EDAC, ghes: Model a single, logical memory controller

We're enumerating the DIMMs through a DMI walk and since we can't get
any more detailed topological information about which DIMMs belong to
which memory controller, convert it to a single, logical controller
which contains all the DIMMs.

The error reporting path from GHES ghes_edac_report_mem_error() doesn't
get called in NMI context but add a warning about it to catch any
changes in the future as if so, our locking scheme will be insufficient
then.

Signed-off-by: Borislav Petkov <bp@suse.de>
This commit is contained in:
Borislav Petkov 2017-08-16 10:33:44 +02:00
parent c9c8b4d6d0
commit 0fe5f281f7

View File

@ -28,10 +28,15 @@ struct ghes_edac_pvt {
char msg[80]; char msg[80];
}; };
static LIST_HEAD(ghes_reglist); static atomic_t ghes_init = ATOMIC_INIT(0);
static DEFINE_MUTEX(ghes_edac_lock); static struct ghes_edac_pvt *ghes_pvt;
static int ghes_edac_mc_num;
/*
* Sync with other, potentially concurrent callers of
* ghes_edac_report_mem_error(). We don't know what the
* "inventive" firmware would do.
*/
static DEFINE_SPINLOCK(ghes_lock);
/* Memory Device - Type 17 of SMBIOS spec */ /* Memory Device - Type 17 of SMBIOS spec */
struct memdev_dmi_entry { struct memdev_dmi_entry {
@ -169,18 +174,26 @@ void ghes_edac_report_mem_error(struct ghes *ghes, int sev,
enum hw_event_mc_err_type type; enum hw_event_mc_err_type type;
struct edac_raw_error_desc *e; struct edac_raw_error_desc *e;
struct mem_ctl_info *mci; struct mem_ctl_info *mci;
struct ghes_edac_pvt *pvt = NULL; struct ghes_edac_pvt *pvt = ghes_pvt;
unsigned long flags;
char *p; char *p;
u8 grain_bits; u8 grain_bits;
list_for_each_entry(pvt, &ghes_reglist, list) {
if (ghes == pvt->ghes)
break;
}
if (!pvt) { if (!pvt) {
pr_err("Internal error: Can't find EDAC structure\n"); pr_err("Internal error: Can't find EDAC structure\n");
return; return;
} }
/*
* We can do the locking below because GHES defers error processing
* from NMI to IRQ context. Whenever that changes, we'd at least
* know.
*/
if (WARN_ON_ONCE(in_nmi()))
return;
spin_lock_irqsave(&ghes_lock, flags);
mci = pvt->mci; mci = pvt->mci;
e = &mci->error_desc; e = &mci->error_desc;
@ -398,8 +411,8 @@ void ghes_edac_report_mem_error(struct ghes *ghes, int sev,
(e->page_frame_number << PAGE_SHIFT) | e->offset_in_page, (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
grain_bits, e->syndrome, pvt->detail_location); grain_bits, e->syndrome, pvt->detail_location);
/* Report the error via EDAC API */
edac_raw_mc_handle_error(type, mci, e); edac_raw_mc_handle_error(type, mci, e);
spin_unlock_irqrestore(&ghes_lock, flags);
} }
int ghes_edac_register(struct ghes *ghes, struct device *dev) int ghes_edac_register(struct ghes *ghes, struct device *dev)
@ -408,9 +421,14 @@ int ghes_edac_register(struct ghes *ghes, struct device *dev)
int rc, num_dimm = 0; int rc, num_dimm = 0;
struct mem_ctl_info *mci; struct mem_ctl_info *mci;
struct edac_mc_layer layers[1]; struct edac_mc_layer layers[1];
struct ghes_edac_pvt *pvt;
struct ghes_edac_dimm_fill dimm_fill; struct ghes_edac_dimm_fill dimm_fill;
/*
* We have only one logical memory controller to which all DIMMs belong.
*/
if (atomic_inc_return(&ghes_init) > 1)
return 0;
/* Get the number of DIMMs */ /* Get the number of DIMMs */
dmi_walk(ghes_edac_count_dimms, &num_dimm); dmi_walk(ghes_edac_count_dimms, &num_dimm);
@ -424,26 +442,17 @@ int ghes_edac_register(struct ghes *ghes, struct device *dev)
layers[0].size = num_dimm; layers[0].size = num_dimm;
layers[0].is_virt_csrow = true; layers[0].is_virt_csrow = true;
/* mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(struct ghes_edac_pvt));
* We need to serialize edac_mc_alloc() and edac_mc_add_mc(),
* to avoid duplicated memory controller numbers
*/
mutex_lock(&ghes_edac_lock);
