[SCTP]: Implement SCTP-AUTH internals
This patch implements the internals operations of the AUTH, such as key computation and storage. It also adds necessary variables to the SCTP data structures. Signed-off-by: Vlad Yasevich <vladislav.yasevich@hp.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
f7b0e93ba1
commit
1f485649f5
112
include/net/sctp/auth.h
Normal file
112
include/net/sctp/auth.h
Normal file
@ -0,0 +1,112 @@
|
||||
/* SCTP kernel reference Implementation
|
||||
* (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
|
||||
*
|
||||
* This file is part of the SCTP kernel reference Implementation
|
||||
*
|
||||
* The SCTP reference implementation is free software;
|
||||
* you can redistribute it and/or modify it under the terms of
|
||||
* the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2, or (at your option)
|
||||
* any later version.
|
||||
*
|
||||
* The SCTP reference implementation is distributed in the hope that it
|
||||
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
|
||||
* ************************
|
||||
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
* See the GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNU CC; see the file COPYING. If not, write to
|
||||
* the Free Software Foundation, 59 Temple Place - Suite 330,
|
||||
* Boston, MA 02111-1307, USA.
|
||||
*
|
||||
* Please send any bug reports or fixes you make to the
|
||||
* email address(es):
|
||||
* lksctp developers <lksctp-developers@lists.sourceforge.net>
|
||||
*
|
||||
* Or submit a bug report through the following website:
|
||||
* http://www.sf.net/projects/lksctp
|
||||
*
|
||||
* Written or modified by:
|
||||
* Vlad Yasevich <vladislav.yasevich@hp.com>
|
||||
*
|
||||
* Any bugs reported given to us we will try to fix... any fixes shared will
|
||||
* be incorporated into the next SCTP release.
|
||||
*/
|
||||
|
||||
#ifndef __sctp_auth_h__
|
||||
#define __sctp_auth_h__
|
||||
|
||||
#include <linux/list.h>
|
||||
#include <linux/crypto.h>
|
||||
|
||||
struct sctp_endpoint;
|
||||
struct sctp_association;
|
||||
struct sctp_authkey;
|
||||
|
||||
/*
|
||||
* Define a generic struct that will hold all the info
|
||||
* necessary for an HMAC transform
|
||||
*/
|
||||
struct sctp_hmac {
|
||||
__u16 hmac_id; /* one of the above ids */
|
||||
char *hmac_name; /* name for loading */
|
||||
__u16 hmac_len; /* length of the signature */
|
||||
};
|
||||
|
||||
/* This is generic structure that containst authentication bytes used
|
||||
* as keying material. It's a what is referred to as byte-vector all
|
||||
* over SCTP-AUTH
|
||||
*/
|
||||
struct sctp_auth_bytes {
|
||||
atomic_t refcnt;
|
||||
__u32 len;
|
||||
__u8 data[];
|
||||
};
|
||||
|
||||
/* Definition for a shared key, weather endpoint or association */
|
||||
struct sctp_shared_key {
|
||||
struct list_head key_list;
|
||||
__u16 key_id;
|
||||
struct sctp_auth_bytes *key;
|
||||
};
|
||||
|
||||
#define key_for_each(__key, __list_head) \
|
||||
list_for_each_entry(__key, __list_head, key_list)
|
||||
|
||||
#define key_for_each_safe(__key, __tmp, __list_head) \
|
||||
list_for_each_entry_safe(__key, __tmp, __list_head, key_list)
|
||||
|
||||
static inline void sctp_auth_key_hold(struct sctp_auth_bytes *key)
|
||||
{
|
||||
if (!key)
|
||||
return;
|
||||
|
||||
atomic_inc(&key->refcnt);
|
||||
}
|
||||
|
||||
void sctp_auth_key_put(struct sctp_auth_bytes *key);
|
||||
struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp);
|
||||
void sctp_auth_shkey_free(struct sctp_shared_key *sh_key);
|
||||
void sctp_auth_destroy_keys(struct list_head *keys);
|
||||
int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp);
|
||||
struct sctp_shared_key *sctp_auth_get_shkey(
|
||||
const struct sctp_association *asoc,
|
||||
__u16 key_id);
|
||||
int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
|
||||
struct sctp_association *asoc,
|
||||
gfp_t gfp);
|
||||
int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp);
|
||||
void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[]);
|
||||
struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id);
|
||||
struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc);
|
||||
void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
|
||||
struct sctp_hmac_algo_param *hmacs);
|
||||
int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
|
||||
__u16 hmac_id);
|
||||
int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc);
|
||||
int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc);
|
||||
void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
|
||||
struct sk_buff *skb,
|
||||
struct sctp_auth_chunk *auth, gfp_t gfp);
|
||||
#endif
|
@ -64,12 +64,18 @@ enum { SCTP_DEFAULT_INSTREAMS = SCTP_MAX_STREAM };
|
||||
#define SCTP_CID_MAX SCTP_CID_ASCONF_ACK
|
||||
|
||||
#define SCTP_NUM_BASE_CHUNK_TYPES (SCTP_CID_BASE_MAX + 1)
|
||||
#define SCTP_NUM_CHUNK_TYPES (SCTP_NUM_BASE_CHUNKTYPES + 2)
|
||||
|
||||
#define SCTP_NUM_ADDIP_CHUNK_TYPES 2
|
||||
|
||||
#define SCTP_NUM_PRSCTP_CHUNK_TYPES 1
|
||||
|
||||
#define SCTP_NUM_AUTH_CHUNK_TYPES 1
|
||||
|
||||
#define SCTP_NUM_CHUNK_TYPES (SCTP_NUM_BASE_CHUNK_TYPES + \
|
||||
SCTP_NUM_ADDIP_CHUNK_TYPES +\
|
||||
SCTP_NUM_PRSCTP_CHUNK_TYPES +\
|
||||
SCTP_NUM_AUTH_CHUNK_TYPES)
|
||||
|
||||
/* These are the different flavours of event. */
|
||||
typedef enum {
|
||||
|
||||
@ -409,4 +415,45 @@ typedef enum {
|
||||
SCTP_LOWER_CWND_INACTIVE,
|
||||
} sctp_lower_cwnd_t;
|
||||
|
||||
|
||||
/* SCTP-AUTH Necessary constants */
|
||||
|
||||
/* SCTP-AUTH, Section 3.3
|
||||
*
|
||||
* The following Table 2 shows the currently defined values for HMAC
|
||||
* identifiers.
