efi/libstub: Move efi_random_alloc() into separate source file
efi_random_alloc() is only used on arm64, but as it shares a source file with efi_random_get_seed(), the latter will pull in the former on other architectures as well. Let's take advantage of the fact that libstub is a static library, and so the linker will only incorporate objects that are needed to satisfy dependencies in other objects. This means we can move the random alloc code to a separate source file that gets built unconditionally, but only used when needed. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
This commit is contained in:
parent
1e45bf7372
commit
0ed02bdaa7
@ -40,7 +40,7 @@ OBJECT_FILES_NON_STANDARD := y
|
||||
KCOV_INSTRUMENT := n
|
||||
|
||||
lib-y := efi-stub-helper.o gop.o secureboot.o tpm.o \
|
||||
mem.o random.o pci.o
|
||||
mem.o random.o randomalloc.o pci.o
|
||||
|
||||
# include the stub's generic dependencies from lib/ when building for ARM/arm64
|
||||
arm-deps-y := fdt_rw.c fdt_ro.c fdt_wip.c fdt.c fdt_empty_tree.c fdt_sw.c
|
||||
|
@ -4,7 +4,6 @@
|
||||
*/
|
||||
|
||||
#include <linux/efi.h>
|
||||
#include <linux/log2.h>
|
||||
#include <asm/efi.h>
|
||||
|
||||
#include "efistub.h"
|
||||
@ -39,119 +38,6 @@ efi_status_t efi_get_random_bytes(unsigned long size, u8 *out)
|
||||
return efi_call_proto(rng, get_rng, NULL, size, out);
|
||||
}
|
||||
|
||||
/*
|
||||
* Return the number of slots covered by this entry, i.e., the number of
|
||||
* addresses it covers that are suitably aligned and supply enough room
|
||||
* for the allocation.
|
||||
*/
|
||||
static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
|
||||
unsigned long size,
|
||||
unsigned long align_shift)
|
||||
{
|
||||
unsigned long align = 1UL << align_shift;
|
||||
u64 first_slot, last_slot, region_end;
|
||||
|
||||
if (md->type != EFI_CONVENTIONAL_MEMORY)
|
||||
return 0;
|
||||
|
||||
if (efi_soft_reserve_enabled() &&
|
||||
(md->attribute & EFI_MEMORY_SP))
|
||||
return 0;
|
||||
|
||||
region_end = min((u64)ULONG_MAX, md->phys_addr + md->num_pages*EFI_PAGE_SIZE - 1);
|
||||
|
||||
first_slot = round_up(md->phys_addr, align);
|
||||
last_slot = round_down(region_end - size + 1, align);
|
||||
|
||||
if (first_slot > last_slot)
|
||||
return 0;
|
||||
|
||||
return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* The UEFI memory descriptors have a virtual address field that is only used
|
||||
* when installing the virtual mapping using SetVirtualAddressMap(). Since it
|
||||
* is unused here, we can reuse it to keep track of each descriptor's slot
|
||||
* count.
|
||||
*/
|
||||
#define MD_NUM_SLOTS(md) ((md)->virt_addr)
|
||||
|
||||
efi_status_t efi_random_alloc(unsigned long size,
|
||||
unsigned long align,
|
||||
unsigned long *addr,
|
||||
unsigned long random_seed)
|
||||
{
|
||||
unsigned long map_size, desc_size, total_slots = 0, target_slot;
|
||||
unsigned long buff_size;
|
||||
efi_status_t status;
|
||||
efi_memory_desc_t *memory_map;
|
||||
int map_offset;
|
||||
struct efi_boot_memmap map;
|
||||
|
||||
map.map = &memory_map;
|
||||
map.map_size = &map_size;
|
||||
map.desc_size = &desc_size;
|
||||
map.desc_ver = NULL;
|
||||
map.key_ptr = NULL;
|
||||
map.buff_size = &buff_size;
|
||||
|
||||
status = efi_get_memory_map(&map);
|
||||
if (status != EFI_SUCCESS)
|
||||
return status;
|
||||
|
||||
if (align < EFI_ALLOC_ALIGN)
|
||||
align = EFI_ALLOC_ALIGN;
|
||||
|
||||
/* count the suitable slots in each memory map entry */
|
||||
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
|
||||
efi_memory_desc_t *md = (void *)memory_map + map_offset;
|
||||
unsigned long slots;
|
||||
|
||||
slots = get_entry_num_slots(md, size, ilog2(align));
|
||||
MD_NUM_SLOTS(md) = slots;
|
||||
total_slots += slots;
|
||||
}
|
||||
|
||||
/* find a random number between 0 and total_slots */
|
||||
target_slot = (total_slots * (u16)random_seed) >> 16;
|
||||
|
||||
/*
|
||||
* target_slot is now a value in the range [0, total_slots), and so
|
||||
* it corresponds with exactly one of the suitable slots we recorded
|
||||
* when iterating over the memory map the first time around.
|
||||
*
|
||||
* So iterate over the memory map again, subtracting the number of
|
||||
* slots of each entry at each iteration, until we have found the entry
|
||||
* that covers our chosen slot. Use the residual value of target_slot
|
||||
* to calculate the randomly chosen address, and allocate it directly
|
||||
* using EFI_ALLOCATE_ADDRESS.