mci = edac_mc_alloc(ghes_edac_mc_num, ARRAY_SIZE(layers), layers,
sizeof(*pvt));
if (!mci) { if (!mci) {
pr_info("Can't allocate memory for EDAC data\n"); pr_info("Can't allocate memory for EDAC data\n");
mutex_unlock(&ghes_edac_lock);
return -ENOMEM; return -ENOMEM;
} }
pvt = mci->pvt_info; ghes_pvt = mci->pvt_info;
memset(pvt, 0, sizeof(*pvt)); ghes_pvt->ghes = ghes;
list_add_tail(&pvt->list, &ghes_reglist); ghes_pvt->mci = mci;
pvt->ghes = ghes;
pvt->mci = mci;
mci->pdev = dev;
mci->pdev = dev;
mci->mtype_cap = MEM_FLAG_EMPTY; mci->mtype_cap = MEM_FLAG_EMPTY;
mci->edac_ctl_cap = EDAC_FLAG_NONE; mci->edac_ctl_cap = EDAC_FLAG_NONE;
mci->edac_cap = EDAC_FLAG_NONE; mci->edac_cap = EDAC_FLAG_NONE;
@ -451,36 +460,23 @@ int ghes_edac_register(struct ghes *ghes, struct device *dev)
mci->ctl_name = "ghes_edac"; mci->ctl_name = "ghes_edac";
mci->dev_name = "ghes"; mci->dev_name = "ghes";
if (!ghes_edac_mc_num) { if (!fake) {
if (!fake) { pr_info("This EDAC driver relies on BIOS to enumerate memory and get error reports.\n");
pr_info("This EDAC driver relies on BIOS to enumerate memory and get error reports.\n"); pr_info("Unfortunately, not all BIOSes reflect the memory layout correctly.\n");
pr_info("Unfortunately, not all BIOSes reflect the memory layout correctly.\n"); pr_info("So, the end result of using this driver varies from vendor to vendor.\n");
pr_info("So, the end result of using this driver varies from vendor to vendor.\n"); pr_info("If you find incorrect reports, please contact your hardware vendor\n");
pr_info("If you find incorrect reports, please contact your hardware vendor\n"); pr_info("to correct its BIOS.\n");
pr_info("to correct its BIOS.\n"); pr_info("This system has %d DIMM sockets.\n", num_dimm);
pr_info("This system has %d DIMM sockets.\n", } else {
num_dimm); pr_info("This system has a very crappy BIOS: It doesn't even list the DIMMS.\n");
} else { pr_info("Its SMBIOS info is wrong. It is doubtful that the error report would\n");
pr_info("This system has a very crappy BIOS: It doesn't even list the DIMMS.\n"); pr_info("work on such system. Use this driver with caution\n");
pr_info("Its SMBIOS info is wrong. It is doubtful that the error report would\n");
pr_info("work on such system. Use this driver with caution\n");
}
} }
if (!fake) { if (!fake) {
/* dimm_fill.count = 0;
* Fill DIMM info from DMI for the memory controller #0 dimm_fill.mci = mci;
* dmi_walk(ghes_edac_dmidecode, &dimm_fill);
* Keep it in blank for the other memory controllers, as
* there's no reliable way to properly credit each DIMM to
* the memory controller, as different BIOSes fill the
* DMI bank location fields on different ways
*/
if (!ghes_edac_mc_num) {
dimm_fill.count = 0;
dimm_fill.mci = mci;
dmi_walk(ghes_edac_dmidecode, &dimm_fill);
}
} else { } else {
struct dimm_info *dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, struct dimm_info *dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms,
mci->n_layers, 0, 0, 0); mci->n_layers, 0, 0, 0);
@ -496,26 +492,16 @@ int ghes_edac_register(struct ghes *ghes, struct device *dev)
if (rc < 0) { if (rc < 0) {
pr_info("Can't register at EDAC core\n"); pr_info("Can't register at EDAC core\n");
edac_mc_free(mci); edac_mc_free(mci);
mutex_unlock(&ghes_edac_lock);
return -ENODEV; return -ENODEV;
} }
ghes_edac_mc_num++;
mutex_unlock(&ghes_edac_lock);
return 0; return 0;
} }
void ghes_edac_unregister(struct ghes *ghes) void ghes_edac_unregister(struct ghes *ghes)
{ {
struct mem_ctl_info *mci; struct mem_ctl_info *mci;
struct ghes_edac_pvt *pvt, *tmp;
list_for_each_entry_safe(pvt, tmp, &ghes_reglist, list) { mci = ghes_pvt->mci;
if (ghes == pvt->ghes) { edac_mc_del_mc(mci->pdev);
mci = pvt->mci; edac_mc_free(mci);
edac_mc_del_mc(mci->pdev);
edac_mc_free(mci);
list_del(&pvt->list);
}
}
} }