x86/MCE/AMD, EDAC/amd64: Move address translation to AMD64 EDAC

The address translation code used for current AMD systems is
non-architectural. So move it to EDAC.

Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211028175728.121452-2-yazen.ghannam@amd.com
This commit is contained in:
Yazen Ghannam 2021-10-28 17:56:56 +00:00 committed by Borislav Petkov
parent fa55b7dcdc
commit 0b746e8c1e
3 changed files with 199 additions and 203 deletions

View File

@ -345,7 +345,6 @@ extern int mce_threshold_create_device(unsigned int cpu);
extern int mce_threshold_remove_device(unsigned int cpu); extern int mce_threshold_remove_device(unsigned int cpu);
void mce_amd_feature_init(struct cpuinfo_x86 *c); void mce_amd_feature_init(struct cpuinfo_x86 *c);
int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr);
enum smca_bank_types smca_get_bank_type(unsigned int bank); enum smca_bank_types smca_get_bank_type(unsigned int bank);
#else #else
@ -353,8 +352,6 @@ static inline int mce_threshold_create_device(unsigned int cpu) { return 0; };
static inline int mce_threshold_remove_device(unsigned int cpu) { return 0; }; static inline int mce_threshold_remove_device(unsigned int cpu) { return 0; };
static inline bool amd_mce_is_memory_error(struct mce *m) { return false; }; static inline bool amd_mce_is_memory_error(struct mce *m) { return false; };
static inline void mce_amd_feature_init(struct cpuinfo_x86 *c) { } static inline void mce_amd_feature_init(struct cpuinfo_x86 *c) { }
static inline int
umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr) { return -EINVAL; };
#endif #endif
static inline void mce_hygon_feature_init(struct cpuinfo_x86 *c) { return mce_amd_feature_init(c); } static inline void mce_hygon_feature_init(struct cpuinfo_x86 *c) { return mce_amd_feature_init(c); }

View File

@ -689,206 +689,6 @@ void mce_amd_feature_init(struct cpuinfo_x86 *c)
deferred_error_interrupt_enable(c); deferred_error_interrupt_enable(c);
} }
int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
{
u64 dram_base_addr, dram_limit_addr, dram_hole_base;
/* We start from the normalized address */
u64 ret_addr = norm_addr;
u32 tmp;
u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
u8 intlv_addr_sel, intlv_addr_bit;
u8 num_intlv_bits, hashed_bit;
u8 lgcy_mmio_hole_en, base = 0;
u8 cs_mask, cs_id = 0;
bool hash_enabled = false;
/* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
goto out_err;
/* Remove HiAddrOffset from normalized address, if enabled: */
if (tmp & BIT(0)) {
u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
if (norm_addr >= hi_addr_offset) {
ret_addr -= hi_addr_offset;
base = 1;
}
}
/* Read D18F0x110 (DramBaseAddress). */
if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
goto out_err;
/* Check if address range is valid. */
if (!(tmp & BIT(0))) {
pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
__func__, tmp);
goto out_err;
}
lgcy_mmio_hole_en = tmp & BIT(1);
intlv_num_chan = (tmp >> 4) & 0xF;
intlv_addr_sel = (tmp >> 8) & 0x7;
dram_base_addr = (tmp & GENMASK_ULL(31, 12)) << 16;
/* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
if (intlv_addr_sel > 3) {
pr_err("%s: Invalid interleave address select %d.\n",
__func__, intlv_addr_sel);
goto out_err;
}
/* Read D18F0x114 (DramLimitAddress). */
if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
goto out_err;
intlv_num_sockets = (tmp >> 8) & 0x1;
intlv_num_dies = (tmp >> 10) & 0x3;
dram_limit_addr = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
intlv_addr_bit = intlv_addr_sel + 8;
