sfc: Use generic DMA API, not PCI-DMA API
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
This commit is contained in:
parent
62f8dc529c
commit
0e33d87033
@ -1103,8 +1103,8 @@ static int efx_init_io(struct efx_nic *efx)
|
||||
* masks event though they reject 46 bit masks.
|
||||
*/
|
||||
while (dma_mask > 0x7fffffffUL) {
|
||||
if (pci_dma_supported(pci_dev, dma_mask)) {
|
||||
rc = pci_set_dma_mask(pci_dev, dma_mask);
|
||||
if (dma_supported(&pci_dev->dev, dma_mask)) {
|
||||
rc = dma_set_mask(&pci_dev->dev, dma_mask);
|
||||
if (rc == 0)
|
||||
break;
|
||||
}
|
||||
@ -1117,10 +1117,10 @@ static int efx_init_io(struct efx_nic *efx)
|
||||
}
|
||||
netif_dbg(efx, probe, efx->net_dev,
|
||||
"using DMA mask %llx\n", (unsigned long long) dma_mask);
|
||||
rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
|
||||
rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask);
|
||||
if (rc) {
|
||||
/* pci_set_consistent_dma_mask() is not *allowed* to
|
||||
* fail with a mask that pci_set_dma_mask() accepted,
|
||||
/* dma_set_coherent_mask() is not *allowed* to
|
||||
* fail with a mask that dma_set_mask() accepted,
|
||||
* but just in case...
|
||||
*/
|
||||
netif_err(efx, probe, efx->net_dev,
|
||||
|
@ -100,7 +100,7 @@ struct efx_special_buffer {
|
||||
* @len: Length of this fragment.
|
||||
* This field is zero when the queue slot is empty.
|
||||
* @continuation: True if this fragment is not the end of a packet.
|
||||
* @unmap_single: True if pci_unmap_single should be used.
|
||||
* @unmap_single: True if dma_unmap_single should be used.
|
||||
* @unmap_len: Length of this fragment to unmap
|
||||
*/
|
||||
struct efx_tx_buffer {
|
||||
|
@ -308,8 +308,8 @@ efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
|
||||
int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
|
||||
unsigned int len)
|
||||
{
|
||||
buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
|
||||
&buffer->dma_addr);
|
||||
buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
|
||||
&buffer->dma_addr, GFP_ATOMIC);
|
||||
if (!buffer->addr)
|
||||
return -ENOMEM;
|
||||
buffer->len = len;
|
||||
@ -320,8 +320,8 @@ int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
|
||||
void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
|
||||
{
|
||||
if (buffer->addr) {
|
||||
pci_free_consistent(efx->pci_dev, buffer->len,
|
||||
buffer->addr, buffer->dma_addr);
|
||||
dma_free_coherent(&efx->pci_dev->dev, buffer->len,
|
||||
buffer->addr, buffer->dma_addr);
|
||||
buffer->addr = NULL;
|
||||
}
|
||||
}
|
||||
|
@ -155,11 +155,11 @@ static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
|
||||
rx_buf->len = skb_len - NET_IP_ALIGN;
|
||||
rx_buf->flags = 0;
|
||||
|
||||
rx_buf->dma_addr = pci_map_single(efx->pci_dev,
|
||||
rx_buf->dma_addr = dma_map_single(&efx->pci_dev->dev,
|
||||
skb->data, rx_buf->len,
|
||||
PCI_DMA_FROMDEVICE);
|
||||
if (unlikely(pci_dma_mapping_error(efx->pci_dev,
|
||||
rx_buf->dma_addr))) {
|
||||
DMA_FROM_DEVICE);
|
||||
if (unlikely(dma_mapping_error(&efx->pci_dev->dev,
|
||||