|
||||
*/
|
||||
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
|
||||
efi_memory_desc_t *md = (void *)memory_map + map_offset;
|
||||
efi_physical_addr_t target;
|
||||
unsigned long pages;
|
||||
|
||||
if (target_slot >= MD_NUM_SLOTS(md)) {
|
||||
target_slot -= MD_NUM_SLOTS(md);
|
||||
continue;
|
||||
}
|
||||
|
||||
target = round_up(md->phys_addr, align) + target_slot * align;
|
||||
pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
|
||||
|
||||
status = efi_bs_call(allocate_pages, EFI_ALLOCATE_ADDRESS,
|
||||
EFI_LOADER_DATA, pages, &target);
|
||||
if (status == EFI_SUCCESS)
|
||||
*addr = target;
|
||||
break;
|
||||
}
|
||||
|
||||
efi_bs_call(free_pool, memory_map);
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
efi_status_t efi_random_get_seed(void)
|
||||
{
|
||||
efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
|
||||
|
124
drivers/firmware/efi/libstub/randomalloc.c
Normal file
124
drivers/firmware/efi/libstub/randomalloc.c
Normal file
@ -0,0 +1,124 @@
|
||||
// SPDX-License-Identifier: GPL-2.0
|
||||
/*
|
||||
* Copyright (C) 2016 Linaro Ltd; <ard.biesheuvel@linaro.org>
|
||||
*/
|
||||
|
||||
#include <linux/efi.h>
|
||||
#include <linux/log2.h>
|
||||
#include <asm/efi.h>
|
||||
|
||||
#include "efistub.h"
|
||||
|
||||
/*
|
||||
* Return the number of slots covered by this entry, i.e., the number of
|
||||
* addresses it covers that are suitably aligned and supply enough room
|
||||
* for the allocation.
|
||||
*/
|
||||
static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
|
||||
unsigned long size,
|
||||
unsigned long align_shift)
|
||||
{
|
||||
unsigned long align = 1UL << align_shift;
|
||||
u64 first_slot, last_slot, region_end;
|
||||
|
||||
if (md->type != EFI_CONVENTIONAL_MEMORY)
|
||||
return 0;
|
||||
|
||||
if (efi_soft_reserve_enabled() &&
|
||||
(md->attribute & EFI_MEMORY_SP))
|
||||
return 0;
|
||||
|
||||
region_end = min(md->phys_addr + md->num_pages * EFI_PAGE_SIZE - 1,
|
||||
(u64)ULONG_MAX);
|
||||
|
||||
first_slot = round_up(md->phys_addr, align);
|
||||
last_slot = round_down(region_end - size + 1, align);
|
||||
|
||||
if (first_slot > last_slot)
|
||||
return 0;
|
||||
|
||||
return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* The UEFI memory descriptors have a virtual address field that is only used
|
||||
* when installing the virtual mapping using SetVirtualAddressMap(). Since it
|
||||
* is unused here, we can reuse it to keep track of each descriptor's slot
|
||||
* count.
|
||||
*/
|
||||
#define MD_NUM_SLOTS(md) ((md)->virt_addr)
|
||||
|
||||
efi_status_t efi_random_alloc(unsigned long size,
|
||||
unsigned long align,
|
||||
unsigned long *addr,
|
||||
unsigned long random_seed)
|
||||
{
|
||||
unsigned long map_size, desc_size, total_slots = 0, target_slot;
|
||||
unsigned long buff_size;
|
||||
efi_status_t status;
|
||||
efi_memory_desc_t *memory_map;
|
||||
int map_offset;
|
||||
struct efi_boot_memmap map;
|
||||
|
||||
map.map = &memory_map;
|
||||
map.map_size = &map_size;
|
||||
map.desc_size = &desc_size;
|
||||
map.desc_ver = NULL;
|
||||
map.key_ptr = NULL;
|
||||
map.buff_size = &buff_size;
|
||||
|
||||
status = efi_get_memory_map(&map);
|
||||
if (status != EFI_SUCCESS)
|
||||
return status;
|
||||
|
||||
if (align < EFI_ALLOC_ALIGN)
|
||||
align = EFI_ALLOC_ALIGN;
|
||||
|
||||
/* count the suitable slots in each memory map entry */
|
||||
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
|
||||
efi_memory_desc_t *md = (void *)memory_map + map_offset;
|
||||
unsigned long slots;
|
||||
|
||||
slots = get_entry_num_slots(md, size, ilog2(align));
|
||||
MD_NUM_SLOTS(md) = slots;
|
||||
total_slots += slots;
|
||||
}
|
||||
|
||||
/* find a random number between 0 and total_slots */
|
||||
target_slot = (total_slots * (u16)random_seed) >> 16;
|
||||
|
||||
/*
|
||||
* target_slot is now a value in the range [0, total_slots), and so
|
||||
* it corresponds with exactly one of the suitable slots we recorded
|
||||
* when iterating over the memory map the first time around.
|
||||
*
|
||||
* So iterate over the memory map again, subtracting the number of
|
||||
* slots of each entry at each iteration, until we have found the entry
|
||||
* that covers our chosen slot. Use the residual value of target_slot
|
||||
* to calculate the randomly chosen address, and allocate it directly
|
||||
* using EFI_ALLOCATE_ADDRESS.
|
||||
*/
|
||||
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
|
||||
efi_memory_desc_t *md = (void *)memory_map + map_offset;
|
||||
efi_physical_addr_t target;
|
||||
unsigned long pages;
|
||||
|
||||
if (target_slot >= MD_NUM_SLOTS(md)) {
|
||||
target_slot -= MD_NUM_SLOTS(md);
|
||||
continue;
|
||||
}
|
||||
|
||||
target = round_up(md->phys_addr, align) + target_slot * align;
|
||||
pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
|
||||
|
||||
status = efi_bs_call(allocate_pages, EFI_ALLOCATE_ADDRESS,
|
||||
EFI_LOADER_DATA, pages, &target);
|
||||
if (status == EFI_SUCCESS)
|
||||
*addr = target;
|
||||
break;
|
||||
}
|
||||
|
||||
efi_bs_call(free_pool, memory_map);
|
||||
|
||||
return status;
|
||||
}
|
Loading…
Reference in New Issue
Block a user