100007",
"TakenAlone": "1",
"UMask": "0x1"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 2 cycles which was not interrupted by a back-end stall.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xC6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_2",
"MSRIndex": "0x3F7",
"MSRValue": "0x400206",
"PEBS": "1",
"SampleAfterValue": "100007",
"TakenAlone": "1",
"UMask": "0x1"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 256 cycles which was not interrupted by a back-end stall.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xC6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_256",
"MSRIndex": "0x3F7",
"MSRValue": "0x410006",
"PEBS": "1",
"SampleAfterValue": "100007",
"TakenAlone": "1",
"UMask": "0x1"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end had at least 1 bubble-slot for a period of 2 cycles which was not interrupted by a back-end stall.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xC6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_2_BUBBLES_GE_1",
"MSRIndex": "0x3F7",
@ -175,39 +137,30 @@
"PEBS": "1",
"PublicDescription": "Counts retired instructions that are delivered to the back-end after the front-end had at least 1 bubble-slot for a period of 2 cycles. A bubble-slot is an empty issue-pipeline slot while there was no RAT stall.",
"SampleAfterValue": "100007",
"TakenAlone": "1",
"UMask": "0x1"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end had at least 2 bubble-slots for a period of 2 cycles which was not interrupted by a back-end stall.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xC6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_2_BUBBLES_GE_2",
"MSRIndex": "0x3F7",
"MSRValue": "0x200206",
"PEBS": "1",
"SampleAfterValue": "100007",
"TakenAlone": "1",
"UMask": "0x1"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end had at least 3 bubble-slots for a period of 2 cycles which was not interrupted by a back-end stall.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xC6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_2_BUBBLES_GE_3",
"MSRIndex": "0x3F7",
"MSRValue": "0x300206",
"PEBS": "1",
"SampleAfterValue": "100007",
"TakenAlone": "1",
"UMask": "0x1"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 32 cycles which was not interrupted by a back-end stall.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xC6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_32",
"MSRIndex": "0x3F7",
@ -215,52 +168,40 @@
"PEBS": "1",
"PublicDescription": "Counts retired instructions that are delivered to the back-end after a front-end stall of at least 32 cycles. During this period the front-end delivered no uops.",
"SampleAfterValue": "100007",
"TakenAlone": "1",
"UMask": "0x1"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 4 cycles which was not interrupted by a back-end stall.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xC6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_4",
"MSRIndex": "0x3F7",
"MSRValue": "0x400406",
"PEBS": "1",
"SampleAfterValue": "100007",
"TakenAlone": "1",
"UMask": "0x1"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 512 cycles which was not interrupted by a back-end stall.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xC6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_512",
"MSRIndex": "0x3F7",
"MSRValue": "0x420006",
"PEBS": "1",
"SampleAfterValue": "100007",
"TakenAlone": "1",
"UMask": "0x1"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 64 cycles which was not interrupted by a back-end stall.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xC6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_64",
"MSRIndex": "0x3F7",
"MSRValue": "0x404006",
"PEBS": "1",
"SampleAfterValue": "100007",
"TakenAlone": "1",
"UMask": "0x1"
},
{
"BriefDescription": "Retired instructions that are fetched after an interval where the front-end delivered no uops for a period of 8 cycles which was not interrupted by a back-end stall.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xC6",
"EventName": "FRONTEND_RETIRED.LATENCY_GE_8",
"MSRIndex": "0x3F7",
@ -268,13 +209,10 @@
"PEBS": "1",
"PublicDescription": "Counts retired instructions that are delivered to the back-end after a front-end stall of at least 8 cycles. During this period the front-end delivered no uops.",
"SampleAfterValue": "100007",
"TakenAlone": "1",
"UMask": "0x1"
},
{
"BriefDescription": "Retired Instructions who experienced STLB (2nd level TLB) true miss.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xC6",
"EventName": "FRONTEND_RETIRED.STLB_MISS",
"MSRIndex": "0x3F7",
@ -282,13 +220,10 @@
"PEBS": "1",
"PublicDescription": "Counts retired Instructions that experienced STLB (2nd level TLB) true miss.",
"SampleAfterValue": "100007",
"TakenAlone": "1",
"UMask": "0x1"
},
{
"BriefDescription": "Cycles where a code fetch is stalled due to L1 instruction cache miss.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x80",
"EventName": "ICACHE_16B.IFDATA_STALL",
"PublicDescription": "Cycles where a code line fetch is stalled due to an L1 instruction cache miss. The legacy decode pipeline works at a 16 Byte granularity.",
@ -297,8 +232,6 @@
},
{
"BriefDescription": "Instruction fetch tag lookups that hit in the instruction cache (L1I). Counts at 64-byte cache-line granularity.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x83",
"EventName": "ICACHE_64B.IFTAG_HIT",
"SampleAfterValue": "200003",
@ -306,8 +239,6 @@
},
{
"BriefDescription": "Instruction fetch tag lookups that miss in the instruction cache (L1I). Counts at 64-byte cache-line granularity.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x83",
"EventName": "ICACHE_64B.IFTAG_MISS",
"SampleAfterValue": "200003",
@ -315,8 +246,6 @@
},
{
"BriefDescription": "Cycles where a code fetch is stalled due to L1 instruction cache tag miss.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x83",
"EventName": "ICACHE_64B.IFTAG_STALL",
"SampleAfterValue": "200003",
@ -324,8 +253,6 @@
},
{
"BriefDescription": "Cycles Decode Stream Buffer (DSB) is delivering 4 Uops",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "4",
"EventCode": "0x79",
"EventName": "IDQ.ALL_DSB_CYCLES_4_UOPS",
@ -335,8 +262,6 @@
},
{
"BriefDescription": "Cycles Decode Stream Buffer (DSB) is delivering any Uop",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0x79",
"EventName": "IDQ.ALL_DSB_CYCLES_ANY_UOPS",
@ -346,8 +271,6 @@
},
{
"BriefDescription": "Cycles MITE is delivering 4 Uops",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "4",
"EventCode": "0x79",
"EventName": "IDQ.ALL_MITE_CYCLES_4_UOPS",
@ -357,8 +280,6 @@
},
{
"BriefDescription": "Cycles MITE is delivering any Uop",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0x79",
"EventName": "IDQ.ALL_MITE_CYCLES_ANY_UOPS",
@ -368,8 +289,6 @@
},
{
"BriefDescription": "Cycles when uops are being delivered to Instruction Decode Queue (IDQ) from Decode Stream Buffer (DSB) path",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0x79",
"EventName": "IDQ.DSB_CYCLES",
@ -379,8 +298,6 @@
},
{
"BriefDescription": "Uops delivered to Instruction Decode Queue (IDQ) from the Decode Stream Buffer (DSB) path",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x79",
"EventName": "IDQ.DSB_UOPS",
"PublicDescription": "Counts the number of uops delivered to Instruction Decode Queue (IDQ) from the Decode Stream Buffer (DSB) path. Counting includes uops that may 'bypass' the IDQ.",
@ -389,8 +306,6 @@
},
{
"BriefDescription": "Cycles when uops are being delivered to Instruction Decode Queue (IDQ) from MITE path",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0x79",
"EventName": "IDQ.MITE_CYCLES",
@ -400,8 +315,6 @@
},
{
"BriefDescription": "Uops delivered to Instruction Decode Queue (IDQ) from MITE path",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x79",
"EventName": "IDQ.MITE_UOPS",
"PublicDescription": "Counts the number of uops delivered to Instruction Decode Queue (IDQ) from the MITE path. Counting includes uops that may 'bypass' the IDQ. This also means that uops are not being delivered from the Decode Stream Buffer (DSB).",
@ -410,8 +323,6 @@
},
{
"BriefDescription": "Cycles when uops are being delivered to Instruction Decode Queue (IDQ) while Microcode Sequenser (MS) is busy",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0x79",
"EventName": "IDQ.MS_CYCLES",
@ -421,8 +332,6 @@
},
{
"BriefDescription": "Cycles when uops initiated by Decode Stream Buffer (DSB) are being delivered to Instruction Decode Queue (IDQ) while Microcode Sequenser (MS) is busy",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0x79",
"EventName": "IDQ.MS_DSB_CYCLES",
@ -432,8 +341,6 @@
},
{
"BriefDescription": "Uops initiated by MITE and delivered to Instruction Decode Queue (IDQ) while Microcode Sequenser (MS) is busy",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x79",
"EventName": "IDQ.MS_MITE_UOPS",
"PublicDescription": "Counts the number of uops initiated by MITE and delivered to Instruction Decode Queue (IDQ) while the Microcode Sequencer (MS) is busy. Counting includes uops that may 'bypass' the IDQ.",
@ -442,8 +349,6 @@
},
{
"BriefDescription": "Number of switches from DSB (Decode Stream Buffer) or MITE (legacy decode pipeline) to the Microcode Sequencer",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EdgeDetect": "1",
"EventCode": "0x79",
@ -454,8 +359,6 @@
},
{
"BriefDescription": "Uops delivered to Instruction Decode Queue (IDQ) while Microcode Sequenser (MS) is busy",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x79",
"EventName": "IDQ.MS_UOPS",
"PublicDescription": "Counts the total number of uops delivered by the Microcode Sequencer (MS). Any instruction over 4 uops will be delivered by the MS. Some instructions such as transcendentals may additionally generate uops from the MS.",
@ -464,8 +367,6 @@
},
{
"BriefDescription": "Uops not delivered to Resource Allocation Table (RAT) per thread when backend of the machine is not stalled",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x9C",
"EventName": "IDQ_UOPS_NOT_DELIVERED.CORE",
"PublicDescription": "Counts the number of uops not delivered to Resource Allocation Table (RAT) per thread adding 4 x when Resource Allocation Table (RAT) is not stalled and Instruction Decode Queue (IDQ) delivers x uops to Resource Allocation Table (RAT) (where x belongs to {0,1,2,3}). Counting does not cover cases when: a. IDQ-Resource Allocation Table (RAT) pipe serves the other thread. b. Resource Allocation Table (RAT) is stalled for the thread (including uop drops and clear BE conditions). c. Instruction Decode Queue (IDQ) delivers four uops.",
@ -474,8 +375,6 @@
},
{
"BriefDescription": "Cycles per thread when 4 or more uops are not delivered to Resource Allocation Table (RAT) when backend of the machine is not stalled",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "4",
"EventCode": "0x9C",
"EventName": "IDQ_UOPS_NOT_DELIVERED.CYCLES_0_UOPS_DELIV.CORE",
@ -485,8 +384,6 @@
},
{
"BriefDescription": "Counts cycles FE delivered 4 uops or Resource Allocation Table (RAT) was stalling FE.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0x9C",
"EventName": "IDQ_UOPS_NOT_DELIVERED.CYCLES_FE_WAS_OK",
@ -496,8 +393,6 @@
},
{
"BriefDescription": "Cycles per thread when 3 or more uops are not delivered to Resource Allocation Table (RAT) when backend of the machine is not stalled",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "3",
"EventCode": "0x9C",
"EventName": "IDQ_UOPS_NOT_DELIVERED.CYCLES_LE_1_UOP_DELIV.CORE",
@ -507,8 +402,6 @@
},
{
"BriefDescription": "Cycles with less than 2 uops delivered by the front end.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "2",
"EventCode": "0x9C",
"EventName": "IDQ_UOPS_NOT_DELIVERED.CYCLES_LE_2_UOP_DELIV.CORE",
@ -518,8 +411,6 @@
},
{
"BriefDescription": "Cycles with less than 3 uops delivered by the front end.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0x9C",
"EventName": "IDQ_UOPS_NOT_DELIVERED.CYCLES_LE_3_UOP_DELIV.CORE",

File diff suppressed because it is too large Load Diff

View File

@ -1,8 +1,6 @@
[
{
"BriefDescription": "Number of hardware interrupts received by the processor.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xCB",
"EventName": "HW_INTERRUPTS.RECEIVED",
"PublicDescription": "Counts the number of hardware interruptions received by the processor.",
@ -10,8 +8,6 @@
"UMask": "0x1"
},
{
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x09",
"EventName": "MEMORY_DISAMBIGUATION.HISTORY_RESET",
"SampleAfterValue": "2000003",

View File

@ -1,8 +1,6 @@
[
{
"BriefDescription": "Cycles when divide unit is busy executing divide or square root operations. Accounts for integer and floating-point operations.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0x14",
"EventName": "ARITH.DIVIDER_ACTIVE",
@ -11,8 +9,6 @@
},
{
"BriefDescription": "All (macro) branch instructions retired.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"Errata": "SKL091",