|
||||
*
|
||||
* +-----------------+--------------------------+
|
||||
* | HMAC Identifier | Message Digest Algorithm |
|
||||
* +-----------------+--------------------------+
|
||||
* | 0 | Reserved |
|
||||
* | 1 | SHA-1 defined in [8] |
|
||||
* | 2 | Reserved |
|
||||
* | 3 | SHA-256 defined in [8] |
|
||||
* +-----------------+--------------------------+
|
||||
*/
|
||||
enum {
|
||||
SCTP_AUTH_HMAC_ID_RESERVED_0,
|
||||
SCTP_AUTH_HMAC_ID_SHA1,
|
||||
SCTP_AUTH_HMAC_ID_RESERVED_2,
|
||||
SCTP_AUTH_HMAC_ID_SHA256
|
||||
};
|
||||
|
||||
#define SCTP_AUTH_HMAC_ID_MAX SCTP_AUTH_HMAC_ID_SHA256
|
||||
#define SCTP_AUTH_NUM_HMACS (SCTP_AUTH_HMAC_ID_SHA256 + 1)
|
||||
#define SCTP_SHA1_SIG_SIZE 20
|
||||
#define SCTP_SHA256_SIG_SIZE 32
|
||||
|
||||
/* SCTP-AUTH, Section 3.2
|
||||
* The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH chunks
|
||||
* MUST NOT be listed in the CHUNKS parameter
|
||||
*/
|
||||
#define SCTP_NUM_NOAUTH_CHUNKS 4
|
||||
#define SCTP_AUTH_MAX_CHUNKS (SCTP_NUM_CHUNK_TYPES - SCTP_NUM_NOAUTH_CHUNKS)
|
||||
|
||||
/* SCTP-AUTH Section 6.1
|
||||
* The RANDOM parameter MUST contain a 32 byte random number.
|
||||
*/
|
||||
#define SCTP_AUTH_RANDOM_LENGTH 32
|
||||
|
||||
#endif /* __sctp_constants_h__ */
|
||||
|
@ -341,6 +341,7 @@ extern atomic_t sctp_dbg_objcnt_bind_bucket;
|
||||
extern atomic_t sctp_dbg_objcnt_addr;
|
||||
extern atomic_t sctp_dbg_objcnt_ssnmap;
|
||||
extern atomic_t sctp_dbg_objcnt_datamsg;
|
||||
extern atomic_t sctp_dbg_objcnt_keys;
|
||||
|
||||
/* Macros to atomically increment/decrement objcnt counters. */
|
||||
#define SCTP_DBG_OBJCNT_INC(name) \
|
||||
|
@ -64,6 +64,7 @@
|
||||
#include <linux/skbuff.h> /* We need sk_buff_head. */
|
||||
#include <linux/workqueue.h> /* We need tq_struct. */
|
||||
#include <linux/sctp.h> /* We need sctp* header structs. */
|
||||
#include <net/sctp/auth.h> /* We need auth specific structs */
|
||||
|
||||
/* A convenience structure for handling sockaddr structures.
|
||||
* We should wean ourselves off this.
|
||||
@ -216,6 +217,9 @@ extern struct sctp_globals {
|
||||
|
||||
/* Flag to indicate if PR-SCTP is enabled. */
|
||||
int prsctp_enable;
|
||||
|
||||
/* Flag to idicate if SCTP-AUTH is enabled */
|
||||
int auth_enable;
|
||||
} sctp_globals;
|
||||
|
||||
#define sctp_rto_initial (sctp_globals.rto_initial)
|
||||
@ -248,6 +252,7 @@ extern struct sctp_globals {
|
||||
#define sctp_local_addr_lock (sctp_globals.addr_list_lock)
|
||||
#define sctp_addip_enable (sctp_globals.addip_enable)
|
||||
#define sctp_prsctp_enable (sctp_globals.prsctp_enable)
|
||||
#define sctp_auth_enable (sctp_globals.auth_enable)
|
||||
|
||||
/* SCTP Socket type: UDP or TCP style. */
|
||||
typedef enum {
|
||||
@ -397,6 +402,9 @@ struct sctp_cookie {
|
||||
|
||||
__u32 adaptation_ind;
|
||||
|
||||
__u8 auth_random[sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH];
|
||||
__u8 auth_hmacs[SCTP_AUTH_NUM_HMACS + 2];
|
||||
__u8 auth_chunks[sizeof(sctp_paramhdr_t) + SCTP_AUTH_MAX_CHUNKS];
|
||||
|
||||
/* This is a shim for my peer's INIT packet, followed by
|
||||
* a copy of the raw address list of the association.
|
||||
@ -441,6 +449,9 @@ union sctp_params {
|
||||
union sctp_addr_param *addr;
|
||||
struct sctp_adaptation_ind_param *aind;
|
||||
struct sctp_supported_ext_param *ext;
|
||||
struct sctp_random_param *random;
|
||||
struct sctp_chunks_param *chunks;
|
||||
struct sctp_hmac_algo_param *hmac_algo;
|
||||
};
|
||||
|
||||
/* RFC 2960. Section 3.3.5 Heartbeat.