/* Re-use intlv_num_chan by setting it equal to log2(#channels) */
switch (intlv_num_chan) {
case 0: intlv_num_chan = 0; break;
case 1: intlv_num_chan = 1; break;
case 3: intlv_num_chan = 2; break;
case 5: intlv_num_chan = 3; break;
case 7: intlv_num_chan = 4; break;
case 8: intlv_num_chan = 1;
hash_enabled = true;
break;
default:
pr_err("%s: Invalid number of interleaved channels %d.\n",
__func__, intlv_num_chan);
goto out_err;
}
num_intlv_bits = intlv_num_chan;
if (intlv_num_dies > 2) {
pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
__func__, intlv_num_dies);
goto out_err;
}
num_intlv_bits += intlv_num_dies;
/* Add a bit if sockets are interleaved. */
num_intlv_bits += intlv_num_sockets;
/* Assert num_intlv_bits <= 4 */
if (num_intlv_bits > 4) {
pr_err("%s: Invalid interleave bits %d.\n",
__func__, num_intlv_bits);
goto out_err;
}
if (num_intlv_bits > 0) {
u64 temp_addr_x, temp_addr_i, temp_addr_y;
u8 die_id_bit, sock_id_bit, cs_fabric_id;
/*
* Read FabricBlockInstanceInformation3_CS[BlockFabricID].
* This is the fabric id for this coherent slave. Use
* umc/channel# as instance id of the coherent slave
* for FICAA.
*/
if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
goto out_err;
cs_fabric_id = (tmp >> 8) & 0xFF;
die_id_bit = 0;
/* If interleaved over more than 1 channel: */
if (intlv_num_chan) {
die_id_bit = intlv_num_chan;
cs_mask = (1 << die_id_bit) - 1;
cs_id = cs_fabric_id & cs_mask;
}
sock_id_bit = die_id_bit;
/* Read D18F1x208 (SystemFabricIdMask). */
if (intlv_num_dies || intlv_num_sockets)
if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
goto out_err;
/* If interleaved over more than 1 die. */
if (intlv_num_dies) {
sock_id_bit = die_id_bit + intlv_num_dies;
die_id_shift = (tmp >> 24) & 0xF;
die_id_mask = (tmp >> 8) & 0xFF;
cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
}
/* If interleaved over more than 1 socket. */
if (intlv_num_sockets) {
socket_id_shift = (tmp >> 28) & 0xF;
socket_id_mask = (tmp >> 16) & 0xFF;
cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
}
/*
* The pre-interleaved address consists of XXXXXXIIIYYYYY
* where III is the ID for this CS, and XXXXXXYYYYY are the
* address bits from the post-interleaved address.
* "num_intlv_bits" has been calculated to tell us how many "I"
* bits there are. "intlv_addr_bit" tells us how many "Y" bits
* there are (where "I" starts).
*/
temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
temp_addr_i = (cs_id << intlv_addr_bit);
temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
ret_addr = temp_addr_x | temp_addr_i | temp_addr_y;
}
/* Add dram base address */
ret_addr += dram_base_addr;
/* If legacy MMIO hole enabled */
if (lgcy_mmio_hole_en) {
if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
goto out_err;
dram_hole_base = tmp & GENMASK(31, 24);
if (ret_addr >= dram_hole_base)
ret_addr += (BIT_ULL(32) - dram_hole_base);
}
if (hash_enabled) {
/* Save some parentheses and grab ls-bit at the end. */
hashed_bit = (ret_addr >> 12) ^
(ret_addr >> 18) ^
(ret_addr >> 21) ^
(ret_addr >> 30) ^
cs_id;
hashed_bit &= BIT(0);
if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
ret_addr ^= BIT(intlv_addr_bit);
}
/* Is calculated system address is above DRAM limit address? */
if (ret_addr > dram_limit_addr)
goto out_err;
*sys_addr = ret_addr;
return 0;
out_err:
return -EINVAL;
}
EXPORT_SYMBOL_GPL(umc_normaddr_to_sysaddr);
bool amd_mce_is_memory_error(struct mce *m) bool amd_mce_is_memory_error(struct mce *m)
{ {
/* ErrCodeExt[20:16] */ /* ErrCodeExt[20:16] */