"EventCode": "0xC4",
"EventName": "BR_INST_RETIRED.ALL_BRANCHES",
@ -21,8 +17,6 @@
},
{
"BriefDescription": "All (macro) branch instructions retired.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"Errata": "SKL091",
"EventCode": "0xC4",
"EventName": "BR_INST_RETIRED.ALL_BRANCHES_PEBS",
@ -33,8 +27,6 @@
},
{
"BriefDescription": "Conditional branch instructions retired.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"Errata": "SKL091",
"EventCode": "0xC4",
"EventName": "BR_INST_RETIRED.CONDITIONAL",
@ -45,8 +37,6 @@
},
{
"BriefDescription": "Not taken branch instructions retired.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"Errata": "SKL091",
"EventCode": "0xc4",
"EventName": "BR_INST_RETIRED.COND_NTAKEN",
@ -56,8 +46,6 @@
},
{
"BriefDescription": "Far branch instructions retired.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"Errata": "SKL091",
"EventCode": "0xC4",
"EventName": "BR_INST_RETIRED.FAR_BRANCH",
@ -68,8 +56,6 @@
},
{
"BriefDescription": "Direct and indirect near call instructions retired.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"Errata": "SKL091",
"EventCode": "0xC4",
"EventName": "BR_INST_RETIRED.NEAR_CALL",
@ -80,8 +66,6 @@
},
{
"BriefDescription": "Return instructions retired.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"Errata": "SKL091",
"EventCode": "0xC4",
"EventName": "BR_INST_RETIRED.NEAR_RETURN",
@ -92,8 +76,6 @@
},
{
"BriefDescription": "Taken branch instructions retired.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"Errata": "SKL091",
"EventCode": "0xC4",
"EventName": "BR_INST_RETIRED.NEAR_TAKEN",
@ -104,8 +86,6 @@
},
{
"BriefDescription": "Not taken branch instructions retired.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"Errata": "SKL091",
"EventCode": "0xC4",
"EventName": "BR_INST_RETIRED.NOT_TAKEN",
@ -115,8 +95,6 @@
},
{
"BriefDescription": "All mispredicted macro branch instructions retired.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xC5",
"EventName": "BR_MISP_RETIRED.ALL_BRANCHES",
"PublicDescription": "Counts all the retired branch instructions that were mispredicted by the processor. A branch misprediction occurs when the processor incorrectly predicts the destination of the branch. When the misprediction is discovered at execution, all the instructions executed in the wrong (speculative) path must be discarded, and the processor must start fetching from the correct path.",
@ -124,8 +102,6 @@
},
{
"BriefDescription": "Mispredicted macro branch instructions retired.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"EventCode": "0xC5",
"EventName": "BR_MISP_RETIRED.ALL_BRANCHES_PEBS",
"PEBS": "2",
@ -135,8 +111,6 @@
},
{
"BriefDescription": "Mispredicted conditional branch instructions retired.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xC5",
"EventName": "BR_MISP_RETIRED.CONDITIONAL",
"PEBS": "1",
@ -146,8 +120,6 @@
},
{
"BriefDescription": "Mispredicted direct and indirect near call instructions retired.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xC5",
"EventName": "BR_MISP_RETIRED.NEAR_CALL",
"PEBS": "1",
@ -157,8 +129,6 @@
},
{
"BriefDescription": "Number of near branch instructions retired that were mispredicted and taken.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xC5",
"EventName": "BR_MISP_RETIRED.NEAR_TAKEN",
"PEBS": "1",
@ -167,8 +137,6 @@
},
{
"BriefDescription": "Core crystal clock cycles when this thread is unhalted and the other thread is halted.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x3C",
"EventName": "CPU_CLK_THREAD_UNHALTED.ONE_THREAD_ACTIVE",
"SampleAfterValue": "25003",
@ -176,8 +144,6 @@
},
{
"BriefDescription": "Core crystal clock cycles when the thread is unhalted.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x3C",
"EventName": "CPU_CLK_THREAD_UNHALTED.REF_XCLK",
"SampleAfterValue": "25003",
@ -186,8 +152,6 @@
{
"AnyThread": "1",
"BriefDescription": "Core crystal clock cycles when at least one thread on the physical core is unhalted.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x3C",
"EventName": "CPU_CLK_THREAD_UNHALTED.REF_XCLK_ANY",
"SampleAfterValue": "25003",
@ -195,8 +159,6 @@
},
{
"BriefDescription": "Core crystal clock cycles when this thread is unhalted and the other thread is halted.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x3C",
"EventName": "CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE",
"SampleAfterValue": "25003",
@ -204,8 +166,6 @@
},
{
"BriefDescription": "Reference cycles when the core is not in halt state.",
"Counter": "Fixed counter 2",
"CounterHTOff": "Fixed counter 2",
"EventName": "CPU_CLK_UNHALTED.REF_TSC",
"PublicDescription": "Counts the number of reference cycles when the core is not in a halt state. The core enters the halt state when it is running the HLT instruction or the MWAIT instruction. This event is not affected by core frequency changes (for example, P states, TM2 transitions) but has the same incrementing frequency as the time stamp counter. This event can approximate elapsed time while the core was not in a halt state. This event has a constant ratio with the CPU_CLK_UNHALTED.REF_XCLK event. It is counted on a dedicated fixed counter, leaving the four (eight when Hyperthreading is disabled) programmable counters available for other events. Note: On all current platforms this event stops counting during 'throttling (TM)' states duty off periods the processor is 'halted'. The counter update is done at a lower clock rate then the core clock the overflow status bit for this counter may appear 'sticky'. After the counter has overflowed and software clears the overflow status bit and resets the counter to less than MAX. The reset value to the counter is not clocked immediately so the overflow status bit will flip 'high (1)' and generate another PMI (if enabled) after which the reset value gets clocked into the counter. Therefore, software will get the interrupt, read the overflow status bit '1 for bit 34 while the counter value is less than MAX. Software should ignore this case.",
"SampleAfterValue": "2000003",
@ -213,8 +173,6 @@
},
{
"BriefDescription": "Core crystal clock cycles when the thread is unhalted.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x3C",
"EventName": "CPU_CLK_UNHALTED.REF_XCLK",
"SampleAfterValue": "25003",
@ -223,8 +181,6 @@
{
"AnyThread": "1",
"BriefDescription": "Core crystal clock cycles when at least one thread on the physical core is unhalted.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x3C",
"EventName": "CPU_CLK_UNHALTED.REF_XCLK_ANY",
"SampleAfterValue": "25003",
@ -232,8 +188,6 @@
},
{
"BriefDescription": "Counts when there is a transition from ring 1, 2 or 3 to ring 0.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EdgeDetect": "1",
"EventCode": "0x3C",
@ -243,8 +197,6 @@
},
{
"BriefDescription": "Core cycles when the thread is not in halt state",
"Counter": "Fixed counter 1",
"CounterHTOff": "Fixed counter 1",
"EventName": "CPU_CLK_UNHALTED.THREAD",
"PublicDescription": "Counts the number of core cycles while the thread is not in a halt state. The thread enters the halt state when it is running the HLT instruction. This event is a component in many key event ratios. The core frequency may change from time to time due to transitions associated with Enhanced Intel SpeedStep Technology or TM2. For this reason this event may have a changing ratio with regards to time. When the core frequency is constant, this event can approximate elapsed time while the core was not in the halt state. It is counted on a dedicated fixed counter, leaving the four (eight when Hyperthreading is disabled) programmable counters available for other events.",
"SampleAfterValue": "2000003",
@ -253,16 +205,12 @@
{
"AnyThread": "1",
"BriefDescription": "Core cycles when at least one thread on the physical core is not in halt state.",
"Counter": "Fixed counter 1",
"CounterHTOff": "Fixed counter 1",
"EventName": "CPU_CLK_UNHALTED.THREAD_ANY",
"SampleAfterValue": "2000003",
"UMask": "0x2"
},
{
"BriefDescription": "Thread cycles when thread is not in halt state",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x3C",
"EventName": "CPU_CLK_UNHALTED.THREAD_P",
"PublicDescription": "This is an architectural event that counts the number of thread cycles while the thread is not in a halt state. The thread enters the halt state when it is running the HLT instruction. The core frequency may change from time to time due to power or thermal throttling. For this reason, this event may have a changing ratio with regards to wall clock time.",
@ -271,16 +219,12 @@
{
"AnyThread": "1",
"BriefDescription": "Core cycles when at least one thread on the physical core is not in halt state.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x3C",
"EventName": "CPU_CLK_UNHALTED.THREAD_P_ANY",
"SampleAfterValue": "2000003"
},
{
"BriefDescription": "Cycles while L1 cache miss demand load is outstanding.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "8",
"EventCode": "0xA3",
"EventName": "CYCLE_ACTIVITY.CYCLES_L1D_MISS",
@ -289,8 +233,6 @@
},
{
"BriefDescription": "Cycles while L2 cache miss demand load is outstanding.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0xA3",
"EventName": "CYCLE_ACTIVITY.CYCLES_L2_MISS",
@ -299,8 +241,6 @@
},
{
"BriefDescription": "Cycles while memory subsystem has an outstanding load.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "16",
"EventCode": "0xA3",
"EventName": "CYCLE_ACTIVITY.CYCLES_MEM_ANY",
@ -309,8 +249,6 @@
},
{
"BriefDescription": "Execution stalls while L1 cache miss demand load is outstanding.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "12",
"EventCode": "0xA3",
"EventName": "CYCLE_ACTIVITY.STALLS_L1D_MISS",
@ -319,8 +257,6 @@
},
{
"BriefDescription": "Execution stalls while L2 cache miss demand load is outstanding.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "5",
"EventCode": "0xA3",
"EventName": "CYCLE_ACTIVITY.STALLS_L2_MISS",
@ -329,8 +265,6 @@
},
{
"BriefDescription": "Execution stalls while memory subsystem has an outstanding load.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3",
"CounterMask": "20",
"EventCode": "0xA3",
"EventName": "CYCLE_ACTIVITY.STALLS_MEM_ANY",
@ -339,8 +273,6 @@
},
{
"BriefDescription": "Total execution stalls.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "4",
"EventCode": "0xA3",
"EventName": "CYCLE_ACTIVITY.STALLS_TOTAL",
@ -349,8 +281,6 @@
},
{
"BriefDescription": "Cycles total of 1 uop is executed on all ports and Reservation Station was not empty.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xA6",
"EventName": "EXE_ACTIVITY.1_PORTS_UTIL",
"PublicDescription": "Counts cycles during which a total of 1 uop was executed on all ports and Reservation Station (RS) was not empty.",
@ -359,8 +289,6 @@
},
{
"BriefDescription": "Cycles total of 2 uops are executed on all ports and Reservation Station was not empty.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xA6",
"EventName": "EXE_ACTIVITY.2_PORTS_UTIL",
"PublicDescription": "Counts cycles during which a total of 2 uops were executed on all ports and Reservation Station (RS) was not empty.",
@ -369,8 +297,6 @@
},
{
"BriefDescription": "Cycles total of 3 uops are executed on all ports and Reservation Station was not empty.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xA6",
"EventName": "EXE_ACTIVITY.3_PORTS_UTIL",
"PublicDescription": "Cycles total of 3 uops are executed on all ports and Reservation Station (RS) was not empty.",
@ -379,8 +305,6 @@
},
{
"BriefDescription": "Cycles total of 4 uops are executed on all ports and Reservation Station was not empty.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xA6",
"EventName": "EXE_ACTIVITY.4_PORTS_UTIL",
"PublicDescription": "Cycles total of 4 uops are executed on all ports and Reservation Station (RS) was not empty.",
@ -389,8 +313,6 @@
},
{
"BriefDescription": "Cycles where the Store Buffer was full and no outstanding load.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xA6",
"EventName": "EXE_ACTIVITY.BOUND_ON_STORES",
"SampleAfterValue": "2000003",
@ -398,8 +320,6 @@
},
{
"BriefDescription": "Cycles where no uops were executed, the Reservation Station was not empty, the Store Buffer was full and there was no outstanding load.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xA6",
"EventName": "EXE_ACTIVITY.EXE_BOUND_0_PORTS",
"PublicDescription": "Counts cycles during which no uops were executed on all ports and Reservation Station (RS) was not empty.",
@ -408,8 +328,6 @@
},
{
"BriefDescription": "Stalls caused by changing prefix length of the instruction.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x87",
"EventName": "ILD_STALL.LCP",
"PublicDescription": "Counts cycles that the Instruction Length decoder (ILD) stalls occurred due to dynamically changing prefix length of the decoded instruction (by operand size prefix instruction 0x66, address size prefix instruction 0x67 or REX.W for Intel64). Count is proportional to the number of prefixes in a 16B-line. This may result in a three-cycle penalty for each LCP (Length changing prefix) in a 16-byte chunk.",
