Add TI CDCE925 I2C controlled clock synthesizer driver
This driver supports the TI CDCE925 programmable clock synthesizer. The chip contains two PLLs with spread-spectrum clocking support and five output dividers. The driver only supports the following setup, and uses a fixed setting for the output muxes: Y1 is derived from the input clock Y2 and Y3 derive from PLL1 Y4 and Y5 derive from PLL2 Given a target output frequency, the driver will set the PLL and divider to best approximate the desired output. Signed-off-by: Mike Looijmans <mike.looijmans@topic.nl> Signed-off-by: Michael Turquette <mturquette@linaro.org>
This commit is contained in:
parent
4d52b2acef
commit
19fbbbbcd3
42
Documentation/devicetree/bindings/clock/ti,cdce925.txt
Normal file
42
Documentation/devicetree/bindings/clock/ti,cdce925.txt
Normal file
@ -0,0 +1,42 @@
|
||||
Binding for TO CDCE925 programmable I2C clock synthesizers.
|
||||
|
||||
Reference
|
||||
This binding uses the common clock binding[1].
|
||||
|
||||
[1] Documentation/devicetree/bindings/clock/clock-bindings.txt
|
||||
[2] http://www.ti.com/product/cdce925
|
||||
|
||||
The driver provides clock sources for each output Y1 through Y5.
|
||||
|
||||
Required properties:
|
||||
- compatible: Shall be "ti,cdce925"
|
||||
- reg: I2C device address.
|
||||
- clocks: Points to a fixed parent clock that provides the input frequency.
|
||||
- #clock-cells: From common clock bindings: Shall be 1.
|
||||
|
||||
Optional properties:
|
||||
- xtal-load-pf: Crystal load-capacitor value to fine-tune performance on a
|
||||
board, or to compensate for external influences.
|
||||
|
||||
For both PLL1 and PLL2 an optional child node can be used to specify spread
|
||||
spectrum clocking parameters for a board.
|
||||
- spread-spectrum: SSC mode as defined in the data sheet.
|
||||
- spread-spectrum-center: Use "centered" mode instead of "max" mode. When
|
||||
present, the clock runs at the requested frequency on average. Otherwise
|
||||
the requested frequency is the maximum value of the SCC range.
|
||||
|
||||
|
||||
Example:
|
||||
|
||||
clockgen: cdce925pw@64 {
|
||||
compatible = "cdce925";
|
||||
reg = <0x64>;
|
||||
clocks = <&xtal_27Mhz>;
|
||||
#clock-cells = <1>;
|
||||
xtal-load-pf = <5>;
|
||||
/* PLL options to get SSC 1% centered */
|
||||
PLL2 {
|
||||
spread-spectrum = <4>;
|
||||
spread-spectrum-center;
|
||||
};
|
||||
};
|
@ -78,6 +78,23 @@ config COMMON_CLK_SI570
|
||||
This driver supports Silicon Labs 570/571/598/599 programmable
|
||||
clock generators.
|
||||
|
||||
config COMMON_CLK_CDCE925
|
||||
tristate "Clock driver for TI CDCE925 devices"
|
||||
depends on I2C
|
||||
depends on OF
|
||||
select REGMAP_I2C
|
||||
help
|
||||
---help---
|
||||
This driver supports the TI CDCE925 programmable clock synthesizer.
|
||||
The chip contains two PLLs with spread-spectrum clocking support and
|
||||
five output dividers. The driver only supports the following setup,
|
||||
and uses a fixed setting for the output muxes.
|
||||
Y1 is derived from the input clock
|
||||
Y2 and Y3 derive from PLL1
|
||||
Y4 and Y5 derive from PLL2
|
||||
Given a target output frequency, the driver will set the PLL and
|
||||
divider to best approximate the desired output.
|
||||
|
||||
config COMMON_CLK_S2MPS11
|
||||
tristate "Clock driver for S2MPS1X/S5M8767 MFD"
|
||||
depends on MFD_SEC_CORE
|
||||
|
@ -38,6 +38,7 @@ obj-$(CONFIG_COMMON_CLK_RK808) += clk-rk808.o
|
||||
obj-$(CONFIG_COMMON_CLK_S2MPS11) += clk-s2mps11.o
|
||||
obj-$(CONFIG_COMMON_CLK_SI5351) += clk-si5351.o
|
||||
obj-$(CONFIG_COMMON_CLK_SI570) += clk-si570.o
|
||||
obj-$(CONFIG_COMMON_CLK_CDCE925) += clk-cdce925.o
|
||||
obj-$(CONFIG_CLK_TWL6040) += clk-twl6040.o
|
||||
obj-$(CONFIG_ARCH_U300) += clk-u300.o
|
||||
obj-$(CONFIG_ARCH_VT8500) += clk-vt8500.o
|
||||
|
749
drivers/clk/clk-cdce925.c
Normal file
749
drivers/clk/clk-cdce925.c
Normal file
@ -0,0 +1,749 @@
|
||||
/*
|
||||
* Driver for TI Dual PLL CDCE925 clock synthesizer
|
||||
*
|
||||
* This driver always connects the Y1 to the input clock, Y2/Y3 to PLL1
|
||||
* and Y4/Y5 to PLL2. PLL frequency is set on a first-come-first-serve
|
||||
* basis. Clients can directly request any frequency that the chip can
|
||||
* deliver using the standard clk framework. In addition, the device can
|
||||
* be configured and activated via the devicetree.