|
||||
@ -679,6 +690,7 @@ struct sctp_chunk {
|
||||
struct sctp_errhdr *err_hdr;
|
||||
struct sctp_addiphdr *addip_hdr;
|
||||
struct sctp_fwdtsn_hdr *fwdtsn_hdr;
|
||||
struct sctp_authhdr *auth_hdr;
|
||||
} subh;
|
||||
|
||||
__u8 *chunk_end;
|
||||
@ -724,6 +736,7 @@ struct sctp_chunk {
|
||||
__s8 fast_retransmit; /* Is this chunk fast retransmitted? */
|
||||
__u8 tsn_missing_report; /* Data chunk missing counter. */
|
||||
__u8 data_accepted; /* At least 1 chunk in this packet accepted */
|
||||
__u8 auth; /* IN: was auth'ed | OUT: needs auth */
|
||||
};
|
||||
|
||||
void sctp_chunk_hold(struct sctp_chunk *);
|
||||
@ -773,16 +786,22 @@ struct sctp_packet {
|
||||
*/
|
||||
struct sctp_transport *transport;
|
||||
|
||||
/* This packet contains a COOKIE-ECHO chunk. */
|
||||
char has_cookie_echo;
|
||||
/* pointer to the auth chunk for this packet */
|
||||
struct sctp_chunk *auth;
|
||||
|
||||
/* This packet containsa SACK chunk. */
|
||||
char has_sack;
|
||||
/* This packet contains a COOKIE-ECHO chunk. */
|
||||
__u8 has_cookie_echo;
|
||||
|
||||
/* This packet contains a SACK chunk. */
|
||||
__u8 has_sack;
|
||||
|
||||
/* This packet contains an AUTH chunk */
|
||||
__u8 has_auth;
|
||||
|
||||
/* SCTP cannot fragment this packet. So let ip fragment it. */
|
||||
char ipfragok;
|
||||
__u8 ipfragok;
|
||||
|
||||
int malloced;
|
||||
__u8 malloced;
|
||||
};
|
||||
|
||||
struct sctp_packet *sctp_packet_init(struct sctp_packet *,
|
||||
@ -1291,6 +1310,21 @@ struct sctp_endpoint {
|
||||
|
||||
/* rcvbuf acct. policy. */
|
||||
__u32 rcvbuf_policy;
|
||||
|
||||
/* SCTP AUTH: array of the HMACs that will be allocated
|
||||
* we need this per association so that we don't serialize
|
||||
*/
|
||||
struct crypto_hash **auth_hmacs;
|
||||
|
||||
/* SCTP-AUTH: hmacs for the endpoint encoded into parameter */
|
||||
struct sctp_hmac_algo_param *auth_hmacs_list;
|
||||
|
||||
/* SCTP-AUTH: chunks to authenticate encoded into parameter */
|
||||
struct sctp_chunks_param *auth_chunk_list;
|
||||
|
||||
/* SCTP-AUTH: endpoint shared keys */
|
||||
struct list_head endpoint_shared_keys;
|
||||
__u16 active_key_id;
|
||||
};
|
||||
|
||||
/* Recover the outter endpoint structure. */
|
||||
@ -1497,6 +1531,7 @@ struct sctp_association {
|
||||
__u8 hostname_address;/* Peer understands DNS addresses? */
|
||||
__u8 asconf_capable; /* Does peer support ADDIP? */
|
||||
__u8 prsctp_capable; /* Can peer do PR-SCTP? */
|
||||
__u8 auth_capable; /* Is peer doing SCTP-AUTH? */
|
||||
|
||||
__u32 adaptation_ind; /* Adaptation Code point. */
|
||||
|
||||
@ -1514,6 +1549,14 @@ struct sctp_association {
|
||||
* Initial TSN Value minus 1
|
||||
*/
|
||||
__u32 addip_serial;
|
||||
|
||||
/* SCTP-AUTH: We need to know pears random number, hmac list
|
||||
* and authenticated chunk list. All that is part of the
|
||||
* cookie and these are just pointers to those locations
|
||||
*/
|
||||
sctp_random_param_t *peer_random;
|
||||
sctp_chunks_param_t *peer_chunks;
|
||||
sctp_hmac_algo_param_t *peer_hmacs;
|
||||
} peer;
|
||||
|
||||
/* State : A state variable indicating what state the
|
||||
@ -1797,6 +1840,24 @@ struct sctp_association {
|
||||
*/
|
||||
__u32 addip_serial;
|
||||
|
||||
/* SCTP AUTH: list of the endpoint shared keys. These
|
||||
* keys are provided out of band by the user applicaton
|
||||
* and can't change during the lifetime of the association
|
||||
*/
|
||||
struct list_head endpoint_shared_keys;
|
||||
|
||||
/* SCTP AUTH:
|
||||
* The current generated assocaition shared key (secret)
|
||||
*/
|
||||
struct sctp_auth_bytes *asoc_shared_key;
|
||||
|
||||
/* SCTP AUTH: hmac id of the first peer requested algorithm
|
||||
* that we support.
|
||||
*/
|
||||
__u16 default_hmac_id;
|
||||
|
||||
__u16 active_key_id;
|
||||
|
||||
/* Need to send an ECNE Chunk? */
|
||||
char need_ecne;
|
||||
|
||||
|
@ -9,7 +9,8 @@ sctp-y := sm_statetable.o sm_statefuns.o sm_sideeffect.o \
|
||||
transport.o chunk.o sm_make_chunk.o ulpevent.o \
|
||||
inqueue.o outqueue.o ulpqueue.o command.o \
|
||||
tsnmap.o bind_addr.o socket.o primitive.o \
|
||||
output.o input.o debug.o ssnmap.o proc.o crc32c.o
|
||||
output.o input.o debug.o ssnmap.o proc.o crc32c.o \
|
||||
auth.o
|
||||
|
||||
sctp-$(CONFIG_SCTP_DBG_OBJCNT) += objcnt.o
|
||||
sctp-$(CONFIG_SYSCTL) += sysctl.o
|
||||
|
745
net/sctp/auth.c
Normal file
745
net/sctp/auth.c
Normal file
@ -0,0 +1,745 @@
|
||||
/* SCTP kernel reference Implementation
|
||||
* (C) Copyright 2007 Hewlett-Packard Development Company, L.P.