rx_buf->dma_addr))) {
|
||||
dev_kfree_skb_any(skb);
|
||||
rx_buf->u.skb = NULL;
|
||||
return -EIO;
|
||||
@ -200,10 +200,10 @@ static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
|
||||
efx->rx_buffer_order);
|
||||
if (unlikely(page == NULL))
|
||||
return -ENOMEM;
|
||||
dma_addr = pci_map_page(efx->pci_dev, page, 0,
|
||||
dma_addr = dma_map_page(&efx->pci_dev->dev, page, 0,
|
||||
efx_rx_buf_size(efx),
|
||||
PCI_DMA_FROMDEVICE);
|
||||
if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
|
||||
DMA_FROM_DEVICE);
|
||||
if (unlikely(dma_mapping_error(&efx->pci_dev->dev, dma_addr))) {
|
||||
__free_pages(page, efx->rx_buffer_order);
|
||||
return -EIO;
|
||||
}
|
||||
@ -247,14 +247,14 @@ static void efx_unmap_rx_buffer(struct efx_nic *efx,
|
||||
|
||||
state = page_address(rx_buf->u.page);
|
||||
if (--state->refcnt == 0) {
|
||||
pci_unmap_page(efx->pci_dev,
|
||||
dma_unmap_page(&efx->pci_dev->dev,
|
||||
state->dma_addr,
|
||||
efx_rx_buf_size(efx),
|
||||
PCI_DMA_FROMDEVICE);
|
||||
DMA_FROM_DEVICE);
|
||||
}
|
||||
} else if (!(rx_buf->flags & EFX_RX_BUF_PAGE) && rx_buf->u.skb) {
|
||||
pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
|
||||
rx_buf->len, PCI_DMA_FROMDEVICE);
|
||||
dma_unmap_single(&efx->pci_dev->dev, rx_buf->dma_addr,
|
||||
rx_buf->len, DMA_FROM_DEVICE);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -36,15 +36,15 @@ static void efx_dequeue_buffer(struct efx_tx_queue *tx_queue,
|
||||
unsigned int *bytes_compl)
|
||||
{
|
||||
if (buffer->unmap_len) {
|
||||
struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
|
||||
struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
|
||||
dma_addr_t unmap_addr = (buffer->dma_addr + buffer->len -
|
||||
buffer->unmap_len);
|
||||
if (buffer->unmap_single)
|
||||
pci_unmap_single(pci_dev, unmap_addr, buffer->unmap_len,
|
||||
PCI_DMA_TODEVICE);
|
||||
dma_unmap_single(dma_dev, unmap_addr, buffer->unmap_len,
|
||||
DMA_TO_DEVICE);
|
||||
else
|
||||
pci_unmap_page(pci_dev, unmap_addr, buffer->unmap_len,
|
||||
PCI_DMA_TODEVICE);
|
||||
dma_unmap_page(dma_dev, unmap_addr, buffer->unmap_len,
|
||||
DMA_TO_DEVICE);
|
||||
buffer->unmap_len = 0;
|
||||
buffer->unmap_single = false;
|
||||
}
|
||||
@ -138,7 +138,7 @@ efx_max_tx_len(struct efx_nic *efx, dma_addr_t dma_addr)
|
||||
netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
||||
{
|
||||
struct efx_nic *efx = tx_queue->efx;
|
||||
struct pci_dev *pci_dev = efx->pci_dev;
|
||||
struct device *dma_dev = &efx->pci_dev->dev;
|
||||
struct efx_tx_buffer *buffer;
|
||||
skb_frag_t *fragment;
|
||||
unsigned int len, unmap_len = 0, fill_level, insert_ptr;
|
||||
@ -167,17 +167,17 @@ netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
||||
fill_level = tx_queue->insert_count - tx_queue->old_read_count;
|
||||
q_space = efx->txq_entries - 1 - fill_level;
|
||||
|
||||
/* Map for DMA. Use pci_map_single rather than pci_map_page
|
||||
/* Map for DMA. Use dma_map_single rather than dma_map_page
|
||||
* since this is more efficient on machines with sparse
|
||||
* memory.
