x86: move get_segment_eip() to step.c
get_segment_eip has similarities to convert_rip_to_linear(), and is used in a similar context. Move get_segment_eip to step.c to allow easier consolidation. Signed-off-by: Harvey Harrison <harvey.harrison@gmail.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
parent
3d97775a80
commit
1379a5ce3f
@ -5,6 +5,87 @@
|
||||
#include <linux/mm.h>
|
||||
#include <linux/ptrace.h>
|
||||
|
||||
#ifdef CONFIG_X86_32
|
||||
#include <linux/uaccess.h>
|
||||
|
||||
#include <asm/desc.h>
|
||||
|
||||
/*
|
||||
* Return EIP plus the CS segment base. The segment limit is also
|
||||
* adjusted, clamped to the kernel/user address space (whichever is
|
||||
* appropriate), and returned in *eip_limit.
|
||||
*
|
||||
* The segment is checked, because it might have been changed by another
|
||||
* task between the original faulting instruction and here.
|
||||
*
|
||||
* If CS is no longer a valid code segment, or if EIP is beyond the
|
||||
* limit, or if it is a kernel address when CS is not a kernel segment,
|
||||
* then the returned value will be greater than *eip_limit.
|
||||
*
|
||||
* This is slow, but is very rarely executed.
|
||||
*/
|
||||
unsigned long get_segment_eip(struct pt_regs *regs,
|
||||
unsigned long *eip_limit)
|
||||
{
|
||||
unsigned long ip = regs->ip;
|
||||
unsigned seg = regs->cs & 0xffff;
|
||||
u32 seg_ar, seg_limit, base, *desc;
|
||||
|
||||
/* Unlikely, but must come before segment checks. */
|
||||
if (unlikely(regs->flags & VM_MASK)) {
|
||||
base = seg << 4;
|
||||
*eip_limit = base + 0xffff;
|
||||
return base + (ip & 0xffff);
|
||||
}
|
||||
|
||||
/* The standard kernel/user address space limit. */
|
||||
*eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg;
|
||||
|
||||
/* By far the most common cases. */
|
||||
if (likely(SEGMENT_IS_FLAT_CODE(seg)))
|
||||
return ip;
|
||||
|
||||
/* Check the segment exists, is within the current LDT/GDT size,
|
||||
that kernel/user (ring 0..3) has the appropriate privilege,
|
||||
that it's a code segment, and get the limit. */
|
||||
__asm__("larl %3,%0; lsll %3,%1"
|
||||
: "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
|
||||
if ((~seg_ar & 0x9800) || ip > seg_limit) {
|
||||
*eip_limit = 0;
|
||||
return 1; /* So that returned ip > *eip_limit. */
|
||||
}
|
||||
|
||||
/* Get the GDT/LDT descriptor base.
|
||||
When you look for races in this code remember that
|
||||
LDT and other horrors are only used in user space. */
|
||||
if (seg & (1<<2)) {
|
||||
/* Must lock the LDT while reading it. */
|
||||
mutex_lock(¤t->mm->context.lock);
|
||||
desc = current->mm->context.ldt;
|
||||
desc = (void *)desc + (seg & ~7);
|
||||
} else {
|
||||
/* Must disable preemption while reading the GDT. */
|
||||
desc = (u32 *)get_cpu_gdt_table(get_cpu());
|
||||
desc = (void *)desc + (seg & ~7);
|
||||
}
|
||||
|
||||
/* Decode the code segment base from the descriptor */
|
||||
base = get_desc_base((struct desc_struct *)desc);
|
||||
|
||||
if (seg & (1<<2))
|
||||
mutex_unlock(¤t->mm->context.lock);
|
||||
else
|
||||
put_cpu();
|
||||
|
||||
/* Adjust EIP and segment limit, and clamp at the kernel limit.