|
||||
*
|
||||
* This file is part of the SCTP kernel reference Implementation
|
||||
*
|
||||
* The SCTP reference implementation is free software;
|
||||
* you can redistribute it and/or modify it under the terms of
|
||||
* the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2, or (at your option)
|
||||
* any later version.
|
||||
*
|
||||
* The SCTP reference implementation is distributed in the hope that it
|
||||
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
|
||||
* ************************
|
||||
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
* See the GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with GNU CC; see the file COPYING. If not, write to
|
||||
* the Free Software Foundation, 59 Temple Place - Suite 330,
|
||||
* Boston, MA 02111-1307, USA.
|
||||
*
|
||||
* Please send any bug reports or fixes you make to the
|
||||
* email address(es):
|
||||
* lksctp developers <lksctp-developers@lists.sourceforge.net>
|
||||
*
|
||||
* Or submit a bug report through the following website:
|
||||
* http://www.sf.net/projects/lksctp
|
||||
*
|
||||
* Written or modified by:
|
||||
* Vlad Yasevich <vladislav.yasevich@hp.com>
|
||||
*
|
||||
* Any bugs reported given to us we will try to fix... any fixes shared will
|
||||
* be incorporated into the next SCTP release.
|
||||
*/
|
||||
|
||||
#include <linux/types.h>
|
||||
#include <linux/crypto.h>
|
||||
#include <linux/scatterlist.h>
|
||||
#include <net/sctp/sctp.h>
|
||||
#include <net/sctp/auth.h>
|
||||
|
||||
static struct sctp_hmac sctp_hmac_list[SCTP_AUTH_NUM_HMACS] = {
|
||||
{
|
||||
/* id 0 is reserved. as all 0 */
|
||||
.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_0,
|
||||
},
|
||||
{
|
||||
.hmac_id = SCTP_AUTH_HMAC_ID_SHA1,
|
||||
.hmac_name="hmac(sha1)",
|
||||
.hmac_len = SCTP_SHA1_SIG_SIZE,
|
||||
},
|
||||
{
|
||||
/* id 2 is reserved as well */
|
||||
.hmac_id = SCTP_AUTH_HMAC_ID_RESERVED_2,
|
||||
},
|
||||
{
|
||||
.hmac_id = SCTP_AUTH_HMAC_ID_SHA256,
|
||||
.hmac_name="hmac(sha256)",
|
||||
.hmac_len = SCTP_SHA256_SIG_SIZE,
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
void sctp_auth_key_put(struct sctp_auth_bytes *key)
|
||||
{
|
||||
if (!key)
|
||||
return;
|
||||
|
||||
if (atomic_dec_and_test(&key->refcnt)) {
|
||||
kfree(key);
|
||||
SCTP_DBG_OBJCNT_DEC(keys);
|
||||
}
|
||||
}
|
||||
|
||||
/* Create a new key structure of a given length */
|
||||
static struct sctp_auth_bytes *sctp_auth_create_key(__u32 key_len, gfp_t gfp)
|
||||
{
|
||||
struct sctp_auth_bytes *key;
|
||||
|
||||
/* Allocate the shared key */
|
||||
key = kmalloc(sizeof(struct sctp_auth_bytes) + key_len, gfp);
|
||||
if (!key)
|
||||
return NULL;
|
||||
|
||||
key->len = key_len;
|
||||
atomic_set(&key->refcnt, 1);
|
||||
SCTP_DBG_OBJCNT_INC(keys);
|
||||
|
||||
return key;
|
||||
}
|
||||
|
||||
/* Create a new shared key container with a give key id */
|
||||
struct sctp_shared_key *sctp_auth_shkey_create(__u16 key_id, gfp_t gfp)
|
||||
{
|
||||
struct sctp_shared_key *new;
|
||||
|
||||
/* Allocate the shared key container */
|
||||
new = kzalloc(sizeof(struct sctp_shared_key), gfp);
|
||||
if (!new)
|
||||
return NULL;
|
||||
|
||||
INIT_LIST_HEAD(&new->key_list);
|
||||
new->key_id = key_id;
|
||||
|
||||
return new;
|
||||
}
|
||||
|
||||
/* Free the shared key stucture */
|
||||
void sctp_auth_shkey_free(struct sctp_shared_key *sh_key)
|
||||
{
|
||||
BUG_ON(!list_empty(&sh_key->key_list));
|
||||
sctp_auth_key_put(sh_key->key);
|
||||
sh_key->key = NULL;
|
||||
kfree(sh_key);
|
||||
}
|
||||
|
||||
/* Destory the entire key list. This is done during the
|
||||
* associon and endpoint free process.
|
||||
*/
|
||||
void sctp_auth_destroy_keys(struct list_head *keys)
|
||||
{
|
||||
struct sctp_shared_key *ep_key;
|
||||
struct sctp_shared_key *tmp;
|
||||
|
||||
if (list_empty(keys))
|
||||
return;
|
||||
|
||||
key_for_each_safe(ep_key, tmp, keys) {
|
||||
list_del_init(&ep_key->key_list);
|
||||
sctp_auth_shkey_free(ep_key);
|
||||
}
|
||||
}
|
||||
|
||||
/* Compare two byte vectors as numbers. Return values
|
||||
* are:
|
||||
* 0 - vectors are equal
|
||||
* < 0 - vector 1 is smaller then vector2
|
||||
* > 0 - vector 1 is greater then vector2
|
||||
*
|
||||
* Algorithm is:
|
||||
* This is performed by selecting the numerically smaller key vector...
|
||||
* If the key vectors are equal as numbers but differ in length ...
|
||||
* the shorter vector is considered smaller
|
||||
*
|
||||
* Examples (with small values):
|
||||
* 000123456789 > 123456789 (first number is longer)
|
||||
* 000123456789 < 234567891 (second number is larger numerically)
|
||||
* 123456789 > 2345678 (first number is both larger & longer)
|
||||
*/
|
||||
static int sctp_auth_compare_vectors(struct sctp_auth_bytes *vector1,
|
||||
struct sctp_auth_bytes *vector2)
|
||||
{
|
||||
int diff;
|
||||
int i;
|
||||
const __u8 *longer;
|
||||
|
||||
diff = vector1->len - vector2->len;
|
||||
if (diff) {
|
||||
longer = (diff > 0) ? vector1->data : vector2->data;
|
||||
|
||||
/* Check to see if the longer number is
|
||||
* lead-zero padded. If it is not, it
|
||||
* is automatically larger numerically.