@ -418,8 +336,6 @@
},
{
"BriefDescription": "Instruction decoders utilized in a cycle",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x55",
"EventName": "INST_DECODED.DECODERS",
"PublicDescription": "Number of decoders utilized in a cycle when the MITE (legacy decode pipeline) fetches instructions.",
@ -428,8 +344,6 @@
},
{
"BriefDescription": "Instructions retired from execution.",
"Counter": "Fixed counter 0",
"CounterHTOff": "Fixed counter 0",
"EventName": "INST_RETIRED.ANY",
"PublicDescription": "Counts the number of instructions retired from execution. For instructions that consist of multiple micro-ops, Counts the retirement of the last micro-op of the instruction. Counting continues during hardware interrupts, traps, and inside interrupt handlers. Notes: INST_RETIRED.ANY is counted by a designated fixed counter, leaving the four (eight when Hyperthreading is disabled) programmable counters available for other events. INST_RETIRED.ANY_P is counted by a programmable counter and it is an architectural performance event. Counting: Faulting executions of GETSEC/VM entry/VM Exit/MWait will not count as retired instructions.",
"SampleAfterValue": "2000003",
@ -437,8 +351,6 @@
},
{
"BriefDescription": "Number of instructions retired. General Counter - architectural event",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"Errata": "SKL091, SKL044",
"EventCode": "0xC0",
"EventName": "INST_RETIRED.ANY_P",
@ -447,8 +359,6 @@
},
{
"BriefDescription": "Number of all retired NOP instructions.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"Errata": "SKL091, SKL044",
"EventCode": "0xC0",
"EventName": "INST_RETIRED.NOP",
@ -458,8 +368,6 @@
},
{
"BriefDescription": "Precise instruction retired event with HW to reduce effect of PEBS shadow in IP distribution",
"Counter": "1",
"CounterHTOff": "1",
"Errata": "SKL091, SKL044",
"EventCode": "0xC0",
"EventName": "INST_RETIRED.PREC_DIST",
@ -470,8 +378,6 @@
},
{
"BriefDescription": "Number of cycles using always true condition applied to PEBS instructions retired event.",
"Counter": "0,2,3",
"CounterHTOff": "0,2,3",
"CounterMask": "10",
"Errata": "SKL091, SKL044",
"EventCode": "0xC0",
@ -484,8 +390,6 @@
},
{
"BriefDescription": "Cycles the issue-stage is waiting for front-end to fetch from resteered path following branch misprediction or machine clear events.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x0D",
"EventName": "INT_MISC.CLEAR_RESTEER_CYCLES",
"SampleAfterValue": "2000003",
@ -493,8 +397,6 @@
},
{
"BriefDescription": "Core cycles the allocator was stalled due to recovery from earlier clear event for this thread (e.g. misprediction or memory nuke)",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x0D",
"EventName": "INT_MISC.RECOVERY_CYCLES",
"PublicDescription": "Core cycles the Resource allocator was stalled due to recovery from an earlier branch misprediction or machine clear event.",
@ -504,8 +406,6 @@
{
"AnyThread": "1",
"BriefDescription": "Core cycles the allocator was stalled due to recovery from earlier clear event for any thread running on the physical core (e.g. misprediction or memory nuke).",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x0D",
"EventName": "INT_MISC.RECOVERY_CYCLES_ANY",
"SampleAfterValue": "2000003",
@ -513,8 +413,6 @@
},
{
"BriefDescription": "The number of times that split load operations are temporarily blocked because all resources for handling the split accesses are in use",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x03",
"EventName": "LD_BLOCKS.NO_SR",
"PublicDescription": "The number of times that split load operations are temporarily blocked because all resources for handling the split accesses are in use.",
@ -523,8 +421,6 @@
},
{
"BriefDescription": "Loads blocked due to overlapping with a preceding store that cannot be forwarded.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x03",
"EventName": "LD_BLOCKS.STORE_FORWARD",
"PublicDescription": "Counts the number of times where store forwarding was prevented for a load operation. The most common case is a load blocked due to the address of memory access (partially) overlapping with a preceding uncompleted store. Note: See the table of not supported store forwards in the Optimization Guide.",
@ -533,8 +429,6 @@
},
{
"BriefDescription": "False dependencies in MOB due to partial compare on address.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x07",
"EventName": "LD_BLOCKS_PARTIAL.ADDRESS_ALIAS",
"PublicDescription": "Counts false dependencies in MOB when the partial comparison upon loose net check and dependency was resolved by the Enhanced Loose net mechanism. This may not result in high performance penalties. Loose net checks can fail when loads and stores are 4k aliased.",
@ -543,8 +437,6 @@
},
{
"BriefDescription": "Demand load dispatches that hit L1D fill buffer (FB) allocated for software prefetch.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x4C",
"EventName": "LOAD_HIT_PRE.SW_PF",
"PublicDescription": "Counts all not software-prefetch load dispatches that hit the fill buffer (FB) allocated for the software prefetch. It can also be incremented by some lock instructions. So it should only be used with profiling so that the locks can be excluded by ASM (Assembly File) inspection of the nearby instructions.",
@ -553,8 +445,6 @@
},
{
"BriefDescription": "Cycles 4 Uops delivered by the LSD, but didn't come from the decoder.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "4",
"EventCode": "0xA8",
"EventName": "LSD.CYCLES_4_UOPS",
@ -564,8 +454,6 @@
},
{
"BriefDescription": "Cycles Uops delivered by the LSD, but didn't come from the decoder.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0xA8",
"EventName": "LSD.CYCLES_ACTIVE",
@ -575,8 +463,6 @@
},
{
"BriefDescription": "Number of Uops delivered by the LSD.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xA8",
"EventName": "LSD.UOPS",
"PublicDescription": "Number of uops delivered to the back-end by the LSD(Loop Stream Detector).",
@ -585,8 +471,6 @@
},
{
"BriefDescription": "Number of machine clears (nukes) of any type.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EdgeDetect": "1",
"EventCode": "0xC3",
@ -596,8 +480,6 @@
},
{
"BriefDescription": "Self-modifying code (SMC) detected.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xC3",
"EventName": "MACHINE_CLEARS.SMC",
"PublicDescription": "Counts self-modifying code (SMC) detected, which causes a machine clear.",
@ -606,8 +488,6 @@
},
{
"BriefDescription": "Number of times a microcode assist is invoked by HW other than FP-assist. Examples include AD (page Access Dirty) and AVX* related assists.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xC1",
"EventName": "OTHER_ASSISTS.ANY",
"SampleAfterValue": "100003",
@ -615,8 +495,6 @@
},
{
"BriefDescription": "Cycles where the pipeline is stalled due to serializing operations.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x59",
"EventName": "PARTIAL_RAT_STALLS.SCOREBOARD",
"PublicDescription": "This event counts cycles during which the microcode scoreboard stalls happen.",
@ -625,8 +503,6 @@
},
{
"BriefDescription": "Resource-related stall cycles",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xa2",
"EventName": "RESOURCE_STALLS.ANY",
"PublicDescription": "Counts resource-related stall cycles.",
@ -635,8 +511,6 @@
},
{
"BriefDescription": "Cycles stalled due to no store buffers available. (not including draining form sync).",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xA2",
"EventName": "RESOURCE_STALLS.SB",
"PublicDescription": "Counts allocation stall cycles caused by the store buffer (SB) being full. This counts cycles that the pipeline back-end blocked uop delivery from the front-end.",
@ -645,8 +519,6 @@
},
{
"BriefDescription": "Increments whenever there is an update to the LBR array.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xCC",
"EventName": "ROB_MISC_EVENTS.LBR_INSERTS",
"PublicDescription": "Increments when an entry is added to the Last Branch Record (LBR) array (or removed from the array in case of RETURNs in call stack mode). The event requires LBR enable via IA32_DEBUGCTL MSR and branch type selection via MSR_LBR_SELECT.",
@ -655,8 +527,6 @@
},
{
"BriefDescription": "Number of retired PAUSE instructions (that do not end up with a VMExit to the VMM; TSX aborted Instructions may be counted). This event is not supported on first SKL and KBL products.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xCC",
"EventName": "ROB_MISC_EVENTS.PAUSE_INST",
"SampleAfterValue": "2000003",
@ -664,8 +534,6 @@
},
{
"BriefDescription": "Cycles when Reservation Station (RS) is empty for the thread",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x5E",
"EventName": "RS_EVENTS.EMPTY_CYCLES",
"PublicDescription": "Counts cycles during which the reservation station (RS) is empty for the thread.; Note: In ST-mode, not active thread should drive 0. This is usually caused by severely costly branch mispredictions, or allocator/FE issues.",
@ -674,8 +542,6 @@
},
{
"BriefDescription": "Counts end of periods where the Reservation Station (RS) was empty. Could be useful to precisely locate Frontend Latency Bound issues.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EdgeDetect": "1",
"EventCode": "0x5E",
@ -687,8 +553,6 @@
},
{
"BriefDescription": "Cycles per thread when uops are executed in port 0",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xA1",
"EventName": "UOPS_DISPATCHED_PORT.PORT_0",
"PublicDescription": "Counts, on the per-thread basis, cycles during which at least one uop is dispatched from the Reservation Station (RS) to port 0.",
@ -697,8 +561,6 @@
},
{
"BriefDescription": "Cycles per thread when uops are executed in port 1",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xA1",
"EventName": "UOPS_DISPATCHED_PORT.PORT_1",
"PublicDescription": "Counts, on the per-thread basis, cycles during which at least one uop is dispatched from the Reservation Station (RS) to port 1.",
@ -707,8 +569,6 @@
},
{
"BriefDescription": "Cycles per thread when uops are executed in port 2",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xA1",
"EventName": "UOPS_DISPATCHED_PORT.PORT_2",
"PublicDescription": "Counts, on the per-thread basis, cycles during which at least one uop is dispatched from the Reservation Station (RS) to port 2.",
@ -717,8 +577,6 @@
},
{
"BriefDescription": "Cycles per thread when uops are executed in port 3",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xA1",
"EventName": "UOPS_DISPATCHED_PORT.PORT_3",
"PublicDescription": "Counts, on the per-thread basis, cycles during which at least one uop is dispatched from the Reservation Station (RS) to port 3.",
@ -727,8 +585,6 @@
},
{
"BriefDescription": "Cycles per thread when uops are executed in port 4",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xA1",
"EventName": "UOPS_DISPATCHED_PORT.PORT_4",
"PublicDescription": "Counts, on the per-thread basis, cycles during which at least one uop is dispatched from the Reservation Station (RS) to port 4.",
@ -737,8 +593,6 @@
},
{
"BriefDescription": "Cycles per thread when uops are executed in port 5",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xA1",
"EventName": "UOPS_DISPATCHED_PORT.PORT_5",
"PublicDescription": "Counts, on the per-thread basis, cycles during which at least one uop is dispatched from the Reservation Station (RS) to port 5.",
@ -747,8 +601,6 @@
},
{
"BriefDescription": "Cycles per thread when uops are executed in port 6",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xA1",
"EventName": "UOPS_DISPATCHED_PORT.PORT_6",
"PublicDescription": "Counts, on the per-thread basis, cycles during which at least one uop is dispatched from the Reservation Station (RS) to port 6.",
@ -757,8 +609,6 @@
},
{
"BriefDescription": "Cycles per thread when uops are executed in port 7",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xA1",
"EventName": "UOPS_DISPATCHED_PORT.PORT_7",
"PublicDescription": "Counts, on the per-thread basis, cycles during which at least one uop is dispatched from the Reservation Station (RS) to port 7.",
@ -767,8 +617,6 @@
},
{
"BriefDescription": "Number of uops executed on the core.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xB1",
"EventName": "UOPS_EXECUTED.CORE",
"PublicDescription": "Number of uops executed from any thread.",
@ -777,8 +625,6 @@
},
{
"BriefDescription": "Cycles at least 1 micro-op is executed from any thread on physical core.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0xB1",
"EventName": "UOPS_EXECUTED.CORE_CYCLES_GE_1",
@ -787,8 +633,6 @@
},
{
"BriefDescription": "Cycles at least 2 micro-op is executed from any thread on physical core.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "2",
"EventCode": "0xB1",
