staging: iio: cdc: ad7152: remove driver completely

The AD7153 part has been obsoleted for some time. The AD7152 part will be
obsolete in the coming future.
Moving it out of staging doesn't make sense anymore. Which makes the driver
enter a limbo state.

This patch removes the driver completely, so that no effort is placed on
it, allowing people to focus on other parts that will still be around.

Signed-off-by: Alexandru Ardelean <alexandru.ardelean@analog.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
This commit is contained in:
Alexandru Ardelean 2019-01-30 11:12:36 +02:00 committed by Jonathan Cameron
parent 22904bdff9
commit 0e4c2da4f0
3 changed files with 0 additions and 563 deletions

View File

@ -13,16 +13,6 @@ config AD7150
To compile this driver as a module, choose M here: the
module will be called ad7150.
config AD7152
tristate "Analog Devices ad7152/3 capacitive sensor driver"
depends on I2C
help
Say yes here to build support for Analog Devices capacitive sensors.
(ad7152, ad7153) Provides direct access via sysfs.
To compile this driver as a module, choose M here: the
module will be called ad7152.
config AD7746
tristate "Analog Devices AD7745, AD7746 AD7747 capacitive sensor driver"
depends on I2C

View File

@ -3,5 +3,4 @@
#
obj-$(CONFIG_AD7150) += ad7150.o
obj-$(CONFIG_AD7152) += ad7152.o
obj-$(CONFIG_AD7746) += ad7746.o