|
||||
*
|
||||
* Copyright (C) 2014, Topic Embedded Products
|
||||
* Licenced under GPL
|
||||
*/
|
||||
#include <linux/clk-provider.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/i2c.h>
|
||||
#include <linux/regmap.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/gcd.h>
|
||||
|
||||
/* The chip has 2 PLLs which can be routed through dividers to 5 outputs.
|
||||
* Model this as 2 PLL clocks which are parents to the outputs.
|
||||
*/
|
||||
#define NUMBER_OF_PLLS 2
|
||||
#define NUMBER_OF_OUTPUTS 5
|
||||
|
||||
#define CDCE925_REG_GLOBAL1 0x01
|
||||
#define CDCE925_REG_Y1SPIPDIVH 0x02
|
||||
#define CDCE925_REG_PDIVL 0x03
|
||||
#define CDCE925_REG_XCSEL 0x05
|
||||
/* PLL parameters start at 0x10, steps of 0x10 */
|
||||
#define CDCE925_OFFSET_PLL 0x10
|
||||
/* Add CDCE925_OFFSET_PLL * (pll) to these registers before sending */
|
||||
#define CDCE925_PLL_MUX_OUTPUTS 0x14
|
||||
#define CDCE925_PLL_MULDIV 0x18
|
||||
|
||||
#define CDCE925_PLL_FREQUENCY_MIN 80000000ul
|
||||
#define CDCE925_PLL_FREQUENCY_MAX 230000000ul
|
||||
struct clk_cdce925_chip;
|
||||
|
||||
struct clk_cdce925_output {
|
||||
struct clk_hw hw;
|
||||
struct clk_cdce925_chip *chip;
|
||||
u8 index;
|
||||
u16 pdiv; /* 1..127 for Y2-Y5; 1..1023 for Y1 */
|
||||
};
|
||||
#define to_clk_cdce925_output(_hw) \
|
||||
container_of(_hw, struct clk_cdce925_output, hw)
|
||||
|
||||
struct clk_cdce925_pll {
|
||||
struct clk_hw hw;
|
||||
struct clk_cdce925_chip *chip;
|
||||
u8 index;
|
||||
u16 m; /* 1..511 */
|
||||
u16 n; /* 1..4095 */
|
||||
};
|
||||
#define to_clk_cdce925_pll(_hw) container_of(_hw, struct clk_cdce925_pll, hw)
|
||||
|
||||
struct clk_cdce925_chip {
|
||||
struct regmap *regmap;
|
||||
struct i2c_client *i2c_client;
|
||||
struct clk_cdce925_pll pll[NUMBER_OF_PLLS];
|
||||
struct clk_cdce925_output clk[NUMBER_OF_OUTPUTS];
|
||||
struct clk *dt_clk[NUMBER_OF_OUTPUTS];
|
||||
struct clk_onecell_data onecell;
|
||||
};
|
||||
|
||||
/* ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** */
|
||||
|
||||
static unsigned long cdce925_pll_calculate_rate(unsigned long parent_rate,
|
||||
u16 n, u16 m)
|
||||
{
|
||||
if ((!m || !n) || (m == n))
|
||||
return parent_rate; /* In bypass mode runs at same frequency */
|
||||
return mult_frac(parent_rate, (unsigned long)n, (unsigned long)m);
|
||||
}
|
||||
|
||||
static unsigned long cdce925_pll_recalc_rate(struct clk_hw *hw,
|
||||
unsigned long parent_rate)
|
||||
{
|
||||
/* Output frequency of PLL is Fout = (Fin/Pdiv)*(N/M) */
|
||||
struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
|
||||
|
||||
return cdce925_pll_calculate_rate(parent_rate, data->n, data->m);
|
||||
}
|
||||
|
||||
static void cdce925_pll_find_rate(unsigned long rate,
|
||||
unsigned long parent_rate, u16 *n, u16 *m)
|
||||
{
|
||||
unsigned long un;
|
||||
unsigned long um;
|
||||
unsigned long g;
|
||||
|
||||
if (rate <= parent_rate) {
|
||||
/* Can always deliver parent_rate in bypass mode */
|
||||
rate = parent_rate;
|
||||
*n = 0;
|
||||
*m = 0;
|
||||
} else {
|
||||
/* In PLL mode, need to apply min/max range */
|
||||
if (rate < CDCE925_PLL_FREQUENCY_MIN)
|
||||
rate = CDCE925_PLL_FREQUENCY_MIN;
|
||||
else if (rate > CDCE925_PLL_FREQUENCY_MAX)
|
||||
rate = CDCE925_PLL_FREQUENCY_MAX;
|
||||
|
||||
