scsi: ufs: Add program_key() variant op
On Snapdragon SoCs, the Linux kernel isn't permitted to directly access the standard UFS crypto configuration registers. Instead, programming and evicting keys must be done through vendor-specific SMC calls. To support this hardware, add a ->program_key() method to 'struct ufs_hba_variant_ops'. This allows overriding the UFS standard key programming / eviction procedure. Link: https://lore.kernel.org/r/20200710072013.177481-5-ebiggers@kernel.org Reviewed-by: Avri Altman <avri.altman@wdc.com> Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
This commit is contained in:
parent
083dd788e4
commit
1bc726e26e
@ -17,14 +17,20 @@ static const struct ufs_crypto_alg_entry {
|
|||||||
},
|
},
|
||||||
};
|
};
|
||||||
|
|
||||||
static void ufshcd_program_key(struct ufs_hba *hba,
|
static int ufshcd_program_key(struct ufs_hba *hba,
|
||||||
const union ufs_crypto_cfg_entry *cfg,
|
const union ufs_crypto_cfg_entry *cfg, int slot)
|
||||||
int slot)
|
|
||||||
{
|
{
|
||||||
int i;
|
int i;
|
||||||
u32 slot_offset = hba->crypto_cfg_register + slot * sizeof(*cfg);
|
u32 slot_offset = hba->crypto_cfg_register + slot * sizeof(*cfg);
|
||||||
|
int err = 0;
|
||||||
|
|
||||||
ufshcd_hold(hba, false);
|
ufshcd_hold(hba, false);
|
||||||
|
|
||||||
|
if (hba->vops && hba->vops->program_key) {
|
||||||
|
err = hba->vops->program_key(hba, cfg, slot);
|
||||||
|
goto out;
|
||||||
|
}
|
||||||
|
|
||||||
/* Ensure that CFGE is cleared before programming the key */
|
/* Ensure that CFGE is cleared before programming the key */
|
||||||
ufshcd_writel(hba, 0, slot_offset + 16 * sizeof(cfg->reg_val[0]));
|
ufshcd_writel(hba, 0, slot_offset + 16 * sizeof(cfg->reg_val[0]));
|
||||||
for (i = 0; i < 16; i++) {
|
for (i = 0; i < 16; i++) {
|
||||||
@ -37,7 +43,9 @@ static void ufshcd_program_key(struct ufs_hba *hba,
|
|||||||
/* Dword 16 must be written last */
|
/* Dword 16 must be written last */
|
||||||
ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[16]),
|
ufshcd_writel(hba, le32_to_cpu(cfg->reg_val[16]),
|
||||||
slot_offset + 16 * sizeof(cfg->reg_val[0]));
|
slot_offset + 16 * sizeof(cfg->reg_val[0]));
|
||||||
|
out:
|
||||||
ufshcd_release(hba);
|
ufshcd_release(hba);
|
||||||
|
return err;
|
||||||
}
|
}
|
||||||
|
|
||||||
static int ufshcd_crypto_keyslot_program(struct blk_keyslot_manager *ksm,
|
static int ufshcd_crypto_keyslot_program(struct blk_keyslot_manager *ksm,
|
||||||
@ -52,6 +60,7 @@ static int ufshcd_crypto_keyslot_program(struct blk_keyslot_manager *ksm,
|
|||||||
int i;
|
int i;
|
||||||
int cap_idx = -1;
|
int cap_idx = -1;
|
||||||
union ufs_crypto_cfg_entry cfg = { 0 };
|
union ufs_crypto_cfg_entry cfg = { 0 };
|
||||||
|
int err;
|
||||||
|
|
||||||
BUILD_BUG_ON(UFS_CRYPTO_KEY_SIZE_INVALID != 0);
|
BUILD_BUG_ON(UFS_CRYPTO_KEY_SIZE_INVALID != 0);
|
||||||
for (i = 0; i < hba->crypto_capabilities.num_crypto_cap; i++) {
|
for (i = 0; i < hba->crypto_capabilities.num_crypto_cap; i++) {