View File

@ -1,552 +0,0 @@
/*
* AD7152 capacitive sensor driver supporting AD7152/3
*
* Copyright 2010-2011a Analog Devices Inc.
*
* Licensed under the GPL-2 or later.
*/
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
/*
* TODO: Check compliance of calibbias with abi (units)
*/
/*
* AD7152 registers definition
*/
#define AD7152_REG_STATUS 0
#define AD7152_REG_CH1_DATA_HIGH 1
#define AD7152_REG_CH2_DATA_HIGH 3
#define AD7152_REG_CH1_OFFS_HIGH 5
#define AD7152_REG_CH2_OFFS_HIGH 7
#define AD7152_REG_CH1_GAIN_HIGH 9
#define AD7152_REG_CH1_SETUP 11
#define AD7152_REG_CH2_GAIN_HIGH 12
#define AD7152_REG_CH2_SETUP 14
#define AD7152_REG_CFG 15
#define AD7152_REG_RESEVERD 16
#define AD7152_REG_CAPDAC_POS 17
#define AD7152_REG_CAPDAC_NEG 18
#define AD7152_REG_CFG2 26
/* Status Register Bit Designations (AD7152_REG_STATUS) */
#define AD7152_STATUS_RDY1 BIT(0)
#define AD7152_STATUS_RDY2 BIT(1)
#define AD7152_STATUS_C1C2 BIT(2)
#define AD7152_STATUS_PWDN BIT(7)
/* Setup Register Bit Designations (AD7152_REG_CHx_SETUP) */
#define AD7152_SETUP_CAPDIFF BIT(5)
#define AD7152_SETUP_RANGE_2pF (0 << 6)
#define AD7152_SETUP_RANGE_0_5pF (1 << 6)
#define AD7152_SETUP_RANGE_1pF (2 << 6)
#define AD7152_SETUP_RANGE_4pF (3 << 6)
#define AD7152_SETUP_RANGE(x) ((x) << 6)
/* Config Register Bit Designations (AD7152_REG_CFG) */
#define AD7152_CONF_CH2EN BIT(3)
#define AD7152_CONF_CH1EN BIT(4)
#define AD7152_CONF_MODE_IDLE (0 << 0)
#define AD7152_CONF_MODE_CONT_CONV (1 << 0)
#define AD7152_CONF_MODE_SINGLE_CONV (2 << 0)
#define AD7152_CONF_MODE_OFFS_CAL (5 << 0)
#define AD7152_CONF_MODE_GAIN_CAL (6 << 0)
/* Capdac Register Bit Designations (AD7152_REG_CAPDAC_XXX) */
#define AD7152_CAPDAC_DACEN BIT(7)
#define AD7152_CAPDAC_DACP(x) ((x) & 0x1F)
/* CFG2 Register Bit Designations (AD7152_REG_CFG2) */
#define AD7152_CFG2_OSR(x) (((x) & 0x3) << 4)
enum {
AD7152_DATA,
AD7152_OFFS,
AD7152_GAIN,
AD7152_SETUP
};
/*
* struct ad7152_chip_info - chip specific information
*/
struct ad7152_chip_info {
struct i2c_client *client;
/*
* Capacitive channel digital filter setup;
* conversion time/update rate setup per channel
*/
u8 filter_rate_setup;
u8 setup[2];
struct mutex state_lock; /* protect hardware state */
};
static inline ssize_t ad7152_start_calib(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len,
u8 regval)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct ad7152_chip_info *chip = iio_priv(indio_dev);
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
bool doit;
int ret, timeout = 10;
ret = strtobool(buf, &doit);
if (ret < 0)
return ret;
if (!doit)
return 0;
if (this_attr->address == 0)
regval |= AD7152_CONF_CH1EN;
else
regval |= AD7152_CONF_CH2EN;
mutex_lock(&chip->state_lock);
ret = i2c_smbus_write_byte_data(chip->client, AD7152_REG_CFG, regval);
if (ret < 0)
goto unlock;
do {
mdelay(20);
ret = i2c_smbus_read_byte_data(chip->client, AD7152_REG_CFG);
if (ret < 0)
goto unlock;
} while ((ret == regval) && timeout--);
mutex_unlock(&chip->state_lock);
return len;
unlock:
mutex_unlock(&chip->state_lock);
return ret;
}
static ssize_t ad7152_start_offset_calib(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
return ad7152_start_calib(dev, attr, buf, len,
AD7152_CONF_MODE_OFFS_CAL);
}
static ssize_t ad7152_start_gain_calib(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
return ad7152_start_calib(dev, attr, buf, len,
AD7152_CONF_MODE_GAIN_CAL);
}
static IIO_DEVICE_ATTR(in_capacitance0_calibbias_calibration,
0200, NULL, ad7152_start_offset_calib, 0);
static IIO_DEVICE_ATTR(in_capacitance1_calibbias_calibration,
0200, NULL, ad7152_start_offset_calib, 1);
static IIO_DEVICE_ATTR(in_capacitance0_calibscale_calibration,
0200, NULL, ad7152_start_gain_calib, 0);
static IIO_DEVICE_ATTR(in_capacitance1_calibscale_calibration,
0200, NULL, ad7152_start_gain_calib, 1);
/* Values are Update Rate (Hz), Conversion Time (ms) + 1*/
static const unsigned char ad7152_filter_rate_table[][2] = {
{200, 5 + 1}, {50, 20 + 1}, {20, 50 + 1}, {17, 60 + 1},
};
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("200 50 20 17");