"EventName": "UOPS_EXECUTED.CORE_CYCLES_GE_2",
@ -797,8 +641,6 @@
},
{
"BriefDescription": "Cycles at least 3 micro-op is executed from any thread on physical core.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "3",
"EventCode": "0xB1",
"EventName": "UOPS_EXECUTED.CORE_CYCLES_GE_3",
@ -807,8 +649,6 @@
},
{
"BriefDescription": "Cycles at least 4 micro-op is executed from any thread on physical core.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "4",
"EventCode": "0xB1",
"EventName": "UOPS_EXECUTED.CORE_CYCLES_GE_4",
@ -817,8 +657,6 @@
},
{
"BriefDescription": "Cycles with no micro-ops executed from any thread on physical core.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0xB1",
"EventName": "UOPS_EXECUTED.CORE_CYCLES_NONE",
@ -828,8 +666,6 @@
},
{
"BriefDescription": "Cycles where at least 1 uop was executed per-thread",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0xB1",
"EventName": "UOPS_EXECUTED.CYCLES_GE_1_UOP_EXEC",
@ -839,8 +675,6 @@
},
{
"BriefDescription": "Cycles where at least 2 uops were executed per-thread",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "2",
"EventCode": "0xB1",
"EventName": "UOPS_EXECUTED.CYCLES_GE_2_UOPS_EXEC",
@ -850,8 +684,6 @@
},
{
"BriefDescription": "Cycles where at least 3 uops were executed per-thread",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "3",
"EventCode": "0xB1",
"EventName": "UOPS_EXECUTED.CYCLES_GE_3_UOPS_EXEC",
@ -861,8 +693,6 @@
},
{
"BriefDescription": "Cycles where at least 4 uops were executed per-thread",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "4",
"EventCode": "0xB1",
"EventName": "UOPS_EXECUTED.CYCLES_GE_4_UOPS_EXEC",
@ -872,8 +702,6 @@
},
{
"BriefDescription": "Counts number of cycles no uops were dispatched to be executed on this thread.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0xB1",
"EventName": "UOPS_EXECUTED.STALL_CYCLES",
@ -884,8 +712,6 @@
},
{
"BriefDescription": "Counts the number of uops to be executed per-thread each cycle.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xB1",
"EventName": "UOPS_EXECUTED.THREAD",
"PublicDescription": "Number of uops to be executed per-thread each cycle.",
@ -894,8 +720,6 @@
},
{
"BriefDescription": "Counts the number of x87 uops dispatched.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xB1",
"EventName": "UOPS_EXECUTED.X87",
"PublicDescription": "Counts the number of x87 uops executed.",
@ -904,8 +728,6 @@
},
{
"BriefDescription": "Uops that Resource Allocation Table (RAT) issues to Reservation Station (RS)",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x0E",
"EventName": "UOPS_ISSUED.ANY",
"PublicDescription": "Counts the number of uops that the Resource Allocation Table (RAT) issues to the Reservation Station (RS).",
@ -914,8 +736,6 @@
},
{
"BriefDescription": "Number of slow LEA uops being allocated. A uop is generally considered SlowLea if it has 3 sources (e.g. 2 sources + immediate) regardless if as a result of LEA instruction or not.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x0E",
"EventName": "UOPS_ISSUED.SLOW_LEA",
"SampleAfterValue": "2000003",
@ -923,8 +743,6 @@
},
{
"BriefDescription": "Cycles when Resource Allocation Table (RAT) does not issue Uops to Reservation Station (RS) for the thread",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0x0E",
"EventName": "UOPS_ISSUED.STALL_CYCLES",
@ -935,8 +753,6 @@
},
{
"BriefDescription": "Uops inserted at issue-stage in order to preserve upper bits of vector registers.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x0E",
"EventName": "UOPS_ISSUED.VECTOR_WIDTH_MISMATCH",
"PublicDescription": "Counts the number of Blend Uops issued by the Resource Allocation Table (RAT) to the reservation station (RS) in order to preserve upper bits of vector registers. Starting with the Skylake microarchitecture, these Blend uops are needed since every Intel SSE instruction executed in Dirty Upper State needs to preserve bits 128-255 of the destination register. For more information, refer to Mixing Intel AVX and Intel SSE Code section of the Optimization Guide.",
@ -945,8 +761,6 @@
},
{
"BriefDescription": "Number of macro-fused uops retired. (non precise)",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xc2",
"EventName": "UOPS_RETIRED.MACRO_FUSED",
"PublicDescription": "Counts the number of macro-fused uops retired. (non precise)",
@ -955,8 +769,6 @@
},
{
"BriefDescription": "Retirement slots used.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xC2",
"EventName": "UOPS_RETIRED.RETIRE_SLOTS",
"PublicDescription": "Counts the retirement slots used.",
@ -965,8 +777,6 @@
},
{
"BriefDescription": "Cycles without actually retired uops.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0xC2",
"EventName": "UOPS_RETIRED.STALL_CYCLES",
@ -977,8 +787,6 @@
},
{
"BriefDescription": "Cycles with less than 10 actually retired uops.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "16",
"EventCode": "0xC2",
"EventName": "UOPS_RETIRED.TOTAL_CYCLES",

View File

@ -41,7 +41,7 @@
},
{
"BriefDescription": "This metric represents fraction of cycles the CPU was stalled due to Branch Resteers as a result of Branch Misprediction at execution stage",
"MetricExpr": "(BR_MISP_RETIRED.ALL_BRANCHES / (BR_MISP_RETIRED.ALL_BRANCHES + MACHINE_CLEARS.COUNT)) * INT_MISC.CLEAR_RESTEER_CYCLES / CLKS",
"MetricExpr": "BR_MISP_RETIRED.ALL_BRANCHES / (BR_MISP_RETIRED.ALL_BRANCHES + MACHINE_CLEARS.COUNT) * INT_MISC.CLEAR_RESTEER_CYCLES / CLKS",
"MetricGroup": "BadSpec;BrMispredicts;TopdownL4;tma_branch_resteers_group",
"MetricName": "tma_mispredicts_resteers",
"PublicDescription": "This metric represents fraction of cycles the CPU was stalled due to Branch Resteers as a result of Branch Misprediction at execution stage. Sample with: INT_MISC.CLEAR_RESTEER_CYCLES",
@ -49,7 +49,7 @@
},
{
"BriefDescription": "This metric represents fraction of cycles the CPU was stalled due to Branch Resteers as a result of Machine Clears",
"MetricExpr": "(1 - (BR_MISP_RETIRED.ALL_BRANCHES / (BR_MISP_RETIRED.ALL_BRANCHES + MACHINE_CLEARS.COUNT))) * INT_MISC.CLEAR_RESTEER_CYCLES / CLKS",
"MetricExpr": "(1 - BR_MISP_RETIRED.ALL_BRANCHES / (BR_MISP_RETIRED.ALL_BRANCHES + MACHINE_CLEARS.COUNT)) * INT_MISC.CLEAR_RESTEER_CYCLES / CLKS",
"MetricGroup": "BadSpec;MachineClears;TopdownL4;tma_branch_resteers_group",
"MetricName": "tma_clears_resteers",
"PublicDescription": "This metric represents fraction of cycles the CPU was stalled due to Branch Resteers as a result of Machine Clears. Sample with: INT_MISC.CLEAR_RESTEER_CYCLES",
@ -120,7 +120,7 @@
},
{
"BriefDescription": "This category represents fraction of slots wasted due to incorrect speculations",
"MetricExpr": "(UOPS_ISSUED.ANY - UOPS_RETIRED.RETIRE_SLOTS + 4 * ((INT_MISC.RECOVERY_CYCLES_ANY / 2) if #SMT_on else INT_MISC.RECOVERY_CYCLES)) / SLOTS",
"MetricExpr": "(UOPS_ISSUED.ANY - UOPS_RETIRED.RETIRE_SLOTS + 4 * (INT_MISC.RECOVERY_CYCLES_ANY / 2 if #SMT_on else INT_MISC.RECOVERY_CYCLES)) / SLOTS",
"MetricGroup": "TopdownL1;tma_L1_group",
"MetricName": "tma_bad_speculation",
"PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.",
@ -128,7 +128,7 @@
},
{
"BriefDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction",
"MetricExpr": "(BR_MISP_RETIRED.ALL_BRANCHES / (BR_MISP_RETIRED.ALL_BRANCHES + MACHINE_CLEARS.COUNT)) * tma_bad_speculation",
"MetricExpr": "BR_MISP_RETIRED.ALL_BRANCHES / (BR_MISP_RETIRED.ALL_BRANCHES + MACHINE_CLEARS.COUNT) * tma_bad_speculation",
"MetricGroup": "BadSpec;BrMispredicts;TopdownL2;tma_L2_group;tma_bad_speculation_group",
"MetricName": "tma_branch_mispredicts",
"PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: BR_MISP_RETIRED.ALL_BRANCHES",
@ -144,7 +144,7 @@
},
{
"BriefDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend",
"MetricExpr": "1 - tma_frontend_bound - (UOPS_ISSUED.ANY + 4 * ((INT_MISC.RECOVERY_CYCLES_ANY / 2) if #SMT_on else INT_MISC.RECOVERY_CYCLES)) / SLOTS",
"MetricExpr": "1 - tma_frontend_bound - (UOPS_ISSUED.ANY + 4 * (INT_MISC.RECOVERY_CYCLES_ANY / 2 if #SMT_on else INT_MISC.RECOVERY_CYCLES)) / SLOTS",
"MetricGroup": "TopdownL1;tma_L1_group",
"MetricName": "tma_backend_bound",
"PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound.",
@ -152,7 +152,7 @@
},
{
"BriefDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck",
"MetricExpr": "((CYCLE_ACTIVITY.STALLS_MEM_ANY + EXE_ACTIVITY.BOUND_ON_STORES) / (CYCLE_ACTIVITY.STALLS_TOTAL + (EXE_ACTIVITY.1_PORTS_UTIL + tma_retiring * EXE_ACTIVITY.2_PORTS_UTIL) + EXE_ACTIVITY.BOUND_ON_STORES)) * tma_backend_bound",
"MetricExpr": "(CYCLE_ACTIVITY.STALLS_MEM_ANY + EXE_ACTIVITY.BOUND_ON_STORES) / (CYCLE_ACTIVITY.STALLS_TOTAL + (EXE_ACTIVITY.1_PORTS_UTIL + tma_retiring * EXE_ACTIVITY.2_PORTS_UTIL) + EXE_ACTIVITY.BOUND_ON_STORES) * tma_backend_bound",
"MetricGroup": "Backend;TopdownL2;tma_L2_group;tma_backend_bound_group",
"MetricName": "tma_memory_bound",
"PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).",
@ -198,7 +198,7 @@
},
{
"BriefDescription": "This metric represents fraction of cycles the CPU spent handling cache misses due to lock operations",
"MetricExpr": "(12 * max(0, MEM_INST_RETIRED.LOCK_LOADS - L2_RQSTS.ALL_RFO) + (MEM_INST_RETIRED.LOCK_LOADS / MEM_INST_RETIRED.ALL_STORES) * (9 * L2_RQSTS.RFO_HIT + min(CPU_CLK_UNHALTED.THREAD, OFFCORE_REQUESTS_OUTSTANDING.CYCLES_WITH_DEMAND_RFO))) / CLKS",
"MetricExpr": "(12 * max(0, MEM_INST_RETIRED.LOCK_LOADS - L2_RQSTS.ALL_RFO) + MEM_INST_RETIRED.LOCK_LOADS / MEM_INST_RETIRED.ALL_STORES * (9 * L2_RQSTS.RFO_HIT + min(CPU_CLK_UNHALTED.THREAD, OFFCORE_REQUESTS_OUTSTANDING.CYCLES_WITH_DEMAND_RFO))) / CLKS",
"MetricGroup": "Offcore;TopdownL4;tma_l1_bound_group",
"MetricName": "tma_lock_latency",
"PublicDescription": "This metric represents fraction of cycles the CPU spent handling cache misses due to lock operations. Due to the microarchitecture handling of locks; they are classified as L1_Bound regardless of what memory source satisfied them. Sample with: MEM_INST_RETIRED.LOCK_LOADS_PS",
@ -230,7 +230,7 @@
},
{
"BriefDescription": "This metric estimates how often the CPU was stalled due to L2 cache accesses by loads",
"MetricExpr": "((MEM_LOAD_RETIRED.L2_HIT * (1 + (MEM_LOAD_RETIRED.FB_HIT / MEM_LOAD_RETIRED.L1_MISS))) / ((MEM_LOAD_RETIRED.L2_HIT * (1 + (MEM_LOAD_RETIRED.FB_HIT / MEM_LOAD_RETIRED.L1_MISS))) + cpu@L1D_PEND_MISS.FB_FULL\\,cmask\\=1@)) * ((CYCLE_ACTIVITY.STALLS_L1D_MISS - CYCLE_ACTIVITY.STALLS_L2_MISS) / CLKS)",
"MetricExpr": "MEM_LOAD_RETIRED.L2_HIT * (1 + MEM_LOAD_RETIRED.FB_HIT / MEM_LOAD_RETIRED.L1_MISS) / (MEM_LOAD_RETIRED.L2_HIT * (1 + MEM_LOAD_RETIRED.FB_HIT / MEM_LOAD_RETIRED.L1_MISS) + cpu@L1D_PEND_MISS.FB_FULL\\,cmask\\=1@) * ((CYCLE_ACTIVITY.STALLS_L1D_MISS - CYCLE_ACTIVITY.STALLS_L2_MISS) / CLKS)",
"MetricGroup": "CacheMisses;MemoryBound;TmaL3mem;TopdownL3;tma_memory_bound_group",
"MetricName": "tma_l2_bound",
"PublicDescription": "This metric estimates how often the CPU was stalled due to L2 cache accesses by loads. Avoiding cache misses (i.e. L1 misses/L2 hits) can improve the latency and increase performance. Sample with: MEM_LOAD_RETIRED.L2_HIT_PS",
@ -246,7 +246,7 @@
},
{
"BriefDescription": "This metric estimates fraction of cycles while the memory subsystem was handling synchronizations due to contested accesses",
"MetricExpr": "((18.5 * Average_Frequency) * MEM_LOAD_L3_HIT_RETIRED.XSNP_HITM + (16.5 * Average_Frequency) * MEM_LOAD_L3_HIT_RETIRED.XSNP_MISS) * (1 + (MEM_LOAD_RETIRED.FB_HIT / MEM_LOAD_RETIRED.L1_MISS) / 2) / CLKS",
"MetricExpr": "(18.5 * Average_Frequency * MEM_LOAD_L3_HIT_RETIRED.XSNP_HITM + 16.5 * Average_Frequency * MEM_LOAD_L3_HIT_RETIRED.XSNP_MISS) * (1 + MEM_LOAD_RETIRED.FB_HIT / MEM_LOAD_RETIRED.L1_MISS / 2) / CLKS",
"MetricGroup": "DataSharing;Offcore;Snoop;TopdownL4;tma_l3_bound_group",
"MetricName": "tma_contested_accesses",
"PublicDescription": "This metric estimates fraction of cycles while the memory subsystem was handling synchronizations due to contested accesses. Contested accesses occur when data written by one Logical Processor are read by another Logical Processor on a different Physical Core. Examples of contested accesses include synchronizations such as locks; true data sharing such as modified locked variables; and false sharing. Sample with: MEM_LOAD_L3_HIT_RETIRED.XSNP_HITM_PS;MEM_LOAD_L3_HIT_RETIRED.XSNP_MISS_PS",
@ -254,7 +254,7 @@
},
{
"BriefDescription": "This metric estimates fraction of cycles while the memory subsystem was handling synchronizations due to data-sharing accesses",
"MetricExpr": "(16.5 * Average_Frequency) * MEM_LOAD_L3_HIT_RETIRED.XSNP_HIT * (1 + (MEM_LOAD_RETIRED.FB_HIT / MEM_LOAD_RETIRED.L1_MISS) / 2) / CLKS",
"MetricExpr": "16.5 * Average_Frequency * MEM_LOAD_L3_HIT_RETIRED.XSNP_HIT * (1 + MEM_LOAD_RETIRED.FB_HIT / MEM_LOAD_RETIRED.L1_MISS / 2) / CLKS",
"MetricGroup": "Offcore;Snoop;TopdownL4;tma_l3_bound_group",
"MetricName": "tma_data_sharing",