|
||||
It's legitimate for segments to wrap at 0xffffffff. */
|
||||
seg_limit += base;
|
||||
if (seg_limit < *eip_limit && seg_limit >= base)
|
||||
*eip_limit = seg_limit;
|
||||
return ip + base;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_X86_32
|
||||
static
|
||||
#endif
|
||||
|
@ -61,83 +61,6 @@ static inline int notify_page_fault(struct pt_regs *regs)
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef CONFIG_X86_32
|
||||
/*
|
||||
* Return EIP plus the CS segment base. The segment limit is also
|
||||
* adjusted, clamped to the kernel/user address space (whichever is
|
||||
* appropriate), and returned in *eip_limit.
|
||||
*
|
||||
* The segment is checked, because it might have been changed by another
|
||||
* task between the original faulting instruction and here.
|
||||
*
|
||||
* If CS is no longer a valid code segment, or if EIP is beyond the
|
||||
* limit, or if it is a kernel address when CS is not a kernel segment,
|
||||
* then the returned value will be greater than *eip_limit.
|
||||
*
|
||||
* This is slow, but is very rarely executed.
|
||||
*/
|
||||
static inline unsigned long get_segment_eip(struct pt_regs *regs,
|
||||
unsigned long *eip_limit)
|
||||
{
|
||||
unsigned long ip = regs->ip;
|
||||
unsigned seg = regs->cs & 0xffff;
|
||||
u32 seg_ar, seg_limit, base, *desc;
|
||||
|
||||
/* Unlikely, but must come before segment checks. */
|
||||
if (unlikely(regs->flags & VM_MASK)) {
|
||||
base = seg << 4;
|
||||
*eip_limit = base + 0xffff;
|
||||
return base + (ip & 0xffff);
|
||||
}
|
||||
|
||||
/* The standard kernel/user address space limit. */
|
||||
*eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg;
|
||||
|
||||
/* By far the most common cases. */
|
||||
if (likely(SEGMENT_IS_FLAT_CODE(seg)))
|
||||
return ip;
|
||||
|
||||
/* Check the segment exists, is within the current LDT/GDT size,
|
||||
that kernel/user (ring 0..3) has the appropriate privilege,
|
||||
that it's a code segment, and get the limit. */
|
||||
__asm__ ("larl %3,%0; lsll %3,%1"
|
||||
: "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
|
||||
if ((~seg_ar & 0x9800) || ip > seg_limit) {
|
||||
*eip_limit = 0;
|
||||
return 1; /* So that returned ip > *eip_limit. */
|
||||
}
|
||||
|
||||
/* Get the GDT/LDT descriptor base.
|
||||
When you look for races in this code remember that
|
||||
LDT and other horrors are only used in user space. */
|
||||
if (seg & (1<<2)) {
|
||||
/* Must lock the LDT while reading it. */
|
||||
mutex_lock(¤t->mm->context.lock);
|
||||
desc = current->mm->context.ldt;
|
||||
desc = (void *)desc + (seg & ~7);
|
||||
} else {
|
||||
/* Must disable preemption while reading the GDT. */
|
||||
desc = (u32 *)get_cpu_gdt_table(get_cpu());
|
||||
desc = (void *)desc + (seg & ~7);
|
||||
}
|
||||
|
||||
/* Decode the code segment base from the descriptor */
|
||||
base = get_desc_base((struct desc_struct *)desc);
|
||||
|
||||
if (seg & (1<<2))
|
||||
mutex_unlock(¤t->mm->context.lock);
|
||||
else
|
||||
put_cpu();
|
||||
|
||||
/* Adjust EIP and segment limit, and clamp at the kernel limit.
|
||||
It's legitimate for segments to wrap at 0xffffffff. */
|
||||
seg_limit += base;
|
||||
if (seg_limit < *eip_limit && seg_limit >= base)
|
||||
*eip_limit = seg_limit;
|
||||
return ip + base;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* X86_32
|
||||
* Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
|
||||
|
@ -64,83 +64,6 @@ static inline int notify_page_fault(struct pt_regs *regs)
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef CONFIG_X86_32
|
||||
/*
|
||||
* Return EIP plus the CS segment base. The segment limit is also
|
||||
* adjusted, clamped to the kernel/user address space (whichever is
|
||||
* appropriate), and returned in *eip_limit.