|
||||
*/
|
||||
for (i = 0; i < abs(diff); i++ ) {
|
||||
if (longer[i] != 0)
|
||||
return diff;
|
||||
}
|
||||
}
|
||||
|
||||
/* lengths are the same, compare numbers */
|
||||
return memcmp(vector1->data, vector2->data, vector1->len);
|
||||
}
|
||||
|
||||
/*
|
||||
* Create a key vector as described in SCTP-AUTH, Section 6.1
|
||||
* The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
|
||||
* parameter sent by each endpoint are concatenated as byte vectors.
|
||||
* These parameters include the parameter type, parameter length, and
|
||||
* the parameter value, but padding is omitted; all padding MUST be
|
||||
* removed from this concatenation before proceeding with further
|
||||
* computation of keys. Parameters which were not sent are simply
|
||||
* omitted from the concatenation process. The resulting two vectors
|
||||
* are called the two key vectors.
|
||||
*/
|
||||
static struct sctp_auth_bytes *sctp_auth_make_key_vector(
|
||||
sctp_random_param_t *random,
|
||||
sctp_chunks_param_t *chunks,
|
||||
sctp_hmac_algo_param_t *hmacs,
|
||||
gfp_t gfp)
|
||||
{
|
||||
struct sctp_auth_bytes *new;
|
||||
__u32 len;
|
||||
__u32 offset = 0;
|
||||
|
||||
len = ntohs(random->param_hdr.length) + ntohs(hmacs->param_hdr.length);
|
||||
if (chunks)
|
||||
len += ntohs(chunks->param_hdr.length);
|
||||
|
||||
new = kmalloc(sizeof(struct sctp_auth_bytes) + len, gfp);
|
||||
if (!new)
|
||||
return NULL;
|
||||
|
||||
new->len = len;
|
||||
|
||||
memcpy(new->data, random, ntohs(random->param_hdr.length));
|
||||
offset += ntohs(random->param_hdr.length);
|
||||
|
||||
if (chunks) {
|
||||
memcpy(new->data + offset, chunks,
|
||||
ntohs(chunks->param_hdr.length));
|
||||
offset += ntohs(chunks->param_hdr.length);
|
||||
}
|
||||
|
||||
memcpy(new->data + offset, hmacs, ntohs(hmacs->param_hdr.length));
|
||||
|
||||
return new;
|
||||
}
|
||||
|
||||
|
||||
/* Make a key vector based on our local parameters */
|
||||
struct sctp_auth_bytes *sctp_auth_make_local_vector(
|
||||
const struct sctp_association *asoc,
|
||||
gfp_t gfp)
|
||||
{
|
||||
return sctp_auth_make_key_vector(
|
||||
(sctp_random_param_t*)asoc->c.auth_random,
|
||||
(sctp_chunks_param_t*)asoc->c.auth_chunks,
|
||||
(sctp_hmac_algo_param_t*)asoc->c.auth_hmacs,
|
||||
gfp);
|
||||
}
|
||||
|
||||
/* Make a key vector based on peer's parameters */
|
||||
struct sctp_auth_bytes *sctp_auth_make_peer_vector(
|
||||
const struct sctp_association *asoc,
|
||||
gfp_t gfp)
|
||||
{
|
||||
return sctp_auth_make_key_vector(asoc->peer.peer_random,
|
||||
asoc->peer.peer_chunks,
|
||||
asoc->peer.peer_hmacs,
|
||||
gfp);
|
||||
}
|
||||
|
||||
|
||||
/* Set the value of the association shared key base on the parameters
|
||||
* given. The algorithm is:
|
||||
* From the endpoint pair shared keys and the key vectors the
|
||||
* association shared keys are computed. This is performed by selecting
|
||||
* the numerically smaller key vector and concatenating it to the
|
||||
* endpoint pair shared key, and then concatenating the numerically
|
||||
* larger key vector to that. The result of the concatenation is the
|
||||
* association shared key.
|
||||
*/
|
||||
static struct sctp_auth_bytes *sctp_auth_asoc_set_secret(
|
||||
struct sctp_shared_key *ep_key,
|
||||
struct sctp_auth_bytes *first_vector,
|
||||
struct sctp_auth_bytes *last_vector,
|
||||
gfp_t gfp)
|
||||
{
|
||||
struct sctp_auth_bytes *secret;
|
||||
__u32 offset = 0;
|
||||
__u32 auth_len;
|
||||
|
||||
auth_len = first_vector->len + last_vector->len;
|
||||
if (ep_key->key)
|
||||
auth_len += ep_key->key->len;
|
||||
|
||||
secret = sctp_auth_create_key(auth_len, gfp);
|
||||
if (!secret)
|
||||
return NULL;
|
||||
|
||||
if (ep_key->key) {
|
||||
memcpy(secret->data, ep_key->key->data, ep_key->key->len);
|
||||
offset += ep_key->key->len;
|
||||
}
|
||||
|
||||
memcpy(secret->data + offset, first_vector->data, first_vector->len);
|
||||
offset += first_vector->len;
|
||||
|
||||
memcpy(secret->data + offset, last_vector->data, last_vector->len);
|
||||
|
||||
return secret;
|
||||
}
|
||||
|
||||
/* Create an association shared key. Follow the algorithm
|
||||
* described in SCTP-AUTH, Section 6.1
|
||||
*/
|
||||
static struct sctp_auth_bytes *sctp_auth_asoc_create_secret(
|
||||
const struct sctp_association *asoc,
|
||||
struct sctp_shared_key *ep_key,
|
||||
gfp_t gfp)
|
||||
{
|
||||
struct sctp_auth_bytes *local_key_vector;
|
||||
struct sctp_auth_bytes *peer_key_vector;
|
||||
struct sctp_auth_bytes *first_vector,
|
||||
*last_vector;
|
||||
struct sctp_auth_bytes *secret = NULL;
|
||||
int cmp;
|
||||
|
||||
|
||||
/* Now we need to build the key vectors
|
||||
* SCTP-AUTH , Section 6.1
|
||||
* The RANDOM parameter, the CHUNKS parameter and the HMAC-ALGO
|
||||
* parameter sent by each endpoint are concatenated as byte vectors.