"PublicDescription": "This metric estimates fraction of cycles while the memory subsystem was handling synchronizations due to data-sharing accesses. Data shared by multiple Logical Processors (even just read shared) may cause increased access latency due to cache coherency. Excessive data sharing can drastically harm multithreaded performance. Sample with: MEM_LOAD_L3_HIT_RETIRED.XSNP_HIT_PS",
@ -262,7 +262,7 @@
},
{
"BriefDescription": "This metric represents fraction of cycles with demand load accesses that hit the L3 cache under unloaded scenarios (possibly L3 latency limited)",
"MetricExpr": "(6.5 * Average_Frequency) * MEM_LOAD_RETIRED.L3_HIT * (1 + (MEM_LOAD_RETIRED.FB_HIT / MEM_LOAD_RETIRED.L1_MISS) / 2) / CLKS",
"MetricExpr": "6.5 * Average_Frequency * MEM_LOAD_RETIRED.L3_HIT * (1 + MEM_LOAD_RETIRED.FB_HIT / MEM_LOAD_RETIRED.L1_MISS / 2) / CLKS",
"MetricGroup": "MemoryLat;TopdownL4;tma_l3_bound_group",
"MetricName": "tma_l3_hit_latency",
"PublicDescription": "This metric represents fraction of cycles with demand load accesses that hit the L3 cache under unloaded scenarios (possibly L3 latency limited). Avoiding private cache misses (i.e. L2 misses/L3 hits) will improve the latency; reduce contention with sibling physical cores and increase performance. Note the value of this node may overlap with its siblings. Sample with: MEM_LOAD_RETIRED.L3_HIT_PS",
@ -270,7 +270,7 @@
},
{
"BriefDescription": "This metric measures fraction of cycles where the Super Queue (SQ) was full taking into account all request-types and both hardware SMT threads (Logical Processors)",
"MetricExpr": "((OFFCORE_REQUESTS_BUFFER.SQ_FULL / 2) if #SMT_on else OFFCORE_REQUESTS_BUFFER.SQ_FULL) / CORE_CLKS",
"MetricExpr": "(OFFCORE_REQUESTS_BUFFER.SQ_FULL / 2 if #SMT_on else OFFCORE_REQUESTS_BUFFER.SQ_FULL) / CORE_CLKS",
"MetricGroup": "MemoryBW;Offcore;TopdownL4;tma_l3_bound_group",
"MetricName": "tma_sq_full",
"PublicDescription": "This metric measures fraction of cycles where the Super Queue (SQ) was full taking into account all request-types and both hardware SMT threads (Logical Processors). The Super Queue is used for requests to access the L2 cache or to go out to the Uncore.",
@ -278,7 +278,7 @@
},
{
"BriefDescription": "This metric estimates how often the CPU was stalled on accesses to external memory (DRAM) by loads",
"MetricExpr": "(CYCLE_ACTIVITY.STALLS_L3_MISS / CLKS + ((CYCLE_ACTIVITY.STALLS_L1D_MISS - CYCLE_ACTIVITY.STALLS_L2_MISS) / CLKS) - tma_l2_bound)",
"MetricExpr": "CYCLE_ACTIVITY.STALLS_L3_MISS / CLKS + (CYCLE_ACTIVITY.STALLS_L1D_MISS - CYCLE_ACTIVITY.STALLS_L2_MISS) / CLKS - tma_l2_bound",
"MetricGroup": "MemoryBound;TmaL3mem;TopdownL3;tma_memory_bound_group",
"MetricName": "tma_dram_bound",
"PublicDescription": "This metric estimates how often the CPU was stalled on accesses to external memory (DRAM) by loads. Better caching can improve the latency and increase performance. Sample with: MEM_LOAD_RETIRED.L3_MISS_PS",
@ -310,7 +310,7 @@
},
{
"BriefDescription": "This metric estimates fraction of cycles the CPU spent handling L1D store misses",
"MetricExpr": "((L2_RQSTS.RFO_HIT * 9 * (1 - (MEM_INST_RETIRED.LOCK_LOADS / MEM_INST_RETIRED.ALL_STORES))) + (1 - (MEM_INST_RETIRED.LOCK_LOADS / MEM_INST_RETIRED.ALL_STORES)) * min(CPU_CLK_UNHALTED.THREAD, OFFCORE_REQUESTS_OUTSTANDING.CYCLES_WITH_DEMAND_RFO)) / CLKS",
"MetricExpr": "(L2_RQSTS.RFO_HIT * 9 * (1 - MEM_INST_RETIRED.LOCK_LOADS / MEM_INST_RETIRED.ALL_STORES) + (1 - MEM_INST_RETIRED.LOCK_LOADS / MEM_INST_RETIRED.ALL_STORES) * min(CPU_CLK_UNHALTED.THREAD, OFFCORE_REQUESTS_OUTSTANDING.CYCLES_WITH_DEMAND_RFO)) / CLKS",
"MetricGroup": "MemoryLat;Offcore;TopdownL4;tma_store_bound_group",
"MetricName": "tma_store_latency",
"PublicDescription": "This metric estimates fraction of cycles the CPU spent handling L1D store misses. Store accesses usually less impact out-of-order core performance; however; holding resources for longer time can lead into undesired implications (e.g. contention on L1D fill-buffer entries - see FB_Full)",
@ -318,7 +318,7 @@
},
{
"BriefDescription": "This metric roughly estimates how often CPU was handling synchronizations due to False Sharing",
"MetricExpr": "(22 * Average_Frequency) * OFFCORE_RESPONSE.DEMAND_RFO.L3_HIT.SNOOP_HITM / CLKS",
"MetricExpr": "22 * Average_Frequency * OFFCORE_RESPONSE.DEMAND_RFO.L3_HIT.SNOOP_HITM / CLKS",
"MetricGroup": "DataSharing;Offcore;Snoop;TopdownL4;tma_store_bound_group",
"MetricName": "tma_false_sharing",
"PublicDescription": "This metric roughly estimates how often CPU was handling synchronizations due to False Sharing. False Sharing is a multithreading hiccup; where multiple Logical Processors contend on different data-elements mapped into the same cache line. Sample with: MEM_LOAD_L3_HIT_RETIRED.XSNP_HITM_PS;OFFCORE_RESPONSE.DEMAND_RFO.L3_HIT.SNOOP_HITM",
@ -372,7 +372,7 @@
},
{
"BriefDescription": "This metric estimates fraction of cycles the CPU performance was potentially limited due to Core computation issues (non divider-related)",
"MetricExpr": "(EXE_ACTIVITY.EXE_BOUND_0_PORTS + (EXE_ACTIVITY.1_PORTS_UTIL + tma_retiring * EXE_ACTIVITY.2_PORTS_UTIL)) / CLKS if (ARITH.DIVIDER_ACTIVE < (CYCLE_ACTIVITY.STALLS_TOTAL - CYCLE_ACTIVITY.STALLS_MEM_ANY)) else (EXE_ACTIVITY.1_PORTS_UTIL + tma_retiring * EXE_ACTIVITY.2_PORTS_UTIL) / CLKS",
"MetricExpr": "((EXE_ACTIVITY.EXE_BOUND_0_PORTS + (EXE_ACTIVITY.1_PORTS_UTIL + tma_retiring * EXE_ACTIVITY.2_PORTS_UTIL)) / CLKS if ARITH.DIVIDER_ACTIVE < CYCLE_ACTIVITY.STALLS_TOTAL - CYCLE_ACTIVITY.STALLS_MEM_ANY else (EXE_ACTIVITY.1_PORTS_UTIL + tma_retiring * EXE_ACTIVITY.2_PORTS_UTIL) / CLKS)",
"MetricGroup": "PortsUtil;TopdownL3;tma_core_bound_group",
"MetricName": "tma_ports_utilization",
"PublicDescription": "This metric estimates fraction of cycles the CPU performance was potentially limited due to Core computation issues (non divider-related). Two distinct categories can be attributed into this metric: (1) heavy data-dependency among contiguous instructions would manifest in this metric - such cases are often referred to as low Instruction Level Parallelism (ILP). (2) Contention on some hardware execution unit other than Divider. For example; when there are too many multiply operations.",
@ -427,7 +427,7 @@
},
{
"BriefDescription": "This metric represents Core fraction of cycles CPU dispatched uops on execution ports for ALU operations.",
"MetricExpr": "(UOPS_DISPATCHED_PORT.PORT_0 + UOPS_DISPATCHED_PORT.PORT_1 + UOPS_DISPATCHED_PORT.PORT_5 + UOPS_DISPATCHED_PORT.PORT_6) / (4 * CORE_CLKS)",
"MetricExpr": "(UOPS_DISPATCHED_PORT.PORT_0 + UOPS_DISPATCHED_PORT.PORT_1 + UOPS_DISPATCHED_PORT.PORT_5 + UOPS_DISPATCHED_PORT.PORT_6) / SLOTS",
"MetricGroup": "TopdownL5;tma_ports_utilized_3m_group",
"MetricName": "tma_alu_op_utilization",
"ScaleUnit": "100%"
@ -483,7 +483,7 @@
},
{
"BriefDescription": "This metric represents Core fraction of cycles CPU dispatched uops on execution port for Store operations",
"MetricExpr": "UOPS_DISPATCHED_PORT.PORT_4 / CORE_CLKS",
"MetricExpr": "tma_port_4",
"MetricGroup": "TopdownL5;tma_ports_utilized_3m_group",
"MetricName": "tma_store_op_utilization",
"ScaleUnit": "100%"
@ -622,7 +622,7 @@
},
{
"BriefDescription": "This metric represents fraction of slots the CPU was retiring uops fetched by the Microcode Sequencer (MS) unit",
"MetricExpr": "(UOPS_RETIRED.RETIRE_SLOTS / UOPS_ISSUED.ANY) * IDQ.MS_UOPS / SLOTS",
"MetricExpr": "UOPS_RETIRED.RETIRE_SLOTS / UOPS_ISSUED.ANY * IDQ.MS_UOPS / SLOTS",
"MetricGroup": "MicroSeq;TopdownL3;tma_heavy_operations_group",
"MetricName": "tma_microcode_sequencer",
"PublicDescription": "This metric represents fraction of slots the CPU was retiring uops fetched by the Microcode Sequencer (MS) unit. The MS is used for CISC instructions not supported by the default decoders (like repeat move strings; or CPUID); or by microcode assists used to address some operation modes (like in Floating Point assists). These cases can often be avoided. Sample with: IDQ.MS_UOPS",
@ -652,19 +652,19 @@
},
{
"BriefDescription": "Total pipeline cost of (external) Memory Bandwidth related bottlenecks",
"MetricExpr": "100 * tma_memory_bound * ((tma_dram_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound)) * (tma_mem_bandwidth / (tma_mem_bandwidth + tma_mem_latency)) + (tma_l3_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound)) * (tma_sq_full / (tma_contested_accesses + tma_data_sharing + tma_l3_hit_latency + tma_sq_full))) + (tma_l1_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound)) * (tma_fb_full / (tma_4k_aliasing + tma_dtlb_load + tma_fb_full + tma_lock_latency + tma_split_loads + tma_store_fwd_blk)) ",
"MetricExpr": "100 * tma_memory_bound * (tma_dram_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound) * (tma_mem_bandwidth / (tma_mem_bandwidth + tma_mem_latency)) + tma_l3_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound) * (tma_sq_full / (tma_contested_accesses + tma_data_sharing + tma_l3_hit_latency + tma_sq_full))) + tma_l1_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound) * (tma_fb_full / (tma_4k_aliasing + tma_dtlb_load + tma_fb_full + tma_lock_latency + tma_split_loads + tma_store_fwd_blk))",
"MetricGroup": "Mem;MemoryBW;Offcore",
"MetricName": "Memory_Bandwidth"
},
{
"BriefDescription": "Total pipeline cost of Memory Latency related bottlenecks (external memory and off-core caches)",
"MetricExpr": "100 * tma_memory_bound * ((tma_dram_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound)) * (tma_mem_latency / (tma_mem_bandwidth + tma_mem_latency)) + (tma_l3_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound)) * (tma_l3_hit_latency / (tma_contested_accesses + tma_data_sharing + tma_l3_hit_latency + tma_sq_full)) + (tma_l2_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound)))",
"MetricExpr": "100 * tma_memory_bound * (tma_dram_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound) * (tma_mem_latency / (tma_mem_bandwidth + tma_mem_latency)) + tma_l3_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound) * (tma_l3_hit_latency / (tma_contested_accesses + tma_data_sharing + tma_l3_hit_latency + tma_sq_full)) + tma_l2_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound))",
"MetricGroup": "Mem;MemoryLat;Offcore",
"MetricName": "Memory_Latency"
},
{
"BriefDescription": "Total pipeline cost of Memory Address Translation related bottlenecks (data-side TLBs)",
"MetricExpr": "100 * tma_memory_bound * ((tma_l1_bound / max(tma_memory_bound, tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound)) * (tma_dtlb_load / max(tma_l1_bound, tma_4k_aliasing + tma_dtlb_load + tma_fb_full + tma_lock_latency + tma_split_loads + tma_store_fwd_blk)) + (tma_store_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound)) * (tma_dtlb_store / (tma_dtlb_store + tma_false_sharing + tma_split_stores + tma_store_latency))) ",
"MetricExpr": "100 * tma_memory_bound * (tma_l1_bound / max(tma_memory_bound, tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound) * (tma_dtlb_load / max(tma_l1_bound, tma_4k_aliasing + tma_dtlb_load + tma_fb_full + tma_lock_latency + tma_split_loads + tma_store_fwd_blk)) + tma_store_bound / (tma_dram_bound + tma_l1_bound + tma_l2_bound + tma_l3_bound + tma_store_bound) * (tma_dtlb_store / (tma_dtlb_store + tma_false_sharing + tma_split_stores + tma_store_latency)))",
"MetricGroup": "Mem;MemoryTLB;Offcore",
"MetricName": "Memory_Data_TLBs"
},
@ -737,32 +737,32 @@
},
{
"BriefDescription": "Floating Point Operations Per Cycle",
"MetricExpr": "(1 * (FP_ARITH_INST_RETIRED.SCALAR_SINGLE + FP_ARITH_INST_RETIRED.SCALAR_DOUBLE) + 2 * FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + 4 * (FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE) + 8 * FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE) / CORE_CLKS",
"MetricExpr": "(FP_ARITH_INST_RETIRED.SCALAR_SINGLE + FP_ARITH_INST_RETIRED.SCALAR_DOUBLE + 2 * FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + 4 * (FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE) + 8 * FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE) / CORE_CLKS",
"MetricGroup": "Flops;Ret",
"MetricName": "FLOPc"
},
{
"BriefDescription": "Actual per-core usage of the Floating Point non-X87 execution units (regardless of precision or vector-width)",
"MetricExpr": "((FP_ARITH_INST_RETIRED.SCALAR_SINGLE + FP_ARITH_INST_RETIRED.SCALAR_DOUBLE) + (FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE)) / (2 * CORE_CLKS)",
"MetricExpr": "(FP_ARITH_INST_RETIRED.SCALAR_SINGLE + FP_ARITH_INST_RETIRED.SCALAR_DOUBLE + (FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE)) / (2 * CORE_CLKS)",
"MetricGroup": "Cor;Flops;HPC",
"MetricName": "FP_Arith_Utilization",
"PublicDescription": "Actual per-core usage of the Floating Point non-X87 execution units (regardless of precision or vector-width). Values > 1 are possible due to ([BDW+] Fused-Multiply Add (FMA) counting - common; [ADL+] use all of ADD/MUL/FMA in Scalar or 128/256-bit vectors - less common)."