g = gcd(rate, parent_rate);
|
||||
um = parent_rate / g;
|
||||
un = rate / g;
|
||||
/* When outside hw range, reduce to fit (rounding errors) */
|
||||
while ((un > 4095) || (um > 511)) {
|
||||
un >>= 1;
|
||||
um >>= 1;
|
||||
}
|
||||
if (un == 0)
|
||||
un = 1;
|
||||
if (um == 0)
|
||||
um = 1;
|
||||
|
||||
*n = un;
|
||||
*m = um;
|
||||
}
|
||||
}
|
||||
|
||||
static long cdce925_pll_round_rate(struct clk_hw *hw, unsigned long rate,
|
||||
unsigned long *parent_rate)
|
||||
{
|
||||
u16 n, m;
|
||||
|
||||
cdce925_pll_find_rate(rate, *parent_rate, &n, &m);
|
||||
return (long)cdce925_pll_calculate_rate(*parent_rate, n, m);
|
||||
}
|
||||
|
||||
static int cdce925_pll_set_rate(struct clk_hw *hw, unsigned long rate,
|
||||
unsigned long parent_rate)
|
||||
{
|
||||
struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
|
||||
|
||||
if (!rate || (rate == parent_rate)) {
|
||||
data->m = 0; /* Bypass mode */
|
||||
data->n = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if ((rate < CDCE925_PLL_FREQUENCY_MIN) ||
|
||||
(rate > CDCE925_PLL_FREQUENCY_MAX)) {
|
||||
pr_debug("%s: rate %lu outside PLL range.\n", __func__, rate);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (rate < parent_rate) {
|
||||
pr_debug("%s: rate %lu less than parent rate %lu.\n", __func__,
|
||||
rate, parent_rate);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
cdce925_pll_find_rate(rate, parent_rate, &data->n, &data->m);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/* calculate p = max(0, 4 - int(log2 (n/m))) */
|
||||
static u8 cdce925_pll_calc_p(u16 n, u16 m)
|
||||
{
|
||||
u8 p;
|
||||
u16 r = n / m;
|
||||
|
||||
if (r >= 16)
|
||||
return 0;
|
||||
p = 4;
|
||||
while (r > 1) {
|
||||
r >>= 1;
|
||||
--p;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
/* Returns VCO range bits for VCO1_0_RANGE */
|
||||
static u8 cdce925_pll_calc_range_bits(struct clk_hw *hw, u16 n, u16 m)
|
||||
{
|
||||
struct clk *parent = clk_get_parent(hw->clk);
|
||||
unsigned long rate = clk_get_rate(parent);
|
||||
|
||||
rate = mult_frac(rate, (unsigned long)n, (unsigned long)m);
|
||||
if (rate >= 175000000)
|
||||
return 0x3;
|
||||
if (rate >= 150000000)
|
||||
return 0x02;
|
||||
if (rate >= 125000000)
|
||||
return 0x01;
|
||||
return 0x00;
|
||||
}
|
||||
|
||||
/* I2C clock, hence everything must happen in (un)prepare because this
|
||||
* may sleep */
|
||||
static int cdce925_pll_prepare(struct clk_hw *hw)
|
||||
{
|
||||
struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
|
||||
u16 n = data->n;
|
||||
u16 m = data->m;
|
||||
u16 r;
|
||||
u8 q;
|
||||
u8 p;
|
||||
u16 nn;
|
||||
u8 pll[4]; /* Bits are spread out over 4 byte registers */
|
||||
u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
|
||||
unsigned i;
|
||||
|
||||
if ((!m || !n) || (m == n)) {
|
||||
/* Set PLL mux to bypass mode, leave the rest as is */
|
||||
regmap_update_bits(data->chip->regmap,
|
||||
reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
|
||||
} else {
|
||||
/* According to data sheet: */
|
||||
/* p = max(0, 4 - int(log2 (n/m))) */
|
||||
p = cdce925_pll_calc_p(n, m);
|
||||
/* nn = n * 2^p */
|
||||
nn = n * BIT(p);
|
||||
/* q = int(nn/m) */
|
||||
q = nn / m;
|
||||
if ((q < 16) || (1 > 64)) {
|
||||
pr_debug("%s invalid q=%d\n", __func__, q);
|