|
||||
* These parameters include the parameter type, parameter length, and
|
||||
* the parameter value, but padding is omitted; all padding MUST be
|
||||
* removed from this concatenation before proceeding with further
|
||||
* computation of keys. Parameters which were not sent are simply
|
||||
* omitted from the concatenation process. The resulting two vectors
|
||||
* are called the two key vectors.
|
||||
*/
|
||||
|
||||
local_key_vector = sctp_auth_make_local_vector(asoc, gfp);
|
||||
peer_key_vector = sctp_auth_make_peer_vector(asoc, gfp);
|
||||
|
||||
if (!peer_key_vector || !local_key_vector)
|
||||
goto out;
|
||||
|
||||
/* Figure out the order in wich the key_vectors will be
|
||||
* added to the endpoint shared key.
|
||||
* SCTP-AUTH, Section 6.1:
|
||||
* This is performed by selecting the numerically smaller key
|
||||
* vector and concatenating it to the endpoint pair shared
|
||||
* key, and then concatenating the numerically larger key
|
||||
* vector to that. If the key vectors are equal as numbers
|
||||
* but differ in length, then the concatenation order is the
|
||||
* endpoint shared key, followed by the shorter key vector,
|
||||
* followed by the longer key vector. Otherwise, the key
|
||||
* vectors are identical, and may be concatenated to the
|
||||
* endpoint pair key in any order.
|
||||
*/
|
||||
cmp = sctp_auth_compare_vectors(local_key_vector,
|
||||
peer_key_vector);
|
||||
if (cmp < 0) {
|
||||
first_vector = local_key_vector;
|
||||
last_vector = peer_key_vector;
|
||||
} else {
|
||||
first_vector = peer_key_vector;
|
||||
last_vector = local_key_vector;
|
||||
}
|
||||
|
||||
secret = sctp_auth_asoc_set_secret(ep_key, first_vector, last_vector,
|
||||
gfp);
|
||||
out:
|
||||
kfree(local_key_vector);
|
||||
kfree(peer_key_vector);
|
||||
|
||||
return secret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Populate the association overlay list with the list
|
||||
* from the endpoint.
|
||||
*/
|
||||
int sctp_auth_asoc_copy_shkeys(const struct sctp_endpoint *ep,
|
||||
struct sctp_association *asoc,
|
||||
gfp_t gfp)
|
||||
{
|
||||
struct sctp_shared_key *sh_key;
|
||||
struct sctp_shared_key *new;
|
||||
|
||||
BUG_ON(!list_empty(&asoc->endpoint_shared_keys));
|
||||
|
||||
key_for_each(sh_key, &ep->endpoint_shared_keys) {
|
||||
new = sctp_auth_shkey_create(sh_key->key_id, gfp);
|
||||
if (!new)
|
||||
goto nomem;
|
||||
|
||||
new->key = sh_key->key;
|
||||
sctp_auth_key_hold(new->key);
|
||||
list_add(&new->key_list, &asoc->endpoint_shared_keys);
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
nomem:
|
||||
sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
|
||||
/* Public interface to creat the association shared key.
|
||||
* See code above for the algorithm.
|
||||
*/
|
||||
int sctp_auth_asoc_init_active_key(struct sctp_association *asoc, gfp_t gfp)
|
||||
{
|
||||
struct sctp_auth_bytes *secret;
|
||||
struct sctp_shared_key *ep_key;
|
||||
|
||||
/* If we don't support AUTH, or peer is not capable
|
||||
* we don't need to do anything.
|
||||
*/
|
||||
if (!sctp_auth_enable || !asoc->peer.auth_capable)
|
||||
return 0;
|
||||
|
||||
/* If the key_id is non-zero and we couldn't find an
|
||||
* endpoint pair shared key, we can't compute the
|
||||
* secret.
|
||||
* For key_id 0, endpoint pair shared key is a NULL key.
|
||||
*/
|
||||
ep_key = sctp_auth_get_shkey(asoc, asoc->active_key_id);
|
||||
BUG_ON(!ep_key);
|
||||
|
||||
secret = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
|
||||
if (!secret)
|
||||
return -ENOMEM;
|
||||
|
||||
sctp_auth_key_put(asoc->asoc_shared_key);
|
||||
asoc->asoc_shared_key = secret;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/* Find the endpoint pair shared key based on the key_id */
|
||||
struct sctp_shared_key *sctp_auth_get_shkey(
|
||||
const struct sctp_association *asoc,
|
||||
__u16 key_id)
|
||||
{
|
||||
struct sctp_shared_key *key = NULL;
|
||||
|
||||
/* First search associations set of endpoint pair shared keys */
|
||||
key_for_each(key, &asoc->endpoint_shared_keys) {
|
||||
if (key->key_id == key_id)
|
||||
break;
|
||||
}
|
||||
|
||||
return key;
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize all the possible digest transforms that we can use. Right now
|
||||
* now, the supported digests are SHA1 and SHA256. We do this here once
|
||||
* because of the restrictiong that transforms may only be allocated in
|
||||
* user context. This forces us to pre-allocated all possible transforms
|
||||
* at the endpoint init time.