},
{
"BriefDescription": "Instruction-Level-Parallelism (average number of uops executed when there is execution) per-core",
"MetricExpr": "UOPS_EXECUTED.THREAD / ((UOPS_EXECUTED.CORE_CYCLES_GE_1 / 2) if #SMT_on else UOPS_EXECUTED.CORE_CYCLES_GE_1)",
"MetricExpr": "UOPS_EXECUTED.THREAD / (UOPS_EXECUTED.CORE_CYCLES_GE_1 / 2 if #SMT_on else UOPS_EXECUTED.CORE_CYCLES_GE_1)",
"MetricGroup": "Backend;Cor;Pipeline;PortsUtil",
"MetricName": "ILP"
},
{
"BriefDescription": "Probability of Core Bound bottleneck hidden by SMT-profiling artifacts",
"MetricExpr": "(1 - tma_core_bound / tma_ports_utilization if tma_core_bound < tma_ports_utilization else 1) if SMT_2T_Utilization > 0.5 else 0",
"MetricExpr": "((1 - tma_core_bound / tma_ports_utilization if tma_core_bound < tma_ports_utilization else 1) if SMT_2T_Utilization > 0.5 else 0)",
"MetricGroup": "Cor;SMT",
"MetricName": "Core_Bound_Likely"
},
{
"BriefDescription": "Core actual clocks when any Logical Processor is active on the Physical Core",
"MetricExpr": "((CPU_CLK_UNHALTED.THREAD / 2) * (1 + CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE / CPU_CLK_UNHALTED.REF_XCLK)) if #core_wide < 1 else (CPU_CLK_UNHALTED.THREAD_ANY / 2) if #SMT_on else CLKS",
"MetricExpr": "(CPU_CLK_UNHALTED.THREAD / 2 * (1 + CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE / CPU_CLK_UNHALTED.REF_XCLK) if #core_wide < 1 else (CPU_CLK_UNHALTED.THREAD_ANY / 2 if #SMT_on else CLKS))",
"MetricGroup": "SMT",
"MetricName": "CORE_CLKS"
},
@ -804,13 +804,13 @@
},
{
"BriefDescription": "Instructions per Floating Point (FP) Operation (lower number means higher occurrence rate)",
"MetricExpr": "INST_RETIRED.ANY / (1 * (FP_ARITH_INST_RETIRED.SCALAR_SINGLE + FP_ARITH_INST_RETIRED.SCALAR_DOUBLE) + 2 * FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + 4 * (FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE) + 8 * FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE)",
"MetricExpr": "INST_RETIRED.ANY / (FP_ARITH_INST_RETIRED.SCALAR_SINGLE + FP_ARITH_INST_RETIRED.SCALAR_DOUBLE + 2 * FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + 4 * (FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE) + 8 * FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE)",
"MetricGroup": "Flops;InsType",
"MetricName": "IpFLOP"
},
{
"BriefDescription": "Instructions per FP Arithmetic instruction (lower number means higher occurrence rate)",
"MetricExpr": "INST_RETIRED.ANY / ((FP_ARITH_INST_RETIRED.SCALAR_SINGLE + FP_ARITH_INST_RETIRED.SCALAR_DOUBLE) + (FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE))",
"MetricExpr": "INST_RETIRED.ANY / (FP_ARITH_INST_RETIRED.SCALAR_SINGLE + FP_ARITH_INST_RETIRED.SCALAR_DOUBLE + (FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE + FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE))",
"MetricGroup": "Flops;InsType",
"MetricName": "IpArith",
"PublicDescription": "Instructions per FP Arithmetic instruction (lower number means higher occurrence rate). May undercount due to FMA double counting. Approximated prior to BDW."
@ -905,7 +905,7 @@
},
{
"BriefDescription": "Branch Misprediction Cost: Fraction of TMA slots wasted per non-speculative branch misprediction (retired JEClear)",
"MetricExpr": " (tma_branch_mispredicts + tma_fetch_latency * tma_mispredicts_resteers / (tma_branch_resteers + tma_dsb_switches + tma_icache_misses + tma_itlb_misses + tma_lcp + tma_ms_switches)) * SLOTS / BR_MISP_RETIRED.ALL_BRANCHES",
"MetricExpr": "(tma_branch_mispredicts + tma_fetch_latency * tma_mispredicts_resteers / (tma_branch_resteers + tma_dsb_switches + tma_icache_misses + tma_itlb_misses + tma_lcp + tma_ms_switches)) * SLOTS / BR_MISP_RETIRED.ALL_BRANCHES",
"MetricGroup": "Bad;BrMispredicts",
"MetricName": "Branch_Misprediction_Cost"
},
@ -947,55 +947,55 @@
},
{
"BriefDescription": "L1 cache true misses per kilo instruction for retired demand loads",
"MetricExpr": "1000 * MEM_LOAD_RETIRED.L1_MISS / INST_RETIRED.ANY",
"MetricExpr": "1e3 * MEM_LOAD_RETIRED.L1_MISS / INST_RETIRED.ANY",
"MetricGroup": "CacheMisses;Mem",
"MetricName": "L1MPKI"
},
{
"BriefDescription": "L1 cache true misses per kilo instruction for all demand loads (including speculative)",
"MetricExpr": "1000 * L2_RQSTS.ALL_DEMAND_DATA_RD / INST_RETIRED.ANY",
"MetricExpr": "1e3 * L2_RQSTS.ALL_DEMAND_DATA_RD / INST_RETIRED.ANY",
"MetricGroup": "CacheMisses;Mem",
"MetricName": "L1MPKI_Load"
},
{
"BriefDescription": "L2 cache true misses per kilo instruction for retired demand loads",
"MetricExpr": "1000 * MEM_LOAD_RETIRED.L2_MISS / INST_RETIRED.ANY",
"MetricExpr": "1e3 * MEM_LOAD_RETIRED.L2_MISS / INST_RETIRED.ANY",
"MetricGroup": "Backend;CacheMisses;Mem",
"MetricName": "L2MPKI"
},
{
"BriefDescription": "L2 cache ([RKL+] true) misses per kilo instruction for all request types (including speculative)",
"MetricExpr": "1000 * L2_RQSTS.MISS / INST_RETIRED.ANY",
"MetricExpr": "1e3 * L2_RQSTS.MISS / INST_RETIRED.ANY",
"MetricGroup": "CacheMisses;Mem;Offcore",
"MetricName": "L2MPKI_All"
},
{
"BriefDescription": "L2 cache ([RKL+] true) misses per kilo instruction for all demand loads (including speculative)",
"MetricExpr": "1000 * L2_RQSTS.DEMAND_DATA_RD_MISS / INST_RETIRED.ANY",
"MetricExpr": "1e3 * L2_RQSTS.DEMAND_DATA_RD_MISS / INST_RETIRED.ANY",
"MetricGroup": "CacheMisses;Mem",
"MetricName": "L2MPKI_Load"
},
{
"BriefDescription": "L2 cache hits per kilo instruction for all request types (including speculative)",
"MetricExpr": "1000 * (L2_RQSTS.REFERENCES - L2_RQSTS.MISS) / INST_RETIRED.ANY",
"MetricExpr": "1e3 * (L2_RQSTS.REFERENCES - L2_RQSTS.MISS) / INST_RETIRED.ANY",
"MetricGroup": "CacheMisses;Mem",
"MetricName": "L2HPKI_All"
},
{
"BriefDescription": "L2 cache hits per kilo instruction for all demand loads (including speculative)",
"MetricExpr": "1000 * L2_RQSTS.DEMAND_DATA_RD_HIT / INST_RETIRED.ANY",
"MetricExpr": "1e3 * L2_RQSTS.DEMAND_DATA_RD_HIT / INST_RETIRED.ANY",
"MetricGroup": "CacheMisses;Mem",
"MetricName": "L2HPKI_Load"
},
{
"BriefDescription": "L3 cache true misses per kilo instruction for retired demand loads",
"MetricExpr": "1000 * MEM_LOAD_RETIRED.L3_MISS / INST_RETIRED.ANY",
"MetricExpr": "1e3 * MEM_LOAD_RETIRED.L3_MISS / INST_RETIRED.ANY",
"MetricGroup": "CacheMisses;Mem",
"MetricName": "L3MPKI"
},
{
"BriefDescription": "Fill Buffer (FB) hits per kilo instructions for retired demand loads (L1D misses that merge into ongoing miss-handling entries)",
"MetricExpr": "1000 * MEM_LOAD_RETIRED.FB_HIT / INST_RETIRED.ANY",
"MetricExpr": "1e3 * MEM_LOAD_RETIRED.FB_HIT / INST_RETIRED.ANY",
"MetricGroup": "CacheMisses;Mem",
"MetricName": "FB_HPKI"
},
@ -1008,25 +1008,25 @@
},
{
"BriefDescription": "Average per-core data fill bandwidth to the L1 data cache [GB / sec]",
"MetricExpr": "64 * L1D.REPLACEMENT / 1000000000 / duration_time",
"MetricExpr": "64 * L1D.REPLACEMENT / 1e9 / duration_time",
"MetricGroup": "Mem;MemoryBW",
"MetricName": "L1D_Cache_Fill_BW"
},
{
"BriefDescription": "Average per-core data fill bandwidth to the L2 cache [GB / sec]",
"MetricExpr": "64 * L2_LINES_IN.ALL / 1000000000 / duration_time",
"MetricExpr": "64 * L2_LINES_IN.ALL / 1e9 / duration_time",
"MetricGroup": "Mem;MemoryBW",
"MetricName": "L2_Cache_Fill_BW"
},
{
"BriefDescription": "Average per-core data fill bandwidth to the L3 cache [GB / sec]",
"MetricExpr": "64 * LONGEST_LAT_CACHE.MISS / 1000000000 / duration_time",
"MetricExpr": "64 * LONGEST_LAT_CACHE.MISS / 1e9 / duration_time",
"MetricGroup": "Mem;MemoryBW",
"MetricName": "L3_Cache_Fill_BW"
},
{
"BriefDescription": "Average per-core data access bandwidth to the L3 cache [GB / sec]",
"MetricExpr": "64 * OFFCORE_REQUESTS.ALL_REQUESTS / 1000000000 / duration_time",
"MetricExpr": "64 * OFFCORE_REQUESTS.ALL_REQUESTS / 1e9 / duration_time",
"MetricGroup": "Mem;MemoryBW;Offcore",
"MetricName": "L3_Cache_Access_BW"
},
@ -1056,19 +1056,19 @@
},
{
"BriefDescription": "Average CPU Utilization",
"MetricExpr": "CPU_CLK_UNHALTED.REF_TSC / msr@tsc@",
"MetricExpr": "CPU_CLK_UNHALTED.REF_TSC / TSC",
"MetricGroup": "HPC;Summary",
"MetricName": "CPU_Utilization"
},
{
"BriefDescription": "Measured Average Frequency for unhalted processors [GHz]",
"MetricExpr": "Turbo_Utilization * msr@tsc@ / 1000000000 / duration_time",
"MetricExpr": "Turbo_Utilization * TSC / 1e9 / duration_time",
"MetricGroup": "Power;Summary",
"MetricName": "Average_Frequency"
},
{
"BriefDescription": "Giga Floating Point Operations Per Second",
"MetricExpr": "((1 * (FP_ARITH_INST_RETIRED.SCALAR_SINGLE + FP_ARITH_INST_RETIRED.SCALAR_DOUBLE) + 2 * FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + 4 * (FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE) + 8 * FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE) / 1000000000) / duration_time",
"MetricExpr": "(FP_ARITH_INST_RETIRED.SCALAR_SINGLE + FP_ARITH_INST_RETIRED.SCALAR_DOUBLE + 2 * FP_ARITH_INST_RETIRED.128B_PACKED_DOUBLE + 4 * (FP_ARITH_INST_RETIRED.128B_PACKED_SINGLE + FP_ARITH_INST_RETIRED.256B_PACKED_DOUBLE) + 8 * FP_ARITH_INST_RETIRED.256B_PACKED_SINGLE) / 1e9 / duration_time",
"MetricGroup": "Cor;Flops;HPC",
"MetricName": "GFLOPs",
"PublicDescription": "Giga Floating Point Operations Per Second. Aggregate across all supported options of: FP precisions, scalar and vector instructions, vector-width and AMX engine."