||||
return -EINVAL;
|
||||
}
|
||||
r = nn - (m*q);
|
||||
if (r > 511) {
|
||||
pr_debug("%s invalid r=%d\n", __func__, r);
|
||||
return -EINVAL;
|
||||
}
|
||||
pr_debug("%s n=%d m=%d p=%d q=%d r=%d\n", __func__,
|
||||
n, m, p, q, r);
|
||||
/* encode into register bits */
|
||||
pll[0] = n >> 4;
|
||||
pll[1] = ((n & 0x0F) << 4) | ((r >> 5) & 0x0F);
|
||||
pll[2] = ((r & 0x1F) << 3) | ((q >> 3) & 0x07);
|
||||
pll[3] = ((q & 0x07) << 5) | (p << 2) |
|
||||
cdce925_pll_calc_range_bits(hw, n, m);
|
||||
/* Write to registers */
|
||||
for (i = 0; i < ARRAY_SIZE(pll); ++i)
|
||||
regmap_write(data->chip->regmap,
|
||||
reg_ofs + CDCE925_PLL_MULDIV + i, pll[i]);
|
||||
/* Enable PLL */
|
||||
regmap_update_bits(data->chip->regmap,
|
||||
reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x00);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void cdce925_pll_unprepare(struct clk_hw *hw)
|
||||
{
|
||||
struct clk_cdce925_pll *data = to_clk_cdce925_pll(hw);
|
||||
u8 reg_ofs = data->index * CDCE925_OFFSET_PLL;
|
||||
|
||||
regmap_update_bits(data->chip->regmap,
|
||||
reg_ofs + CDCE925_PLL_MUX_OUTPUTS, 0x80, 0x80);
|
||||
}
|
||||
|
||||
static const struct clk_ops cdce925_pll_ops = {
|
||||
.prepare = cdce925_pll_prepare,
|
||||
.unprepare = cdce925_pll_unprepare,
|
||||
.recalc_rate = cdce925_pll_recalc_rate,
|
||||
.round_rate = cdce925_pll_round_rate,
|
||||
.set_rate = cdce925_pll_set_rate,
|
||||
};
|
||||
|
||||
|
||||
static void cdce925_clk_set_pdiv(struct clk_cdce925_output *data, u16 pdiv)
|
||||
{
|
||||
switch (data->index) {
|
||||
case 0:
|
||||
regmap_update_bits(data->chip->regmap,
|
||||
CDCE925_REG_Y1SPIPDIVH,
|
||||
0x03, (pdiv >> 8) & 0x03);
|
||||
regmap_write(data->chip->regmap, 0x03, pdiv & 0xFF);
|
||||
break;
|
||||
case 1:
|
||||
regmap_update_bits(data->chip->regmap, 0x16, 0x7F, pdiv);
|
||||
break;
|
||||
case 2:
|
||||
regmap_update_bits(data->chip->regmap, 0x17, 0x7F, pdiv);
|
||||
break;
|
||||
case 3:
|
||||
regmap_update_bits(data->chip->regmap, 0x26, 0x7F, pdiv);
|
||||
break;
|
||||
case 4:
|
||||
regmap_update_bits(data->chip->regmap, 0x27, 0x7F, pdiv);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static void cdce925_clk_activate(struct clk_cdce925_output *data)
|
||||
{
|
||||
switch (data->index) {
|
||||
case 0:
|
||||
regmap_update_bits(data->chip->regmap,
|
||||
CDCE925_REG_Y1SPIPDIVH, 0x0c, 0x0c);
|
||||
break;
|
||||
case 1:
|
||||
case 2:
|
||||
regmap_update_bits(data->chip->regmap, 0x14, 0x03, 0x03);
|
||||
break;
|
||||
case 3:
|
||||
case 4:
|
||||
regmap_update_bits(data->chip->regmap, 0x24, 0x03, 0x03);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static int cdce925_clk_prepare(struct clk_hw *hw)
|
||||
{
|
||||
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
|
||||
|
||||
cdce925_clk_set_pdiv(data, data->pdiv);
|
||||
cdce925_clk_activate(data);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void cdce925_clk_unprepare(struct clk_hw *hw)
|
||||
{
|
||||
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
|
||||
|
||||
/* Disable clock by setting divider to "0" */
|
||||
cdce925_clk_set_pdiv(data, 0);
|
||||
}
|
||||
|
||||
static unsigned long cdce925_clk_recalc_rate(struct clk_hw *hw,
|
||||
unsigned long parent_rate)
|
||||
{
|
||||
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