static IIO_CONST_ATTR(in_capacitance_scale_available,
"0.000061050 0.000030525 0.000015263 0.000007631");
static struct attribute *ad7152_attributes[] = {
&iio_dev_attr_in_capacitance0_calibbias_calibration.dev_attr.attr,
&iio_dev_attr_in_capacitance1_calibbias_calibration.dev_attr.attr,
&iio_dev_attr_in_capacitance0_calibscale_calibration.dev_attr.attr,
&iio_dev_attr_in_capacitance1_calibscale_calibration.dev_attr.attr,
&iio_const_attr_in_capacitance_scale_available.dev_attr.attr,
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
NULL,
};
static const struct attribute_group ad7152_attribute_group = {
.attrs = ad7152_attributes,
};
static const u8 ad7152_addresses[][4] = {
{ AD7152_REG_CH1_DATA_HIGH, AD7152_REG_CH1_OFFS_HIGH,
AD7152_REG_CH1_GAIN_HIGH, AD7152_REG_CH1_SETUP },
{ AD7152_REG_CH2_DATA_HIGH, AD7152_REG_CH2_OFFS_HIGH,
AD7152_REG_CH2_GAIN_HIGH, AD7152_REG_CH2_SETUP },
};
/* Values are nano relative to pf base. */
static const int ad7152_scale_table[] = {
30525, 7631, 15263, 61050
};
/**
* read_raw handler for IIO_CHAN_INFO_SAMP_FREQ
*
* lock must be held
**/
static int ad7152_read_raw_samp_freq(struct device *dev, int *val)
{
struct ad7152_chip_info *chip = iio_priv(dev_to_iio_dev(dev));
*val = ad7152_filter_rate_table[chip->filter_rate_setup][0];
return 0;
}
/**
* write_raw handler for IIO_CHAN_INFO_SAMP_FREQ
*
* lock must be held
**/
static int ad7152_write_raw_samp_freq(struct device *dev, int val)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct ad7152_chip_info *chip = iio_priv(indio_dev);
int ret, i;
for (i = 0; i < ARRAY_SIZE(ad7152_filter_rate_table); i++)
if (val >= ad7152_filter_rate_table[i][0])
break;
if (i >= ARRAY_SIZE(ad7152_filter_rate_table))
i = ARRAY_SIZE(ad7152_filter_rate_table) - 1;
ret = i2c_smbus_write_byte_data(chip->client,
AD7152_REG_CFG2, AD7152_CFG2_OSR(i));
if (ret < 0)
return ret;
chip->filter_rate_setup = i;
return ret;
}
static int ad7152_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val,
int val2,
long mask)
{
struct ad7152_chip_info *chip = iio_priv(indio_dev);
int ret, i;
mutex_lock(&chip->state_lock);
switch (mask) {
case IIO_CHAN_INFO_CALIBSCALE:
if (val != 1) {
ret = -EINVAL;
goto out;
}
val = (val2 * 1024) / 15625;
ret = i2c_smbus_write_word_data(chip->client,
ad7152_addresses[chan->channel][AD7152_GAIN],
swab16(val));
if (ret < 0)
goto out;
ret = 0;
break;
case IIO_CHAN_INFO_CALIBBIAS:
if ((val < 0) | (val > 0xFFFF)) {
ret = -EINVAL;
goto out;
}
ret = i2c_smbus_write_word_data(chip->client,
ad7152_addresses[chan->channel][AD7152_OFFS],
swab16(val));
if (ret < 0)
goto out;
ret = 0;
break;
case IIO_CHAN_INFO_SCALE:
if (val) {
ret = -EINVAL;
goto out;
}
for (i = 0; i < ARRAY_SIZE(ad7152_scale_table); i++)
if (val2 == ad7152_scale_table[i])
break;
chip->setup[chan->channel] &= ~AD7152_SETUP_RANGE_4pF;
chip->setup[chan->channel] |= AD7152_SETUP_RANGE(i);
ret = i2c_smbus_write_byte_data(chip->client,
ad7152_addresses[chan->channel][AD7152_SETUP],
chip->setup[chan->channel]);
if (ret < 0)
goto out;
ret = 0;
break;
case IIO_CHAN_INFO_SAMP_FREQ:
if (val2) {
ret = -EINVAL;
goto out;
}
ret = ad7152_write_raw_samp_freq(&indio_dev->dev, val);
if (ret < 0)
goto out;
ret = 0;
break;
default:
ret = -EINVAL;
}
out:
mutex_unlock(&chip->state_lock);
return ret;
}
static int ad7152_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2,
long mask)
{
struct ad7152_chip_info *chip = iio_priv(indio_dev);
int ret;
u8 regval = 0;
mutex_lock(&chip->state_lock);
switch (mask) {
case IIO_CHAN_INFO_RAW:
/* First set whether in differential mode */
regval = chip->setup[chan->channel];
if (chan->differential)
chip->setup[chan->channel] |= AD7152_SETUP_CAPDIFF;
else
chip->setup[chan->channel] &= ~AD7152_SETUP_CAPDIFF;
if (regval != chip->setup[chan->channel]) {
ret = i2c_smbus_write_byte_data(chip->client,
ad7152_addresses[chan->channel][AD7152_SETUP],
chip->setup[chan->channel]);
if (ret < 0)
goto out;
}
/* Make sure the channel is enabled */
if (chan->channel == 0)
regval = AD7152_CONF_CH1EN;
else
regval = AD7152_CONF_CH2EN;
/* Trigger a single read */
regval |= AD7152_CONF_MODE_SINGLE_CONV;