@ -1081,7 +1081,7 @@
},
{
"BriefDescription": "Fraction of cycles where both hardware Logical Processors were active",
"MetricExpr": "1 - CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE / (CPU_CLK_UNHALTED.REF_XCLK_ANY / 2) if #SMT_on else 0",
"MetricExpr": "(1 - CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE / (CPU_CLK_UNHALTED.REF_XCLK_ANY / 2) if #SMT_on else 0)",
"MetricGroup": "SMT",
"MetricName": "SMT_2T_Utilization"
},
@ -1099,74 +1099,99 @@
},
{
"BriefDescription": "Average external Memory Bandwidth Use for reads and writes [GB / sec]",
"MetricExpr": "64 * (arb@event\\=0x81\\,umask\\=0x1@ + arb@event\\=0x84\\,umask\\=0x1@) / 1000000 / duration_time / 1000",
"MetricExpr": "64 * (UNC_ARB_TRK_REQUESTS.ALL + UNC_ARB_COH_TRK_REQUESTS.ALL) / 1e6 / duration_time / 1e3",
"MetricGroup": "HPC;Mem;MemoryBW;SoC",
"MetricName": "DRAM_BW_Use"
},
{
"BriefDescription": "Average latency of all requests to external memory (in Uncore cycles)",
"MetricExpr": "UNC_ARB_TRK_OCCUPANCY.ALL / arb@event\\=0x81\\,umask\\=0x1@",
"MetricExpr": "MEM_Parallel_Requests",
"MetricGroup": "Mem;SoC",
"MetricName": "MEM_Request_Latency"
},
{
"BriefDescription": "Average number of parallel requests to external memory. Accounts for all requests",
"MetricExpr": "UNC_ARB_TRK_OCCUPANCY.ALL / arb@event\\=0x81\\,umask\\=0x1@",
"MetricExpr": "UNC_ARB_TRK_OCCUPANCY.ALL / UNC_ARB_TRK_REQUESTS.ALL",
"MetricGroup": "Mem;SoC",
"MetricName": "MEM_Parallel_Requests"
},
{
"BriefDescription": "Average latency of data read request to external memory (in nanoseconds). Accounts for demand loads and L1/L2 prefetches",
"MetricExpr": "1e9 * (UNC_ARB_TRK_OCCUPANCY.DATA_READ / UNC_ARB_TRK_REQUESTS.DATA_READ) / (Socket_CLKS / duration_time)",
"MetricGroup": "Mem;MemoryLat;SoC",
"MetricName": "MEM_Read_Latency"
},
{
"BriefDescription": "Average number of parallel data read requests to external memory. Accounts for demand loads and L1/L2 prefetches",
"MetricExpr": "arb@event\\=0x80\\,umask\\=0x2@ / arb@event\\=0x80\\,umask\\=0x2\\,cmask\\=1@",
"MetricExpr": "UNC_ARB_TRK_OCCUPANCY.DATA_READ / UNC_ARB_TRK_OCCUPANCY.DATA_READ@thresh\\=1@",
"MetricGroup": "Mem;MemoryBW;SoC",
"MetricName": "MEM_Parallel_Reads"
},
{
"BriefDescription": "Socket actual clocks when any core is active on that socket",
"MetricExpr": "UNC_CLOCK.SOCKET",
"MetricGroup": "SoC",
"MetricName": "Socket_CLKS"
},
{
"BriefDescription": "Instructions per Far Branch ( Far Branches apply upon transition from application to operating system, handling interrupts, exceptions) [lower number means higher occurrence rate]",
"MetricExpr": "INST_RETIRED.ANY / BR_INST_RETIRED.FAR_BRANCH:u",
"MetricGroup": "Branches;OS",
"MetricName": "IpFarBranch"
},
{
"BriefDescription": "Uncore frequency per die [GHZ]",
"MetricExpr": "Socket_CLKS / #num_dies / duration_time / 1e9",
"MetricGroup": "SoC",
"MetricName": "UNCORE_FREQ"
},
{
"BriefDescription": "C3 residency percent per core",
"MetricExpr": "(cstate_core@c3\\-residency@ / msr@tsc@) * 100",
"MetricExpr": "cstate_core@c3\\-residency@ / TSC",
"MetricGroup": "Power",
"MetricName": "C3_Core_Residency"
"MetricName": "C3_Core_Residency",
"ScaleUnit": "100%"
},
{
"BriefDescription": "C6 residency percent per core",
"MetricExpr": "(cstate_core@c6\\-residency@ / msr@tsc@) * 100",
"MetricExpr": "cstate_core@c6\\-residency@ / TSC",
"MetricGroup": "Power",
"MetricName": "C6_Core_Residency"
"MetricName": "C6_Core_Residency",
"ScaleUnit": "100%"
},
{
"BriefDescription": "C7 residency percent per core",
"MetricExpr": "(cstate_core@c7\\-residency@ / msr@tsc@) * 100",
"MetricExpr": "cstate_core@c7\\-residency@ / TSC",
"MetricGroup": "Power",
"MetricName": "C7_Core_Residency"
"MetricName": "C7_Core_Residency",
"ScaleUnit": "100%"
},
{
"BriefDescription": "C2 residency percent per package",
"MetricExpr": "(cstate_pkg@c2\\-residency@ / msr@tsc@) * 100",
"MetricExpr": "cstate_pkg@c2\\-residency@ / TSC",
"MetricGroup": "Power",
"MetricName": "C2_Pkg_Residency"
"MetricName": "C2_Pkg_Residency",
"ScaleUnit": "100%"
},
{
"BriefDescription": "C3 residency percent per package",
"MetricExpr": "(cstate_pkg@c3\\-residency@ / msr@tsc@) * 100",
"MetricExpr": "cstate_pkg@c3\\-residency@ / TSC",
"MetricGroup": "Power",
"MetricName": "C3_Pkg_Residency"
"MetricName": "C3_Pkg_Residency",
"ScaleUnit": "100%"
},
{
"BriefDescription": "C6 residency percent per package",
"MetricExpr": "(cstate_pkg@c6\\-residency@ / msr@tsc@) * 100",
"MetricExpr": "cstate_pkg@c6\\-residency@ / TSC",
"MetricGroup": "Power",
"MetricName": "C6_Pkg_Residency"
"MetricName": "C6_Pkg_Residency",
"ScaleUnit": "100%"
},
{
"BriefDescription": "C7 residency percent per package",
"MetricExpr": "(cstate_pkg@c7\\-residency@ / msr@tsc@) * 100",
"MetricExpr": "cstate_pkg@c7\\-residency@ / TSC",
"MetricGroup": "Power",
"MetricName": "C7_Pkg_Residency"
"MetricName": "C7_Pkg_Residency",
"ScaleUnit": "100%"
}
]

View File

@ -1,7 +1,6 @@
[
{
"BriefDescription": "L3 Lookup any request that access cache and found line in E or S-state",
"Counter": "0,1",
"EventCode": "0x34",
"EventName": "UNC_CBO_CACHE_LOOKUP.ANY_ES",
"PerPkg": "1",
@ -11,7 +10,6 @@
},
{
"BriefDescription": "L3 Lookup any request that access cache and found line in I-state",
"Counter": "0,1",
"EventCode": "0x34",
"EventName": "UNC_CBO_CACHE_LOOKUP.ANY_I",
"PerPkg": "1",
@ -21,7 +19,6 @@
},
{
"BriefDescription": "L3 Lookup any request that access cache and found line in M-state",
"Counter": "0,1",
"EventCode": "0x34",
"EventName": "UNC_CBO_CACHE_LOOKUP.ANY_M",
"PerPkg": "1",
@ -31,7 +28,6 @@
},
{
"BriefDescription": "L3 Lookup any request that access cache and found line in MESI-state",
"Counter": "0,1",
"EventCode": "0x34",
"EventName": "UNC_CBO_CACHE_LOOKUP.ANY_MESI",
"PerPkg": "1",
@ -41,7 +37,6 @@
},
{
"BriefDescription": "L3 Lookup read request that access cache and found line in E or S-state",
"Counter": "0,1",
"EventCode": "0x34",
"EventName": "UNC_CBO_CACHE_LOOKUP.READ_ES",
"PerPkg": "1",
@ -51,7 +46,6 @@
},
{
"BriefDescription": "L3 Lookup read request that access cache and found line in I-state",
"Counter": "0,1",
"EventCode": "0x34",
"EventName": "UNC_CBO_CACHE_LOOKUP.READ_I",
"PerPkg": "1",
@ -61,7 +55,6 @@
},
{
"BriefDescription": "L3 Lookup read request that access cache and found line in any MESI-state",
"Counter": "0,1",
"EventCode": "0x34",
"EventName": "UNC_CBO_CACHE_LOOKUP.READ_MESI",
"PerPkg": "1",
@ -71,7 +64,6 @@
},
{
"BriefDescription": "L3 Lookup write request that access cache and found line in E or S-state",
"Counter": "0,1",
"EventCode": "0x34",
"EventName": "UNC_CBO_CACHE_LOOKUP.WRITE_ES",
"PerPkg": "1",
@ -81,7 +73,6 @@
},
{
"BriefDescription": "L3 Lookup write request that access cache and found line in M-state",
"Counter": "0,1",
"EventCode": "0x34",
"EventName": "UNC_CBO_CACHE_LOOKUP.WRITE_M",
"PerPkg": "1",
@ -91,7 +82,6 @@
},
{
"BriefDescription": "L3 Lookup write request that access cache and found line in MESI-state",
"Counter": "0,1",
"EventCode": "0x34",
"EventName": "UNC_CBO_CACHE_LOOKUP.WRITE_MESI",
"PerPkg": "1",
@ -101,41 +91,33 @@
},
{
"BriefDescription": "A cross-core snoop initiated by this Cbox due to processor core memory request which hits a modified line in some processor core.",
"Counter": "0,1",
"EventCode": "0x22",
"EventName": "UNC_CBO_XSNP_RESPONSE.HITM_XCORE",
"PerPkg": "1",
"PublicDescription": "A cross-core snoop initiated by this Cbox due to processor core memory request which hits a modified line in some processor core.",
"UMask": "0x48",
"Unit": "CBO"
},
{
"BriefDescription": "A cross-core snoop initiated by this Cbox due to processor core memory request which hits a non-modified line in some processor core.",
"Counter": "0,1",
"EventCode": "0x22",
"EventName": "UNC_CBO_XSNP_RESPONSE.HIT_XCORE",
"PerPkg": "1",
"PublicDescription": "A cross-core snoop initiated by this Cbox due to processor core memory request which hits a non-modified line in some processor core.",
"UMask": "0x44",
"Unit": "CBO"
},
{
"BriefDescription": "A cross-core snoop resulted from L3 Eviction which misses in some processor core.",
"Counter": "0,1",
"EventCode": "0x22",
"EventName": "UNC_CBO_XSNP_RESPONSE.MISS_EVICTION",
"PerPkg": "1",
"PublicDescription": "A cross-core snoop resulted from L3 Eviction which misses in some processor core.",
"UMask": "0x81",
"Unit": "CBO"
},
{
"BriefDescription": "A cross-core snoop initiated by this Cbox due to processor core memory request which misses in some processor core.",
"Counter": "0,1",
"EventCode": "0x22",
"EventName": "UNC_CBO_XSNP_RESPONSE.MISS_XCORE",
"PerPkg": "1",
"PublicDescription": "A cross-core snoop initiated by this Cbox due to processor core memory request which misses in some processor core.",
"UMask": "0x41",
"Unit": "CBO"
}

View File

@ -1,12 +1,10 @@
[
{
"BriefDescription": "Number of entries allocated. Account for Any type: e.g. Snoop, Core aperture, etc.",
"Counter": "0,1",
"EventCode": "0x84",
"EventName": "UNC_ARB_COH_TRK_REQUESTS.ALL",
"PerPkg": "1",
"PublicDescription": "Number of entries allocated. Account for Any type: e.g. Snoop, Core aperture, etc.",
"UMask": "0x01",
"UMask": "0x1",
"Unit": "ARB"
},
{
@ -14,8 +12,7 @@
"EventCode": "0x80",
"EventName": "UNC_ARB_TRK_OCCUPANCY.ALL",
"PerPkg": "1",
"PublicDescription": "Number of all Core entries outstanding for the memory controller. The outstanding interval starts after LLC miss till return of first data chunk. Accounts for Coherent and non-coherent traffic.",
"UMask": "0x01",
"UMask": "0x1",
"Unit": "ARB"
},
{
@ -24,8 +21,7 @@
"EventCode": "0x80",
"EventName": "UNC_ARB_TRK_OCCUPANCY.CYCLES_WITH_ANY_REQUEST",
"PerPkg": "1",
"PublicDescription": "Cycles with at least one request outstanding is waiting for data return from memory controller. Account for coherent and non-coherent requests initiated by IA Cores, Processor Graphics Unit, or LLC.",
"UMask": "0x01",
"UMask": "0x1",
"Unit": "ARB"
},
{
@ -33,43 +29,42 @@
"EventCode": "0x80",
"EventName": "UNC_ARB_TRK_OCCUPANCY.DATA_READ",
"PerPkg": "1",
"PublicDescription": "Number of Core Data Read entries outstanding for the memory controller. The outstanding interval starts after LLC miss till return of first data chunk.",
"UMask": "0x02",
"UMask": "0x2",
"Unit": "ARB"
},
{
"EventCode": "0x81",
"EventName": "UNC_ARB_TRK_REQUESTS.ALL",
"PerPkg": "1",
"UMask": "0x1",
"Unit": "ARB"
},
{
"BriefDescription": "Number of Core coherent Data Read requests sent to memory controller whose data is returned directly to requesting agent.",
"Counter": "0,1",
"EventCode": "0x81",
"EventName": "UNC_ARB_TRK_REQUESTS.DATA_READ",
"PerPkg": "1",
"PublicDescription": "Number of Core coherent Data Read requests sent to memory controller whose data is returned directly to requesting agent.",
"UMask": "0x02",
"UMask": "0x2",
"Unit": "ARB"
},
{
"BriefDescription": "Number of Core coherent Data Read requests sent to memory controller whose data is returned directly to requesting agent.",
"Counter": "0,1",
"EventCode": "0x81",
"EventName": "UNC_ARB_TRK_REQUESTS.DRD_DIRECT",
"PerPkg": "1",
"PublicDescription": "Number of Core coherent Data Read requests sent to memory controller whose data is returned directly to requesting agent.",
"UMask": "0x02",
"UMask": "0x2",
"Unit": "ARB"
},
{
"BriefDescription": "Number of Writes allocated - any write transactions: full/partials writes and evictions.",