|
||||
*/
|
||||
unmap_single = true;
|
||||
dma_addr = pci_map_single(pci_dev, skb->data, len, PCI_DMA_TODEVICE);
|
||||
dma_addr = dma_map_single(dma_dev, skb->data, len, PCI_DMA_TODEVICE);
|
||||
|
||||
/* Process all fragments */
|
||||
while (1) {
|
||||
if (unlikely(pci_dma_mapping_error(pci_dev, dma_addr)))
|
||||
goto pci_err;
|
||||
if (unlikely(dma_mapping_error(dma_dev, dma_addr)))
|
||||
goto dma_err;
|
||||
|
||||
/* Store fields for marking in the per-fragment final
|
||||
* descriptor */
|
||||
@ -246,7 +246,7 @@ netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
||||
i++;
|
||||
/* Map for DMA */
|
||||
unmap_single = false;
|
||||
dma_addr = skb_frag_dma_map(&pci_dev->dev, fragment, 0, len,
|
||||
dma_addr = skb_frag_dma_map(dma_dev, fragment, 0, len,
|
||||
DMA_TO_DEVICE);
|
||||
}
|
||||
|
||||
@ -261,7 +261,7 @@ netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
||||
|
||||
return NETDEV_TX_OK;
|
||||
|
||||
pci_err:
|
||||
dma_err:
|
||||
netif_err(efx, tx_err, efx->net_dev,
|
||||
" TX queue %d could not map skb with %d bytes %d "
|
||||
"fragments for DMA\n", tx_queue->queue, skb->len,
|
||||
@ -284,11 +284,11 @@ netdev_tx_t efx_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
|
||||
/* Free the fragment we were mid-way through pushing */
|
||||
if (unmap_len) {
|
||||
if (unmap_single)
|
||||
pci_unmap_single(pci_dev, unmap_addr, unmap_len,
|
||||
PCI_DMA_TODEVICE);
|
||||
dma_unmap_single(dma_dev, unmap_addr, unmap_len,
|
||||
DMA_TO_DEVICE);
|
||||
else
|
||||
pci_unmap_page(pci_dev, unmap_addr, unmap_len,
|
||||
PCI_DMA_TODEVICE);
|
||||
dma_unmap_page(dma_dev, unmap_addr, unmap_len,
|
||||
DMA_TO_DEVICE);
|
||||
}
|
||||
|
||||
return rc;
|
||||
@ -684,20 +684,19 @@ static __be16 efx_tso_check_protocol(struct sk_buff *skb)
|
||||
*/
|
||||
static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
|
||||
{
|
||||
|
||||
struct pci_dev *pci_dev = tx_queue->efx->pci_dev;
|
||||
struct device *dma_dev = &tx_queue->efx->pci_dev->dev;
|
||||
struct efx_tso_header *tsoh;
|
||||
dma_addr_t dma_addr;
|
||||
u8 *base_kva, *kva;
|
||||
|
||||
base_kva = pci_alloc_consistent(pci_dev, PAGE_SIZE, &dma_addr);
|
||||
base_kva = dma_alloc_coherent(dma_dev, PAGE_SIZE, &dma_addr, GFP_ATOMIC);
|
||||
if (base_kva == NULL) {
|
||||
netif_err(tx_queue->efx, tx_err, tx_queue->efx->net_dev,
|
||||
"Unable to allocate page for TSO headers\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
/* pci_alloc_consistent() allocates pages. */
|
||||
/* dma_alloc_coherent() allocates pages. */
|
||||
EFX_BUG_ON_PARANOID(dma_addr & (PAGE_SIZE - 1u));
|
||||
|
||||
for (kva = base_kva; kva < base_kva + PAGE_SIZE; kva += TSOH_STD_SIZE) {
|
||||
@ -714,7 +713,7 @@ static int efx_tsoh_block_alloc(struct efx_tx_queue *tx_queue)
|
||||
/* Free up a TSO header, and all others in the same page. */
|
||||
static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
|
||||
struct efx_tso_header *tsoh,
|
||||
struct pci_dev *pci_dev)
|
||||
struct device *dma_dev)
|
||||
{
|
||||
struct efx_tso_header **p;
|
||||
unsigned long base_kva;
|
||||
@ -731,7 +730,7 @@ static void efx_tsoh_block_free(struct efx_tx_queue *tx_queue,
|
||||
p = &(*p)->next;
|
||||
}
|
||||
|
||||
pci_free_consistent(pci_dev, PAGE_SIZE, (void *)base_kva, base_dma);
|
||||
dma_free_coherent(dma_dev, PAGE_SIZE, (void *)base_kva, base_dma);
|
||||
}
|
||||
|
||||
static struct efx_tso_header *
|
||||
@ -743,11 +742,11 @@ efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
|
||||
if (unlikely(!tsoh))
|
||||
return NULL;
|
||||
|
||||
tsoh->dma_addr = pci_map_single(tx_queue->efx->pci_dev,
|
||||
tsoh->dma_addr = dma_map_single(&tx_queue->efx->pci_dev->dev,
|
||||