|
||||
|
||||
if (data->pdiv)
|
||||
return parent_rate / data->pdiv;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static u16 cdce925_calc_divider(unsigned long rate,
|
||||
unsigned long parent_rate)
|
||||
{
|
||||
unsigned long divider;
|
||||
|
||||
if (!rate)
|
||||
return 0;
|
||||
if (rate >= parent_rate)
|
||||
return 1;
|
||||
|
||||
divider = DIV_ROUND_CLOSEST(parent_rate, rate);
|
||||
if (divider > 0x7F)
|
||||
divider = 0x7F;
|
||||
|
||||
return (u16)divider;
|
||||
}
|
||||
|
||||
static unsigned long cdce925_clk_best_parent_rate(
|
||||
struct clk_hw *hw, unsigned long rate)
|
||||
{
|
||||
struct clk *pll = clk_get_parent(hw->clk);
|
||||
struct clk *root = clk_get_parent(pll);
|
||||
unsigned long root_rate = clk_get_rate(root);
|
||||
unsigned long best_rate_error = rate;
|
||||
u16 pdiv_min;
|
||||
u16 pdiv_max;
|
||||
u16 pdiv_best;
|
||||
u16 pdiv_now;
|
||||
|
||||
if (root_rate % rate == 0)
|
||||
return root_rate; /* Don't need the PLL, use bypass */
|
||||
|
||||
pdiv_min = (u16)max(1ul, DIV_ROUND_UP(CDCE925_PLL_FREQUENCY_MIN, rate));
|
||||
pdiv_max = (u16)min(127ul, CDCE925_PLL_FREQUENCY_MAX / rate);
|
||||
|
||||
if (pdiv_min > pdiv_max)
|
||||
return 0; /* No can do? */
|
||||
|
||||
pdiv_best = pdiv_min;
|
||||
for (pdiv_now = pdiv_min; pdiv_now < pdiv_max; ++pdiv_now) {
|
||||
unsigned long target_rate = rate * pdiv_now;
|
||||
long pll_rate = clk_round_rate(pll, target_rate);
|
||||
unsigned long actual_rate;
|
||||
unsigned long rate_error;
|
||||
|
||||
if (pll_rate <= 0)
|
||||
continue;
|
||||
actual_rate = pll_rate / pdiv_now;
|
||||
rate_error = abs((long)actual_rate - (long)rate);
|
||||
if (rate_error < best_rate_error) {
|
||||
pdiv_best = pdiv_now;
|
||||
best_rate_error = rate_error;
|
||||
}
|
||||
/* TODO: Consider PLL frequency based on smaller n/m values
|
||||
* and pick the better one if the error is equal */
|
||||
}
|
||||
|
||||
return rate * pdiv_best;
|
||||
}
|
||||
|
||||
static long cdce925_clk_round_rate(struct clk_hw *hw, unsigned long rate,
|
||||
unsigned long *parent_rate)
|
||||
{
|
||||
unsigned long l_parent_rate = *parent_rate;
|
||||
u16 divider = cdce925_calc_divider(rate, l_parent_rate);
|
||||
|
||||
if (l_parent_rate / divider != rate) {
|
||||
l_parent_rate = cdce925_clk_best_parent_rate(hw, rate);
|
||||
divider = cdce925_calc_divider(rate, l_parent_rate);
|
||||
*parent_rate = l_parent_rate;
|
||||
}
|
||||
|
||||
if (divider)
|
||||
return (long)(l_parent_rate / divider);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int cdce925_clk_set_rate(struct clk_hw *hw, unsigned long rate,
|
||||
unsigned long parent_rate)
|
||||
{
|
||||
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
|
||||
|
||||
data->pdiv = cdce925_calc_divider(rate, parent_rate);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct clk_ops cdce925_clk_ops = {
|
||||
.prepare = cdce925_clk_prepare,
|
||||
.unprepare = cdce925_clk_unprepare,
|
||||
.recalc_rate = cdce925_clk_recalc_rate,
|
||||
.round_rate = cdce925_clk_round_rate,
|
||||
.set_rate = cdce925_clk_set_rate,
|
||||
};
|
||||
|
||||
|
||||
static u16 cdce925_y1_calc_divider(unsigned long rate,
|
||||
unsigned long parent_rate)
|
||||
{
|
||||
unsigned long divider;
|
||||
|
||||
if (!rate)
|
||||
return 0;