ret = i2c_smbus_write_byte_data(chip->client, AD7152_REG_CFG,
regval);
if (ret < 0)
goto out;
msleep(ad7152_filter_rate_table[chip->filter_rate_setup][1]);
/* Now read the actual register */
ret = i2c_smbus_read_word_data(chip->client,
ad7152_addresses[chan->channel][AD7152_DATA]);
if (ret < 0)
goto out;
*val = swab16(ret);
if (chan->differential)
*val -= 0x8000;
ret = IIO_VAL_INT;
break;
case IIO_CHAN_INFO_CALIBSCALE:
ret = i2c_smbus_read_word_data(chip->client,
ad7152_addresses[chan->channel][AD7152_GAIN]);
if (ret < 0)
goto out;
/* 1 + gain_val / 2^16 */
*val = 1;
*val2 = (15625 * swab16(ret)) / 1024;
ret = IIO_VAL_INT_PLUS_MICRO;
break;
case IIO_CHAN_INFO_CALIBBIAS:
ret = i2c_smbus_read_word_data(chip->client,
ad7152_addresses[chan->channel][AD7152_OFFS]);
if (ret < 0)
goto out;
*val = swab16(ret);
ret = IIO_VAL_INT;
break;
case IIO_CHAN_INFO_SCALE:
ret = i2c_smbus_read_byte_data(chip->client,
ad7152_addresses[chan->channel][AD7152_SETUP]);
if (ret < 0)
goto out;
*val = 0;
*val2 = ad7152_scale_table[ret >> 6];
ret = IIO_VAL_INT_PLUS_NANO;
break;
case IIO_CHAN_INFO_SAMP_FREQ:
ret = ad7152_read_raw_samp_freq(&indio_dev->dev, val);
if (ret < 0)
goto out;
ret = IIO_VAL_INT;
break;
default:
ret = -EINVAL;
}
out:
mutex_unlock(&chip->state_lock);
return ret;
}
static int ad7152_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SCALE:
return IIO_VAL_INT_PLUS_NANO;
default:
return IIO_VAL_INT_PLUS_MICRO;
}
}
static const struct iio_info ad7152_info = {
.attrs = &ad7152_attribute_group,
.read_raw = ad7152_read_raw,
.write_raw = ad7152_write_raw,
.write_raw_get_fmt = ad7152_write_raw_get_fmt,
};
static const struct iio_chan_spec ad7152_channels[] = {
{
.type = IIO_CAPACITANCE,
.indexed = 1,
.channel = 0,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_CALIBSCALE) |
BIT(IIO_CHAN_INFO_CALIBBIAS) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
}, {
.type = IIO_CAPACITANCE,
.differential = 1,
.indexed = 1,
.channel = 0,
.channel2 = 2,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_CALIBSCALE) |
BIT(IIO_CHAN_INFO_CALIBBIAS) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
}, {
.type = IIO_CAPACITANCE,
.indexed = 1,
.channel = 1,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_CALIBSCALE) |
BIT(IIO_CHAN_INFO_CALIBBIAS) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
}, {
.type = IIO_CAPACITANCE,
.differential = 1,
.indexed = 1,
.channel = 1,
.channel2 = 3,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_CALIBSCALE) |
BIT(IIO_CHAN_INFO_CALIBBIAS) |
BIT(IIO_CHAN_INFO_SCALE),
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
}
};
/*
* device probe and remove
*/
static int ad7152_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
int ret = 0;
struct ad7152_chip_info *chip;
struct iio_dev *indio_dev;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*chip));
if (!indio_dev)
return -ENOMEM;
chip = iio_priv(indio_dev);
/* this is only used for device removal purposes */
i2c_set_clientdata(client, indio_dev);
chip->client = client;
mutex_init(&chip->state_lock);
/* Establish that the iio_dev is a child of the i2c device */
indio_dev->name = id->name;
indio_dev->dev.parent = &client->dev;
indio_dev->info = &ad7152_info;
indio_dev->channels = ad7152_channels;
if (id->driver_data == 0)
indio_dev->num_channels = ARRAY_SIZE(ad7152_channels);
else
indio_dev->num_channels = 2;
indio_dev->num_channels = ARRAY_SIZE(ad7152_channels);
indio_dev->modes = INDIO_DIRECT_MODE;
ret = devm_iio_device_register(indio_dev->dev.parent, indio_dev);
if (ret)
return ret;
dev_err(&client->dev, "%s capacitive sensor registered\n", id->name);
return 0;
}
static const struct i2c_device_id ad7152_id[] = {
{ "ad7152", 0 },
{ "ad7153", 1 },
{}
};
MODULE_DEVICE_TABLE(i2c, ad7152_id);
static struct i2c_driver ad7152_driver = {
.driver = {
.name = KBUILD_MODNAME,
},
.probe = ad7152_probe,
.id_table = ad7152_id,
};
module_i2c_driver(ad7152_driver);
MODULE_AUTHOR("Barry Song <21cnbao@gmail.com>");
MODULE_DESCRIPTION("Analog Devices AD7152/3 capacitive sensor driver");
MODULE_LICENSE("GPL v2");