|
||||
*/
|
||||
int sctp_auth_init_hmacs(struct sctp_endpoint *ep, gfp_t gfp)
|
||||
{
|
||||
struct crypto_hash *tfm = NULL;
|
||||
__u16 id;
|
||||
|
||||
/* if the transforms are already allocted, we are done */
|
||||
if (!sctp_auth_enable) {
|
||||
ep->auth_hmacs = NULL;
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (ep->auth_hmacs)
|
||||
return 0;
|
||||
|
||||
/* Allocated the array of pointers to transorms */
|
||||
ep->auth_hmacs = kzalloc(
|
||||
sizeof(struct crypto_hash *) * SCTP_AUTH_NUM_HMACS,
|
||||
gfp);
|
||||
if (!ep->auth_hmacs)
|
||||
return -ENOMEM;
|
||||
|
||||
for (id = 0; id < SCTP_AUTH_NUM_HMACS; id++) {
|
||||
|
||||
/* See is we support the id. Supported IDs have name and
|
||||
* length fields set, so that we can allocated and use
|
||||
* them. We can safely just check for name, for without the
|
||||
* name, we can't allocate the TFM.
|
||||
*/
|
||||
if (!sctp_hmac_list[id].hmac_name)
|
||||
continue;
|
||||
|
||||
/* If this TFM has been allocated, we are all set */
|
||||
if (ep->auth_hmacs[id])
|
||||
continue;
|
||||
|
||||
/* Allocate the ID */
|
||||
tfm = crypto_alloc_hash(sctp_hmac_list[id].hmac_name, 0,
|
||||
CRYPTO_ALG_ASYNC);
|
||||
if (IS_ERR(tfm))
|
||||
goto out_err;
|
||||
|
||||
ep->auth_hmacs[id] = tfm;
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
out_err:
|
||||
/* Clean up any successfull allocations */
|
||||
sctp_auth_destroy_hmacs(ep->auth_hmacs);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
/* Destroy the hmac tfm array */
|
||||
void sctp_auth_destroy_hmacs(struct crypto_hash *auth_hmacs[])
|
||||
{
|
||||
int i;
|
||||
|
||||
if (!auth_hmacs)
|
||||
return;
|
||||
|
||||
for (i = 0; i < SCTP_AUTH_NUM_HMACS; i++)
|
||||
{
|
||||
if (auth_hmacs[i])
|
||||
crypto_free_hash(auth_hmacs[i]);
|
||||
}
|
||||
kfree(auth_hmacs);
|
||||
}
|
||||
|
||||
|
||||
struct sctp_hmac *sctp_auth_get_hmac(__u16 hmac_id)
|
||||
{
|
||||
return &sctp_hmac_list[hmac_id];
|
||||
}
|
||||
|
||||
/* Get an hmac description information that we can use to build
|
||||
* the AUTH chunk
|
||||
*/
|
||||
struct sctp_hmac *sctp_auth_asoc_get_hmac(const struct sctp_association *asoc)
|
||||
{
|
||||
struct sctp_hmac_algo_param *hmacs;
|
||||
__u16 n_elt;
|
||||
__u16 id = 0;
|
||||
int i;
|
||||
|
||||
/* If we have a default entry, use it */
|
||||
if (asoc->default_hmac_id)
|
||||
return &sctp_hmac_list[asoc->default_hmac_id];
|
||||
|
||||
/* Since we do not have a default entry, find the first entry
|
||||
* we support and return that. Do not cache that id.
|
||||
*/
|
||||
hmacs = asoc->peer.peer_hmacs;
|
||||
if (!hmacs)
|
||||
return NULL;
|
||||
|
||||
n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
|
||||
for (i = 0; i < n_elt; i++) {
|
||||
id = ntohs(hmacs->hmac_ids[i]);
|
||||
|
||||
/* Check the id is in the supported range */
|
||||
if (id > SCTP_AUTH_HMAC_ID_MAX)
|
||||
continue;
|
||||
|
||||
/* See is we support the id. Supported IDs have name and
|
||||
* length fields set, so that we can allocated and use
|
||||
* them. We can safely just check for name, for without the
|
||||
* name, we can't allocate the TFM.
|
||||
*/
|
||||
if (!sctp_hmac_list[id].hmac_name)
|
||||
continue;
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
if (id == 0)
|
||||
return NULL;
|
||||
|
||||
return &sctp_hmac_list[id];
|
||||
}
|
||||
|
||||
static int __sctp_auth_find_hmacid(__u16 *hmacs, int n_elts, __u16 hmac_id)
|
||||
{
|
||||
int found = 0;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < n_elts; i++) {
|
||||
if (hmac_id == hmacs[i]) {
|
||||
found = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return found;
|
||||
}
|
||||
|
||||
/* See if the HMAC_ID is one that we claim as supported */
|
||||
int sctp_auth_asoc_verify_hmac_id(const struct sctp_association *asoc,
|
||||
__u16 hmac_id)
|
||||
{
|
||||
struct sctp_hmac_algo_param *hmacs;
|
||||
__u16 n_elt;
|
||||
|
||||
if (!asoc)
|
||||
return 0;
|
||||
|
||||
hmacs = (struct sctp_hmac_algo_param *)asoc->c.auth_hmacs;
|
||||
n_elt = (ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t)) >> 1;
|
||||
|
||||
return __sctp_auth_find_hmacid(hmacs->hmac_ids, n_elt, hmac_id);
|
||||
}
|
||||
|
||||
|
||||
/* Cache the default HMAC id. This to follow this text from SCTP-AUTH:
|
||||
* Section 6.1:
|
||||
* The receiver of a HMAC-ALGO parameter SHOULD use the first listed
|
||||
* algorithm it supports.