|
||||
if (rate >= parent_rate)
|
||||
return 1;
|
||||
|
||||
divider = DIV_ROUND_CLOSEST(parent_rate, rate);
|
||||
if (divider > 0x3FF) /* Y1 has 10-bit divider */
|
||||
divider = 0x3FF;
|
||||
|
||||
return (u16)divider;
|
||||
}
|
||||
|
||||
static long cdce925_clk_y1_round_rate(struct clk_hw *hw, unsigned long rate,
|
||||
unsigned long *parent_rate)
|
||||
{
|
||||
unsigned long l_parent_rate = *parent_rate;
|
||||
u16 divider = cdce925_y1_calc_divider(rate, l_parent_rate);
|
||||
|
||||
if (divider)
|
||||
return (long)(l_parent_rate / divider);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int cdce925_clk_y1_set_rate(struct clk_hw *hw, unsigned long rate,
|
||||
unsigned long parent_rate)
|
||||
{
|
||||
struct clk_cdce925_output *data = to_clk_cdce925_output(hw);
|
||||
|
||||
data->pdiv = cdce925_y1_calc_divider(rate, parent_rate);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct clk_ops cdce925_clk_y1_ops = {
|
||||
.prepare = cdce925_clk_prepare,
|
||||
.unprepare = cdce925_clk_unprepare,
|
||||
.recalc_rate = cdce925_clk_recalc_rate,
|
||||
.round_rate = cdce925_clk_y1_round_rate,
|
||||
.set_rate = cdce925_clk_y1_set_rate,
|
||||
};
|
||||
|
||||
|
||||
static struct regmap_config cdce925_regmap_config = {
|
||||
.name = "configuration0",
|
||||
.reg_bits = 8,
|
||||
.val_bits = 8,
|
||||
.cache_type = REGCACHE_RBTREE,
|
||||
.max_register = 0x2F,
|
||||
};
|
||||
|
||||
#define CDCE925_I2C_COMMAND_BLOCK_TRANSFER 0x00
|
||||
#define CDCE925_I2C_COMMAND_BYTE_TRANSFER 0x80
|
||||
|
||||
static int cdce925_regmap_i2c_write(
|
||||
void *context, const void *data, size_t count)
|
||||
{
|
||||
struct device *dev = context;
|
||||
struct i2c_client *i2c = to_i2c_client(dev);
|
||||
int ret;
|
||||
u8 reg_data[2];
|
||||
|
||||
if (count != 2)
|
||||
return -ENOTSUPP;
|
||||
|
||||
/* First byte is command code */
|
||||
reg_data[0] = CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)data)[0];
|
||||
reg_data[1] = ((u8 *)data)[1];
|
||||
|
||||
dev_dbg(&i2c->dev, "%s(%zu) %#x %#x\n", __func__, count,
|
||||
reg_data[0], reg_data[1]);
|
||||
|
||||
ret = i2c_master_send(i2c, reg_data, count);
|
||||
if (likely(ret == count))
|
||||
return 0;
|
||||
else if (ret < 0)
|
||||
return ret;
|
||||
else
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
static int cdce925_regmap_i2c_read(void *context,
|
||||
const void *reg, size_t reg_size, void *val, size_t val_size)
|
||||
{
|
||||
struct device *dev = context;
|
||||
struct i2c_client *i2c = to_i2c_client(dev);
|
||||
struct i2c_msg xfer[2];
|
||||
int ret;
|
||||
u8 reg_data[2];
|
||||
|
||||
if (reg_size != 1)
|
||||
return -ENOTSUPP;
|
||||
|
||||
xfer[0].addr = i2c->addr;
|
||||
xfer[0].flags = 0;
|
||||
xfer[0].buf = reg_data;
|
||||
if (val_size == 1) {
|
||||
reg_data[0] =
|
||||
CDCE925_I2C_COMMAND_BYTE_TRANSFER | ((u8 *)reg)[0];
|
||||
xfer[0].len = 1;
|
||||
} else {
|
||||
reg_data[0] =
|
||||
CDCE925_I2C_COMMAND_BLOCK_TRANSFER | ((u8 *)reg)[0];
|
||||
reg_data[1] = val_size;
|
||||
xfer[0].len = 2;
|
||||
}
|
||||
|
||||
xfer[1].addr = i2c->addr;
|
||||
xfer[1].flags = I2C_M_RD;
|
||||
xfer[1].len = val_size;
|
||||
xfer[1].buf = val;
|
||||
|
||||
ret = i2c_transfer(i2c->adapter, xfer, 2);
|
||||
if (likely(ret == 2)) {
|
||||
dev_dbg(&i2c->dev, "%s(%zu, %u) %#x %#x\n", __func__,
