rcu: Clean up flavor-related definitions and comments in tree_plugin.h

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
This commit is contained in:
Paul E. McKenney 2018-07-07 18:12:26 -07:00
parent 8fa946d428
commit 0ae86a2726

View File

@ -38,8 +38,7 @@
#include "../locking/rtmutex_common.h"
/*
* Control variables for per-CPU and per-rcu_node kthreads. These
* handle all flavors of RCU.
* Control variables for per-CPU and per-rcu_node kthreads.
*/
static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
@ -826,8 +825,8 @@ static void rcu_flavor_check_callbacks(int user)
*
* Note that this guarantee implies further memory-ordering guarantees.
* On systems with more than one CPU, when synchronize_rcu() returns,
* each CPU is guaranteed to have executed a full memory barrier since the
* end of its last RCU-sched read-side critical section whose beginning
* each CPU is guaranteed to have executed a full memory barrier since
* the end of its last RCU read-side critical section whose beginning
* preceded the call to synchronize_rcu(). In addition, each CPU having
* an RCU read-side critical section that extends beyond the return from
* synchronize_rcu() is guaranteed to have executed a full memory barrier
@ -1069,7 +1068,7 @@ void synchronize_rcu(void)
RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
lock_is_held(&rcu_lock_map) ||
lock_is_held(&rcu_sched_lock_map),
"Illegal synchronize_rcu() in RCU-sched read-side critical section");
"Illegal synchronize_rcu() in RCU read-side critical section");
if (rcu_blocking_is_gp())
return;
if (rcu_gp_is_expedited())
@ -1341,9 +1340,9 @@ static int rcu_cpu_kthread_should_run(unsigned int cpu)
}
/*
* Per-CPU kernel thread that invokes RCU callbacks. This replaces the
* RCU softirq used in flavors and configurations of RCU that do not
* support RCU priority boosting.
* Per-CPU kernel thread that invokes RCU callbacks. This replaces
* the RCU softirq used in configurations of RCU that do not support RCU
* priority boosting.
*/
static void rcu_cpu_kthread(unsigned int cpu)
{
@ -1484,8 +1483,8 @@ static void rcu_prepare_kthreads(int cpu)
* 1 if so. This function is part of the RCU implementation; it is -not-
* an exported member of the RCU API.
*
* Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
* any flavor of RCU.
* Because we not have RCU_FAST_NO_HZ, just check whether or not this
* CPU has RCU callbacks queued.
*/
int rcu_needs_cpu(u64 basemono, u64 *nextevt)
{
@ -1551,9 +1550,9 @@ static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
module_param(rcu_idle_lazy_gp_delay, int, 0644);
/*
* Try to advance callbacks for all flavors of RCU on the current CPU, but
* only if it has been awhile since the last time we did so. Afterwards,
* if there are any callbacks ready for immediate invocation, return true.
* Try to advance callbacks on the current CPU, but only if it has been
* awhile since the last time we did so. Afterwards, if there are any
* callbacks ready for immediate invocation, return true.
*/
static bool __maybe_unused rcu_try_advance_all_cbs(void)
{
@ -1808,7 +1807,7 @@ static void print_cpu_stall_info_end(void)
pr_err("\t");
}
/* Zero ->ticks_this_gp for all flavors of RCU. */
/* Zero ->ticks_this_gp and snapshot the number of RCU softirq handlers. */
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
rdp->ticks_this_gp = 0;
@ -1939,7 +1938,7 @@ static void wake_nocb_leader_defer(struct rcu_data *rdp, int waketype,
}
/*
* Does the specified CPU need an RCU callback for the specified flavor
* Does the specified CPU need an RCU callback for this invocation
* of rcu_barrier()?
*/
static bool rcu_nocb_cpu_needs_barrier(int cpu)
@ -2419,9 +2418,8 @@ static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
/*
* If the specified CPU is a no-CBs CPU that does not already have its
* rcuo kthread for the specified RCU flavor, spawn it. If the CPUs are
* brought online out of order, this can require re-organizing the
* leader-follower relationships.
* rcuo kthread, spawn it. If the CPUs are brought online out of order,
* this can require re-organizing the leader-follower relationships.
*/
static void rcu_spawn_one_nocb_kthread(int cpu)
{
@ -2458,7 +2456,7 @@ static void rcu_spawn_one_nocb_kthread(int cpu)
rdp_spawn->nocb_next_follower = rdp_old_leader;
}
/* Spawn the kthread for this CPU and RCU flavor. */
/* Spawn the kthread for this CPU. */
t = kthread_run(rcu_nocb_kthread, rdp_spawn,
"rcuo%c/%d", rcu_state.abbr, cpu);
BUG_ON(IS_ERR(t));