"Counter": "0,1",
"EventCode": "0x81",
"EventName": "UNC_ARB_TRK_REQUESTS.WRITES",
"PerPkg": "1",
"PublicDescription": "Number of Writes allocated - any write transactions: full/partials writes and evictions.",
"UMask": "0x20",
"Unit": "ARB"
},
{
"BriefDescription": "This 48-bit fixed counter counts the UCLK cycles",
"Counter": "FIXED",
"EventCode": "0xff",
"EventName": "UNC_CLOCK.SOCKET",
"PerPkg": "1",

View File

@ -1,8 +1,6 @@
[
{
"BriefDescription": "Load misses in all DTLB levels that cause page walks",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x08",
"EventName": "DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK",
"PublicDescription": "Counts demand data loads that caused a page walk of any page size (4K/2M/4M/1G). This implies it missed in all TLB levels, but the walk need not have completed.",
@ -11,8 +9,6 @@
},
{
"BriefDescription": "Loads that miss the DTLB and hit the STLB.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x08",
"EventName": "DTLB_LOAD_MISSES.STLB_HIT",
"PublicDescription": "Counts loads that miss the DTLB (Data TLB) and hit the STLB (Second level TLB).",
@ -21,8 +17,6 @@
},
{
"BriefDescription": "Cycles when at least one PMH is busy with a page walk for a load. EPT page walk duration are excluded in Skylake.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0x08",
"EventName": "DTLB_LOAD_MISSES.WALK_ACTIVE",
@ -32,8 +26,6 @@
},
{
"BriefDescription": "Load miss in all TLB levels causes a page walk that completes. (All page sizes)",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x08",
"EventName": "DTLB_LOAD_MISSES.WALK_COMPLETED",
"PublicDescription": "Counts completed page walks (all page sizes) caused by demand data loads. This implies it missed in the DTLB and further levels of TLB. The page walk can end with or without a fault.",
@ -42,8 +34,6 @@
},
{
"BriefDescription": "Page walk completed due to a demand data load to a 1G page",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x08",
"EventName": "DTLB_LOAD_MISSES.WALK_COMPLETED_1G",
"PublicDescription": "Counts completed page walks (1G sizes) caused by demand data loads. This implies address translations missed in the DTLB and further levels of TLB. The page walk can end with or without a fault.",
@ -52,8 +42,6 @@
},
{
"BriefDescription": "Page walk completed due to a demand data load to a 2M/4M page",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x08",
"EventName": "DTLB_LOAD_MISSES.WALK_COMPLETED_2M_4M",
"PublicDescription": "Counts completed page walks (2M/4M sizes) caused by demand data loads. This implies address translations missed in the DTLB and further levels of TLB. The page walk can end with or without a fault.",
@ -62,8 +50,6 @@
},
{
"BriefDescription": "Page walk completed due to a demand data load to a 4K page",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x08",
"EventName": "DTLB_LOAD_MISSES.WALK_COMPLETED_4K",
"PublicDescription": "Counts completed page walks (4K sizes) caused by demand data loads. This implies address translations missed in the DTLB and further levels of TLB. The page walk can end with or without a fault.",
@ -72,8 +58,6 @@
},
{
"BriefDescription": "Counts 1 per cycle for each PMH that is busy with a page walk for a load. EPT page walk duration are excluded in Skylake.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x08",
"EventName": "DTLB_LOAD_MISSES.WALK_PENDING",
"PublicDescription": "Counts 1 per cycle for each PMH that is busy with a page walk for a load. EPT page walk duration are excluded in Skylake microarchitecture.",
@ -82,8 +66,6 @@
},
{
"BriefDescription": "Store misses in all DTLB levels that cause page walks",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x49",
"EventName": "DTLB_STORE_MISSES.MISS_CAUSES_A_WALK",
"PublicDescription": "Counts demand data stores that caused a page walk of any page size (4K/2M/4M/1G). This implies it missed in all TLB levels, but the walk need not have completed.",
@ -92,8 +74,6 @@
},
{
"BriefDescription": "Stores that miss the DTLB and hit the STLB.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x49",
"EventName": "DTLB_STORE_MISSES.STLB_HIT",
"PublicDescription": "Stores that miss the DTLB (Data TLB) and hit the STLB (2nd Level TLB).",
@ -102,8 +82,6 @@
},
{
"BriefDescription": "Cycles when at least one PMH is busy with a page walk for a store. EPT page walk duration are excluded in Skylake.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0x49",
"EventName": "DTLB_STORE_MISSES.WALK_ACTIVE",
@ -113,8 +91,6 @@
},
{
"BriefDescription": "Store misses in all TLB levels causes a page walk that completes. (All page sizes)",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x49",
"EventName": "DTLB_STORE_MISSES.WALK_COMPLETED",
"PublicDescription": "Counts completed page walks (all page sizes) caused by demand data stores. This implies it missed in the DTLB and further levels of TLB. The page walk can end with or without a fault.",
@ -123,8 +99,6 @@
},
{
"BriefDescription": "Page walk completed due to a demand data store to a 1G page",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x49",
"EventName": "DTLB_STORE_MISSES.WALK_COMPLETED_1G",
"PublicDescription": "Counts completed page walks (1G sizes) caused by demand data stores. This implies address translations missed in the DTLB and further levels of TLB. The page walk can end with or without a fault.",
@ -133,8 +107,6 @@
},
{
"BriefDescription": "Page walk completed due to a demand data store to a 2M/4M page",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x49",
"EventName": "DTLB_STORE_MISSES.WALK_COMPLETED_2M_4M",
"PublicDescription": "Counts completed page walks (2M/4M sizes) caused by demand data stores. This implies address translations missed in the DTLB and further levels of TLB. The page walk can end with or without a fault.",
@ -143,8 +115,6 @@
},
{
"BriefDescription": "Page walk completed due to a demand data store to a 4K page",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x49",
"EventName": "DTLB_STORE_MISSES.WALK_COMPLETED_4K",
"PublicDescription": "Counts completed page walks (4K sizes) caused by demand data stores. This implies address translations missed in the DTLB and further levels of TLB. The page walk can end with or without a fault.",
@ -153,8 +123,6 @@
},
{
"BriefDescription": "Counts 1 per cycle for each PMH that is busy with a page walk for a store. EPT page walk duration are excluded in Skylake.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x49",
"EventName": "DTLB_STORE_MISSES.WALK_PENDING",
"PublicDescription": "Counts 1 per cycle for each PMH that is busy with a page walk for a store. EPT page walk duration are excluded in Skylake microarchitecture.",
@ -163,8 +131,6 @@
},
{
"BriefDescription": "Counts 1 per cycle for each PMH that is busy with a EPT (Extended Page Table) walk for any request type.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x4f",
"EventName": "EPT.WALK_PENDING",
"PublicDescription": "Counts cycles for each PMH (Page Miss Handler) that is busy with an EPT (Extended Page Table) walk for any request type.",
@ -173,8 +139,6 @@
},
{
"BriefDescription": "Flushing of the Instruction TLB (ITLB) pages, includes 4k/2M/4M pages.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xAE",
"EventName": "ITLB.ITLB_FLUSH",
"PublicDescription": "Counts the number of flushes of the big or small ITLB pages. Counting include both TLB Flush (covering all sets) and TLB Set Clear (set-specific).",
@ -183,8 +147,6 @@
},
{
"BriefDescription": "Misses at all ITLB levels that cause page walks",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x85",
"EventName": "ITLB_MISSES.MISS_CAUSES_A_WALK",
"PublicDescription": "Counts page walks of any page size (4K/2M/4M/1G) caused by a code fetch. This implies it missed in the ITLB and further levels of TLB, but the walk need not have completed.",
@ -193,8 +155,6 @@
},
{
"BriefDescription": "Instruction fetch requests that miss the ITLB and hit the STLB.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x85",
"EventName": "ITLB_MISSES.STLB_HIT",
"SampleAfterValue": "100003",
@ -202,8 +162,6 @@
},
{
"BriefDescription": "Cycles when at least one PMH is busy with a page walk for code (instruction fetch) request. EPT page walk duration are excluded in Skylake.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"CounterMask": "1",
"EventCode": "0x85",
"EventName": "ITLB_MISSES.WALK_ACTIVE",
@ -213,8 +171,6 @@
},
{
"BriefDescription": "Code miss in all TLB levels causes a page walk that completes. (All page sizes)",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x85",
"EventName": "ITLB_MISSES.WALK_COMPLETED",
"PublicDescription": "Counts completed page walks (all page sizes) caused by a code fetch. This implies it missed in the ITLB (Instruction TLB) and further levels of TLB. The page walk can end with or without a fault.",
@ -223,8 +179,6 @@
},
{
"BriefDescription": "Code miss in all TLB levels causes a page walk that completes. (1G)",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x85",
"EventName": "ITLB_MISSES.WALK_COMPLETED_1G",
"PublicDescription": "Counts completed page walks (1G page sizes) caused by a code fetch. This implies it missed in the ITLB (Instruction TLB) and further levels of TLB. The page walk can end with or without a fault.",
@ -233,8 +187,6 @@
},
{
"BriefDescription": "Code miss in all TLB levels causes a page walk that completes. (2M/4M)",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x85",
"EventName": "ITLB_MISSES.WALK_COMPLETED_2M_4M",
"PublicDescription": "Counts completed page walks (2M/4M page sizes) caused by a code fetch. This implies it missed in the ITLB (Instruction TLB) and further levels of TLB. The page walk can end with or without a fault.",
@ -243,8 +195,6 @@
},
{
"BriefDescription": "Code miss in all TLB levels causes a page walk that completes. (4K)",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x85",
"EventName": "ITLB_MISSES.WALK_COMPLETED_4K",
"PublicDescription": "Counts completed page walks (4K page sizes) caused by a code fetch. This implies it missed in the ITLB (Instruction TLB) and further levels of TLB. The page walk can end with or without a fault.",
@ -253,8 +203,6 @@
},
{
"BriefDescription": "Counts 1 per cycle for each PMH that is busy with a page walk for an instruction fetch request. EPT page walk duration are excluded in Skylake.",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0x85",
"EventName": "ITLB_MISSES.WALK_PENDING",
"PublicDescription": "Counts 1 per cycle for each PMH (Page Miss Handler) that is busy with a page walk for an instruction fetch request. EPT page walk duration are excluded in Skylake michroarchitecture.",
@ -263,8 +211,6 @@
},
{
"BriefDescription": "DTLB flush attempts of the thread-specific entries",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xBD",
"EventName": "TLB_FLUSH.DTLB_THREAD",
"PublicDescription": "Counts the number of DTLB flush attempts of the thread-specific entries.",
@ -273,8 +219,6 @@
},
{
"BriefDescription": "STLB flush attempts",
"Counter": "0,1,2,3",
"CounterHTOff": "0,1,2,3,4,5,6,7",
"EventCode": "0xBD",
"EventName": "TLB_FLUSH.STLB_ANY",
"PublicDescription": "Counts the number of any STLB flush attempts (such as entire, VPID, PCID, InvPage, CR3 write, etc.).",