View File

@ -988,6 +988,205 @@ static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
return csrow; return csrow;
} }
static int umc_normaddr_to_sysaddr(u64 norm_addr, u16 nid, u8 umc, u64 *sys_addr)
{
u64 dram_base_addr, dram_limit_addr, dram_hole_base;
/* We start from the normalized address */
u64 ret_addr = norm_addr;
u32 tmp;
u8 die_id_shift, die_id_mask, socket_id_shift, socket_id_mask;
u8 intlv_num_dies, intlv_num_chan, intlv_num_sockets;
u8 intlv_addr_sel, intlv_addr_bit;
u8 num_intlv_bits, hashed_bit;
u8 lgcy_mmio_hole_en, base = 0;
u8 cs_mask, cs_id = 0;
bool hash_enabled = false;
/* Read D18F0x1B4 (DramOffset), check if base 1 is used. */
if (amd_df_indirect_read(nid, 0, 0x1B4, umc, &tmp))
goto out_err;
/* Remove HiAddrOffset from normalized address, if enabled: */
if (tmp & BIT(0)) {
u64 hi_addr_offset = (tmp & GENMASK_ULL(31, 20)) << 8;
if (norm_addr >= hi_addr_offset) {
ret_addr -= hi_addr_offset;
base = 1;
}
}
/* Read D18F0x110 (DramBaseAddress). */
if (amd_df_indirect_read(nid, 0, 0x110 + (8 * base), umc, &tmp))
goto out_err;
/* Check if address range is valid. */
if (!(tmp & BIT(0))) {
pr_err("%s: Invalid DramBaseAddress range: 0x%x.\n",
__func__, tmp);
goto out_err;
}
lgcy_mmio_hole_en = tmp & BIT(1);
intlv_num_chan = (tmp >> 4) & 0xF;
intlv_addr_sel = (tmp >> 8) & 0x7;
dram_base_addr = (tmp & GENMASK_ULL(31, 12)) << 16;
/* {0, 1, 2, 3} map to address bits {8, 9, 10, 11} respectively */
if (intlv_addr_sel > 3) {
pr_err("%s: Invalid interleave address select %d.\n",
__func__, intlv_addr_sel);
goto out_err;
}
/* Read D18F0x114 (DramLimitAddress). */
if (amd_df_indirect_read(nid, 0, 0x114 + (8 * base), umc, &tmp))
goto out_err;
intlv_num_sockets = (tmp >> 8) & 0x1;
intlv_num_dies = (tmp >> 10) & 0x3;
dram_limit_addr = ((tmp & GENMASK_ULL(31, 12)) << 16) | GENMASK_ULL(27, 0);
intlv_addr_bit = intlv_addr_sel + 8;
/* Re-use intlv_num_chan by setting it equal to log2(#channels) */
switch (intlv_num_chan) {
case 0: intlv_num_chan = 0; break;
case 1: intlv_num_chan = 1; break;
case 3: intlv_num_chan = 2; break;
case 5: intlv_num_chan = 3; break;
case 7: intlv_num_chan = 4; break;
case 8: intlv_num_chan = 1;
hash_enabled = true;
break;
default:
pr_err("%s: Invalid number of interleaved channels %d.\n",
__func__, intlv_num_chan);
goto out_err;
}
num_intlv_bits = intlv_num_chan;
if (intlv_num_dies > 2) {
pr_err("%s: Invalid number of interleaved nodes/dies %d.\n",
__func__, intlv_num_dies);
goto out_err;
}
num_intlv_bits += intlv_num_dies;
/* Add a bit if sockets are interleaved. */
num_intlv_bits += intlv_num_sockets;
/* Assert num_intlv_bits <= 4 */
if (num_intlv_bits > 4) {
pr_err("%s: Invalid interleave bits %d.\n",
__func__, num_intlv_bits);
goto out_err;
}
if (num_intlv_bits > 0) {
u64 temp_addr_x, temp_addr_i, temp_addr_y;
u8 die_id_bit, sock_id_bit, cs_fabric_id;
/*
* Read FabricBlockInstanceInformation3_CS[BlockFabricID].
* This is the fabric id for this coherent slave. Use
* umc/channel# as instance id of the coherent slave
* for FICAA.
*/
if (amd_df_indirect_read(nid, 0, 0x50, umc, &tmp))
goto out_err;
cs_fabric_id = (tmp >> 8) & 0xFF;
die_id_bit = 0;
/* If interleaved over more than 1 channel: */
if (intlv_num_chan) {
die_id_bit = intlv_num_chan;
cs_mask = (1 << die_id_bit) - 1;
cs_id = cs_fabric_id & cs_mask;
}
sock_id_bit = die_id_bit;
/* Read D18F1x208 (SystemFabricIdMask). */
if (intlv_num_dies || intlv_num_sockets)
if (amd_df_indirect_read(nid, 1, 0x208, umc, &tmp))
goto out_err;
/* If interleaved over more than 1 die. */
if (intlv_num_dies) {
sock_id_bit = die_id_bit + intlv_num_dies;
die_id_shift = (tmp >> 24) & 0xF;
die_id_mask = (tmp >> 8) & 0xFF;
cs_id |= ((cs_fabric_id & die_id_mask) >> die_id_shift) << die_id_bit;
}
/* If interleaved over more than 1 socket. */
if (intlv_num_sockets) {
socket_id_shift = (tmp >> 28) & 0xF;
socket_id_mask = (tmp >> 16) & 0xFF;
cs_id |= ((cs_fabric_id & socket_id_mask) >> socket_id_shift) << sock_id_bit;
}
/*
* The pre-interleaved address consists of XXXXXXIIIYYYYY
* where III is the ID for this CS, and XXXXXXYYYYY are the
* address bits from the post-interleaved address.
* "num_intlv_bits" has been calculated to tell us how many "I"
* bits there are. "intlv_addr_bit" tells us how many "Y" bits
* there are (where "I" starts).
*/
temp_addr_y = ret_addr & GENMASK_ULL(intlv_addr_bit-1, 0);
temp_addr_i = (cs_id << intlv_addr_bit);
temp_addr_x = (ret_addr & GENMASK_ULL(63, intlv_addr_bit)) << num_intlv_bits;
ret_addr = temp_addr_x | temp_addr_i | temp_addr_y;
}
/* Add dram base address */
ret_addr += dram_base_addr;
/* If legacy MMIO hole enabled */
if (lgcy_mmio_hole_en) {
if (amd_df_indirect_read(nid, 0, 0x104, umc, &tmp))
goto out_err;
dram_hole_base = tmp & GENMASK(31, 24);
if (ret_addr >= dram_hole_base)
ret_addr += (BIT_ULL(32) - dram_hole_base);
}
if (hash_enabled) {
/* Save some parentheses and grab ls-bit at the end. */
hashed_bit = (ret_addr >> 12) ^
(ret_addr >> 18) ^
(ret_addr >> 21) ^
(ret_addr >> 30) ^
cs_id;
hashed_bit &= BIT(0);
if (hashed_bit != ((ret_addr >> intlv_addr_bit) & BIT(0)))
ret_addr ^= BIT(intlv_addr_bit);
}
/* Is calculated system address is above DRAM limit address? */
if (ret_addr > dram_limit_addr)
goto out_err;
*sys_addr = ret_addr;
return 0;
out_err:
return -EINVAL;
}
static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16); static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
/* /*