TSOH_BUFFER(tsoh), header_len,
|
||||
PCI_DMA_TODEVICE);
|
||||
if (unlikely(pci_dma_mapping_error(tx_queue->efx->pci_dev,
|
||||
tsoh->dma_addr))) {
|
||||
DMA_TO_DEVICE);
|
||||
if (unlikely(dma_mapping_error(&tx_queue->efx->pci_dev->dev,
|
||||
tsoh->dma_addr))) {
|
||||
kfree(tsoh);
|
||||
return NULL;
|
||||
}
|
||||
@ -759,9 +758,9 @@ efx_tsoh_heap_alloc(struct efx_tx_queue *tx_queue, size_t header_len)
|
||||
static void
|
||||
efx_tsoh_heap_free(struct efx_tx_queue *tx_queue, struct efx_tso_header *tsoh)
|
||||
{
|
||||
pci_unmap_single(tx_queue->efx->pci_dev,
|
||||
dma_unmap_single(&tx_queue->efx->pci_dev->dev,
|
||||
tsoh->dma_addr, tsoh->unmap_len,
|
||||
PCI_DMA_TODEVICE);
|
||||
DMA_TO_DEVICE);
|
||||
kfree(tsoh);
|
||||
}
|
||||
|
||||
@ -892,13 +891,13 @@ static void efx_enqueue_unwind(struct efx_tx_queue *tx_queue)
|
||||
unmap_addr = (buffer->dma_addr + buffer->len -
|
||||
buffer->unmap_len);
|
||||
if (buffer->unmap_single)
|
||||
pci_unmap_single(tx_queue->efx->pci_dev,
|
||||
dma_unmap_single(&tx_queue->efx->pci_dev->dev,
|
||||
unmap_addr, buffer->unmap_len,
|
||||
PCI_DMA_TODEVICE);
|
||||
DMA_TO_DEVICE);
|
||||
else
|
||||
pci_unmap_page(tx_queue->efx->pci_dev,
|
||||
dma_unmap_page(&tx_queue->efx->pci_dev->dev,
|
||||
unmap_addr, buffer->unmap_len,
|
||||
PCI_DMA_TODEVICE);
|
||||
DMA_TO_DEVICE);
|
||||
buffer->unmap_len = 0;
|
||||
}
|
||||
buffer->len = 0;
|
||||
@ -954,9 +953,9 @@ static int tso_get_head_fragment(struct tso_state *st, struct efx_nic *efx,
|
||||
int hl = st->header_len;
|
||||
int len = skb_headlen(skb) - hl;
|
||||
|
||||
st->unmap_addr = pci_map_single(efx->pci_dev, skb->data + hl,
|
||||
len, PCI_DMA_TODEVICE);
|
||||
if (likely(!pci_dma_mapping_error(efx->pci_dev, st->unmap_addr))) {
|
||||
st->unmap_addr = dma_map_single(&efx->pci_dev->dev, skb->data + hl,
|
||||
len, DMA_TO_DEVICE);
|
||||
if (likely(!dma_mapping_error(&efx->pci_dev->dev, st->unmap_addr))) {
|
||||
st->unmap_single = true;
|
||||
st->unmap_len = len;
|
||||
st->in_len = len;
|
||||
@ -1008,7 +1007,7 @@ static int tso_fill_packet_with_fragment(struct efx_tx_queue *tx_queue,
|
||||
buffer->continuation = !end_of_packet;
|
||||
|
||||
if (st->in_len == 0) {
|
||||
/* Transfer ownership of the pci mapping */
|
||||
/* Transfer ownership of the DMA mapping */
|
||||
buffer->unmap_len = st->unmap_len;
|
||||
buffer->unmap_single = st->unmap_single;
|
||||
st->unmap_len = 0;
|
||||
@ -1181,18 +1180,18 @@ static int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue,
|
||||
|
||||
mem_err:
|
||||
netif_err(efx, tx_err, efx->net_dev,
|
||||
"Out of memory for TSO headers, or PCI mapping error\n");
|
||||
"Out of memory for TSO headers, or DMA mapping error\n");
|
||||
dev_kfree_skb_any(skb);
|
||||
|
||||
unwind:
|
||||
/* Free the DMA mapping we were in the process of writing out */
|
||||
if (state.unmap_len) {
|
||||
if (state.unmap_single)
|
||||
pci_unmap_single(efx->pci_dev, state.unmap_addr,
|
||||
state.unmap_len, PCI_DMA_TODEVICE);
|
||||
dma_unmap_single(&efx->pci_dev->dev, state.unmap_addr,
|
||||
state.unmap_len, DMA_TO_DEVICE);
|
||||
else
|
||||
pci_unmap_page(efx->pci_dev, state.unmap_addr,
|
||||
state.unmap_len, PCI_DMA_TODEVICE);
|
||||
dma_unmap_page(&efx->pci_dev->dev, state.unmap_addr,
|
||||
state.unmap_len, DMA_TO_DEVICE);
|
||||
}
|
||||
|
||||
efx_enqueue_unwind(tx_queue);
|
||||
@ -1216,5 +1215,5 @@ static void efx_fini_tso(struct efx_tx_queue *tx_queue)
|
||||
|
||||
while (tx_queue->tso_headers_free != NULL)
|
||||
efx_tsoh_block_free(tx_queue, tx_queue->tso_headers_free,
|
||||
tx_queue->efx->pci_dev);
|
||||
&tx_queue->efx->pci_dev->dev);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user