|
||||
reg_size, val_size, reg_data[0], *((u8 *)val));
|
||||
return 0;
|
||||
} else if (ret < 0)
|
||||
return ret;
|
||||
else
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
/* The CDCE925 uses a funky way to read/write registers. Bulk mode is
|
||||
* just weird, so just use the single byte mode exclusively. */
|
||||
static struct regmap_bus regmap_cdce925_bus = {
|
||||
.write = cdce925_regmap_i2c_write,
|
||||
.read = cdce925_regmap_i2c_read,
|
||||
};
|
||||
|
||||
static int cdce925_probe(struct i2c_client *client,
|
||||
const struct i2c_device_id *id)
|
||||
{
|
||||
struct clk_cdce925_chip *data;
|
||||
struct device_node *node = client->dev.of_node;
|
||||
const char *parent_name;
|
||||
const char *pll_clk_name[NUMBER_OF_PLLS] = {NULL,};
|
||||
struct clk_init_data init;
|
||||
struct clk *clk;
|
||||
u32 value;
|
||||
int i;
|
||||
int err;
|
||||
struct device_node *np_output;
|
||||
char child_name[6];
|
||||
|
||||
dev_dbg(&client->dev, "%s\n", __func__);
|
||||
data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
|
||||
if (!data)
|
||||
return -ENOMEM;
|
||||
|
||||
data->i2c_client = client;
|
||||
data->regmap = devm_regmap_init(&client->dev, ®map_cdce925_bus,
|
||||
&client->dev, &cdce925_regmap_config);
|
||||
if (IS_ERR(data->regmap)) {
|
||||
dev_err(&client->dev, "failed to allocate register map\n");
|
||||
return PTR_ERR(data->regmap);
|
||||
}
|
||||
i2c_set_clientdata(client, data);
|
||||
|
||||
parent_name = of_clk_get_parent_name(node, 0);
|
||||
if (!parent_name) {
|
||||
dev_err(&client->dev, "missing parent clock\n");
|
||||
return -ENODEV;
|
||||
}
|
||||
dev_dbg(&client->dev, "parent is: %s\n", parent_name);
|
||||
|
||||
if (of_property_read_u32(node, "xtal-load-pf", &value) == 0)
|
||||
regmap_write(data->regmap,
|
||||
CDCE925_REG_XCSEL, (value << 3) & 0xF8);
|
||||
/* PWDN bit */
|
||||
regmap_update_bits(data->regmap, CDCE925_REG_GLOBAL1, BIT(4), 0);
|
||||
|
||||
/* Set input source for Y1 to be the XTAL */
|
||||
regmap_update_bits(data->regmap, 0x02, BIT(7), 0);
|
||||
|
||||
init.ops = &cdce925_pll_ops;
|
||||
init.flags = 0;
|
||||
init.parent_names = &parent_name;
|
||||
init.num_parents = parent_name ? 1 : 0;
|
||||
|
||||
/* Register PLL clocks */
|
||||
for (i = 0; i < NUMBER_OF_PLLS; ++i) {
|
||||
pll_clk_name[i] = kasprintf(GFP_KERNEL, "%s.pll%d",
|
||||
client->dev.of_node->name, i);
|
||||
init.name = pll_clk_name[i];
|
||||
data->pll[i].chip = data;
|
||||
data->pll[i].hw.init = &init;
|
||||
data->pll[i].index = i;
|
||||
clk = devm_clk_register(&client->dev, &data->pll[i].hw);
|
||||
if (IS_ERR(clk)) {
|
||||
dev_err(&client->dev, "Failed register PLL %d\n", i);
|
||||
err = PTR_ERR(clk);
|
||||
goto error;
|
||||
}
|
||||
sprintf(child_name, "PLL%d", i+1);
|
||||
np_output = of_get_child_by_name(node, child_name);
|
||||
if (!np_output)
|
||||
continue;
|
||||
if (!of_property_read_u32(np_output,
|
||||
"clock-frequency", &value)) {
|
||||
err = clk_set_rate(clk, value);
|
||||
if (err)
|
||||
dev_err(&client->dev,
|
||||
"unable to set PLL frequency %ud\n",
|
||||
value);
|
||||
}
|
||||
if (!of_property_read_u32(np_output,
|
||||
"spread-spectrum", &value)) {
|
||||
u8 flag = of_property_read_bool(np_output,
|
||||
"spread-spectrum-center") ? 0x80 : 0x00;