|
||||
*
|
||||
* The segment is checked, because it might have been changed by another
|
||||
* task between the original faulting instruction and here.
|
||||
*
|
||||
* If CS is no longer a valid code segment, or if EIP is beyond the
|
||||
* limit, or if it is a kernel address when CS is not a kernel segment,
|
||||
* then the returned value will be greater than *eip_limit.
|
||||
*
|
||||
* This is slow, but is very rarely executed.
|
||||
*/
|
||||
static inline unsigned long get_segment_eip(struct pt_regs *regs,
|
||||
unsigned long *eip_limit)
|
||||
{
|
||||
unsigned long ip = regs->ip;
|
||||
unsigned seg = regs->cs & 0xffff;
|
||||
u32 seg_ar, seg_limit, base, *desc;
|
||||
|
||||
/* Unlikely, but must come before segment checks. */
|
||||
if (unlikely(regs->flags & VM_MASK)) {
|
||||
base = seg << 4;
|
||||
*eip_limit = base + 0xffff;
|
||||
return base + (ip & 0xffff);
|
||||
}
|
||||
|
||||
/* The standard kernel/user address space limit. */
|
||||
*eip_limit = user_mode(regs) ? USER_DS.seg : KERNEL_DS.seg;
|
||||
|
||||
/* By far the most common cases. */
|
||||
if (likely(SEGMENT_IS_FLAT_CODE(seg)))
|
||||
return ip;
|
||||
|
||||
/* Check the segment exists, is within the current LDT/GDT size,
|
||||
that kernel/user (ring 0..3) has the appropriate privilege,
|
||||
that it's a code segment, and get the limit. */
|
||||
__asm__("larl %3,%0; lsll %3,%1"
|
||||
: "=&r" (seg_ar), "=r" (seg_limit) : "0" (0), "rm" (seg));
|
||||
if ((~seg_ar & 0x9800) || ip > seg_limit) {
|
||||
*eip_limit = 0;
|
||||
return 1; /* So that returned ip > *eip_limit. */
|
||||
}
|
||||
|
||||
/* Get the GDT/LDT descriptor base.
|
||||
When you look for races in this code remember that
|
||||
LDT and other horrors are only used in user space. */
|
||||
if (seg & (1<<2)) {
|
||||
/* Must lock the LDT while reading it. */
|
||||
mutex_lock(¤t->mm->context.lock);
|
||||
desc = current->mm->context.ldt;
|
||||
desc = (void *)desc + (seg & ~7);
|
||||
} else {
|
||||
/* Must disable preemption while reading the GDT. */
|
||||
desc = (u32 *)get_cpu_gdt_table(get_cpu());
|
||||
desc = (void *)desc + (seg & ~7);
|
||||
}
|
||||
|
||||
/* Decode the code segment base from the descriptor */
|
||||
base = get_desc_base((struct desc_struct *)desc);
|
||||
|
||||
if (seg & (1<<2))
|
||||
mutex_unlock(¤t->mm->context.lock);
|
||||
else
|
||||
put_cpu();
|
||||
|
||||
/* Adjust EIP and segment limit, and clamp at the kernel limit.
|
||||
It's legitimate for segments to wrap at 0xffffffff. */
|
||||
seg_limit += base;
|
||||
if (seg_limit < *eip_limit && seg_limit >= base)
|
||||
*eip_limit = seg_limit;
|
||||
return ip + base;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* X86_32
|
||||
* Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
|
||||
|
@ -184,6 +184,8 @@ convert_rip_to_linear(struct task_struct *child, struct pt_regs *regs);
|
||||
|
||||
#ifdef __KERNEL__
|
||||
|
||||
unsigned long get_segment_eip(struct pt_regs *regs, unsigned long *eip_limit);
|
||||
|
||||
/*
|
||||
* These are defined as per linux/ptrace.h, which see.
|
||||
*/
|
||||
|
Loading…
x
Reference in New Issue
Block a user