|
||||||
@ -79,13 +88,13 @@ static int ufshcd_crypto_keyslot_program(struct blk_keyslot_manager *ksm,
|
|||||||
memcpy(cfg.crypto_key, key->raw, key->size);
|
memcpy(cfg.crypto_key, key->raw, key->size);
|
||||||
}
|
}
|
||||||
|
|
||||||
ufshcd_program_key(hba, &cfg, slot);
|
err = ufshcd_program_key(hba, &cfg, slot);
|
||||||
|
|
||||||
memzero_explicit(&cfg, sizeof(cfg));
|
memzero_explicit(&cfg, sizeof(cfg));
|
||||||
return 0;
|
return err;
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ufshcd_clear_keyslot(struct ufs_hba *hba, int slot)
|
static int ufshcd_clear_keyslot(struct ufs_hba *hba, int slot)
|
||||||
{
|
{
|
||||||
/*
|
/*
|
||||||
* Clear the crypto cfg on the device. Clearing CFGE
|
* Clear the crypto cfg on the device. Clearing CFGE
|
||||||
@ -93,7 +102,7 @@ static void ufshcd_clear_keyslot(struct ufs_hba *hba, int slot)
|
|||||||
*/
|
*/
|
||||||
union ufs_crypto_cfg_entry cfg = { 0 };
|
union ufs_crypto_cfg_entry cfg = { 0 };
|
||||||
|
|
||||||
ufshcd_program_key(hba, &cfg, slot);
|
return ufshcd_program_key(hba, &cfg, slot);
|
||||||
}
|
}
|
||||||
|
|
||||||
static int ufshcd_crypto_keyslot_evict(struct blk_keyslot_manager *ksm,
|
static int ufshcd_crypto_keyslot_evict(struct blk_keyslot_manager *ksm,
|
||||||
@ -102,9 +111,7 @@ static int ufshcd_crypto_keyslot_evict(struct blk_keyslot_manager *ksm,
|
|||||||
{
|
{
|
||||||
struct ufs_hba *hba = container_of(ksm, struct ufs_hba, ksm);
|
struct ufs_hba *hba = container_of(ksm, struct ufs_hba, ksm);
|
||||||
|
|
||||||
ufshcd_clear_keyslot(hba, slot);
|
return ufshcd_clear_keyslot(hba, slot);
|
||||||
|
|
||||||
return 0;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
bool ufshcd_crypto_enable(struct ufs_hba *hba)
|
bool ufshcd_crypto_enable(struct ufs_hba *hba)
|
||||||
|
@ -281,6 +281,7 @@ struct ufs_pwr_mode_info {
|
|||||||
* @dbg_register_dump: used to dump controller debug information
|
* @dbg_register_dump: used to dump controller debug information
|
||||||
* @phy_initialization: used to initialize phys
|
* @phy_initialization: used to initialize phys
|
||||||
* @device_reset: called to issue a reset pulse on the UFS device
|
* @device_reset: called to issue a reset pulse on the UFS device
|
||||||
|
* @program_key: program or evict an inline encryption key
|
||||||
*/
|
*/
|
||||||
struct ufs_hba_variant_ops {
|
struct ufs_hba_variant_ops {
|
||||||
const char *name;
|
const char *name;
|
||||||
@ -314,6 +315,8 @@ struct ufs_hba_variant_ops {
|
|||||||
void (*config_scaling_param)(struct ufs_hba *hba,
|
void (*config_scaling_param)(struct ufs_hba *hba,
|
||||||
struct devfreq_dev_profile *profile,
|
struct devfreq_dev_profile *profile,
|
||||||
void *data);
|
void *data);
|
||||||
|
int (*program_key)(struct ufs_hba *hba,
|
||||||
|
const union ufs_crypto_cfg_entry *cfg, int slot);
|
||||||
};
|
};
|
||||||
|
|
||||||
/* clock gating state */
|
/* clock gating state */
|
||||||
|
Loading…
Reference in New Issue
Block a user