|
||||
regmap_update_bits(data->regmap,
|
||||
0x16 + (i*CDCE925_OFFSET_PLL),
|
||||
0x80, flag);
|
||||
regmap_update_bits(data->regmap,
|
||||
0x12 + (i*CDCE925_OFFSET_PLL),
|
||||
0x07, value & 0x07);
|
||||
}
|
||||
}
|
||||
|
||||
/* Register output clock Y1 */
|
||||
init.ops = &cdce925_clk_y1_ops;
|
||||
init.flags = 0;
|
||||
init.num_parents = 1;
|
||||
init.parent_names = &parent_name; /* Mux Y1 to input */
|
||||
init.name = kasprintf(GFP_KERNEL, "%s.Y1", client->dev.of_node->name);
|
||||
data->clk[0].chip = data;
|
||||
data->clk[0].hw.init = &init;
|
||||
data->clk[0].index = 0;
|
||||
data->clk[0].pdiv = 1;
|
||||
clk = devm_clk_register(&client->dev, &data->clk[0].hw);
|
||||
kfree(init.name); /* clock framework made a copy of the name */
|
||||
if (IS_ERR(clk)) {
|
||||
dev_err(&client->dev, "clock registration Y1 failed\n");
|
||||
err = PTR_ERR(clk);
|
||||
goto error;
|
||||
}
|
||||
data->dt_clk[0] = clk;
|
||||
|
||||
/* Register output clocks Y2 .. Y5*/
|
||||
init.ops = &cdce925_clk_ops;
|
||||
init.flags = CLK_SET_RATE_PARENT;
|
||||
init.num_parents = 1;
|
||||
for (i = 1; i < NUMBER_OF_OUTPUTS; ++i) {
|
||||
init.name = kasprintf(GFP_KERNEL, "%s.Y%d",
|
||||
client->dev.of_node->name, i+1);
|
||||
data->clk[i].chip = data;
|
||||
data->clk[i].hw.init = &init;
|
||||
data->clk[i].index = i;
|
||||
data->clk[i].pdiv = 1;
|
||||
switch (i) {
|
||||
case 1:
|
||||
case 2:
|
||||
/* Mux Y2/3 to PLL1 */
|
||||
init.parent_names = &pll_clk_name[0];
|
||||
break;
|
||||
case 3:
|
||||
case 4:
|
||||
/* Mux Y4/5 to PLL2 */
|
||||
init.parent_names = &pll_clk_name[1];
|
||||
break;
|
||||
}
|
||||
clk = devm_clk_register(&client->dev, &data->clk[i].hw);
|
||||
kfree(init.name); /* clock framework made a copy of the name */
|
||||
if (IS_ERR(clk)) {
|
||||
dev_err(&client->dev, "clock registration failed\n");
|
||||
err = PTR_ERR(clk);
|
||||
goto error;
|
||||
}
|
||||
data->dt_clk[i] = clk;
|
||||
}
|
||||
|
||||
/* Register the output clocks */
|
||||
data->onecell.clk_num = NUMBER_OF_OUTPUTS;
|
||||
data->onecell.clks = data->dt_clk;
|
||||
err = of_clk_add_provider(client->dev.of_node, of_clk_src_onecell_get,
|
||||
&data->onecell);
|
||||
if (err)
|
||||
dev_err(&client->dev, "unable to add OF clock provider\n");
|
||||
|
||||
err = 0;
|
||||
|
||||
error:
|
||||
for (i = 0; i < NUMBER_OF_PLLS; ++i)
|
||||
/* clock framework made a copy of the name */
|
||||
kfree(pll_clk_name[i]);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static const struct i2c_device_id cdce925_id[] = {
|
||||
{ "cdce925", 0 },
|
||||
{ }
|
||||
};
|
||||
MODULE_DEVICE_TABLE(i2c, cdce925_id);
|
||||
|
||||
static const struct of_device_id clk_cdce925_of_match[] = {
|
||||
{ .compatible = "ti,cdce925" },
|
||||
{ },
|
||||
};
|
||||
MODULE_DEVICE_TABLE(of, clk_cdce925_of_match);
|
||||
|
||||
static struct i2c_driver cdce925_driver = {
|
||||
.driver = {
|
||||
.name = "cdce925",
|
||||
.of_match_table = of_match_ptr(clk_cdce925_of_match),
|
||||
},
|
||||
.probe = cdce925_probe,
|
||||
.id_table = cdce925_id,
|
||||
};
|
||||
module_i2c_driver(cdce925_driver);
|
||||
|
||||
MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
|
||||
MODULE_DESCRIPTION("cdce925 driver");
|
||||
MODULE_LICENSE("GPL");
|
Loading…
Reference in New Issue
Block a user