|
||||
*/
|
||||
void sctp_auth_asoc_set_default_hmac(struct sctp_association *asoc,
|
||||
struct sctp_hmac_algo_param *hmacs)
|
||||
{
|
||||
struct sctp_endpoint *ep;
|
||||
__u16 id;
|
||||
int i;
|
||||
int n_params;
|
||||
|
||||
/* if the default id is already set, use it */
|
||||
if (asoc->default_hmac_id)
|
||||
return;
|
||||
|
||||
n_params = (ntohs(hmacs->param_hdr.length)
|
||||
- sizeof(sctp_paramhdr_t)) >> 1;
|
||||
ep = asoc->ep;
|
||||
for (i = 0; i < n_params; i++) {
|
||||
id = ntohs(hmacs->hmac_ids[i]);
|
||||
|
||||
/* Check the id is in the supported range */
|
||||
if (id > SCTP_AUTH_HMAC_ID_MAX)
|
||||
continue;
|
||||
|
||||
/* If this TFM has been allocated, use this id */
|
||||
if (ep->auth_hmacs[id]) {
|
||||
asoc->default_hmac_id = id;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Check to see if the given chunk is supposed to be authenticated */
|
||||
static int __sctp_auth_cid(sctp_cid_t chunk, struct sctp_chunks_param *param)
|
||||
{
|
||||
unsigned short len;
|
||||
int found = 0;
|
||||
int i;
|
||||
|
||||
if (!param)
|
||||
return 0;
|
||||
|
||||
len = ntohs(param->param_hdr.length) - sizeof(sctp_paramhdr_t);
|
||||
|
||||
/* SCTP-AUTH, Section 3.2
|
||||
* The chunk types for INIT, INIT-ACK, SHUTDOWN-COMPLETE and AUTH
|
||||
* chunks MUST NOT be listed in the CHUNKS parameter. However, if
|
||||
* a CHUNKS parameter is received then the types for INIT, INIT-ACK,
|
||||
* SHUTDOWN-COMPLETE and AUTH chunks MUST be ignored.
|
||||
*/
|
||||
for (i = 0; !found && i < len; i++) {
|
||||
switch (param->chunks[i]) {
|
||||
case SCTP_CID_INIT:
|
||||
case SCTP_CID_INIT_ACK:
|
||||
case SCTP_CID_SHUTDOWN_COMPLETE:
|
||||
case SCTP_CID_AUTH:
|
||||
break;
|
||||
|
||||
default:
|
||||
if (param->chunks[i] == chunk)
|
||||
found = 1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return found;
|
||||
}
|
||||
|
||||
/* Check if peer requested that this chunk is authenticated */
|
||||
int sctp_auth_send_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
|
||||
{
|
||||
if (!sctp_auth_enable || !asoc || !asoc->peer.auth_capable)
|
||||
return 0;
|
||||
|
||||
return __sctp_auth_cid(chunk, asoc->peer.peer_chunks);
|
||||
}
|
||||
|
||||
/* Check if we requested that peer authenticate this chunk. */
|
||||
int sctp_auth_recv_cid(sctp_cid_t chunk, const struct sctp_association *asoc)
|
||||
{
|
||||
if (!sctp_auth_enable || !asoc)
|
||||
return 0;
|
||||
|
||||
return __sctp_auth_cid(chunk,
|
||||
(struct sctp_chunks_param *)asoc->c.auth_chunks);
|
||||
}
|
||||
|
||||
/* SCTP-AUTH: Section 6.2:
|
||||
* The sender MUST calculate the MAC as described in RFC2104 [2] using
|
||||
* the hash function H as described by the MAC Identifier and the shared
|
||||
* association key K based on the endpoint pair shared key described by
|
||||
* the shared key identifier. The 'data' used for the computation of
|
||||
* the AUTH-chunk is given by the AUTH chunk with its HMAC field set to
|
||||
* zero (as shown in Figure 6) followed by all chunks that are placed
|
||||
* after the AUTH chunk in the SCTP packet.
|
||||
*/
|
||||
void sctp_auth_calculate_hmac(const struct sctp_association *asoc,
|
||||
struct sk_buff *skb,
|
||||
struct sctp_auth_chunk *auth,
|
||||
gfp_t gfp)
|
||||
{
|
||||
struct scatterlist sg;
|
||||
struct hash_desc desc;
|
||||
struct sctp_auth_bytes *asoc_key;
|
||||
__u16 key_id, hmac_id;
|
||||
__u8 *digest;
|
||||
unsigned char *end;
|
||||
int free_key = 0;
|
||||
|
||||
/* Extract the info we need:
|
||||
* - hmac id
|
||||
* - key id
|
||||
*/
|
||||
key_id = ntohs(auth->auth_hdr.shkey_id);
|
||||
hmac_id = ntohs(auth->auth_hdr.hmac_id);
|
||||
|
||||
if (key_id == asoc->active_key_id)
|
||||
asoc_key = asoc->asoc_shared_key;
|
||||
else {
|
||||
struct sctp_shared_key *ep_key;
|
||||
|
||||
ep_key = sctp_auth_get_shkey(asoc, key_id);
|
||||
if (!ep_key)
|
||||
return;
|
||||
|
||||
asoc_key = sctp_auth_asoc_create_secret(asoc, ep_key, gfp);
|
||||
if (!asoc_key)
|
||||
return;
|
||||
|
||||
free_key = 1;
|
||||
}
|
||||
|
||||
/* set up scatter list */
|
||||
end = skb_tail_pointer(skb);
|
||||
sg.page = virt_to_page(auth);
|
||||
sg.offset = (unsigned long)(auth) % PAGE_SIZE;
|
||||
sg.length = end - (unsigned char *)auth;
|
||||
|
||||
desc.tfm = asoc->ep->auth_hmacs[hmac_id];
|
||||
desc.flags = 0;
|
||||
|
||||
digest = auth->auth_hdr.hmac;
|
||||
if (crypto_hash_setkey(desc.tfm, &asoc_key->data[0], asoc_key->len))
|
||||
goto free;
|
||||
|
||||
crypto_hash_digest(&desc, &sg, sg.length, digest);
|
||||
|
||||
free:
|
||||
if (free_key)
|
||||
sctp_auth_key_put(asoc_key);
|
||||
}
|
@ -58,6 +58,7 @@ SCTP_DBG_OBJCNT(chunk);
|
||||
SCTP_DBG_OBJCNT(addr);
|
||||
SCTP_DBG_OBJCNT(ssnmap);
|
||||
SCTP_DBG_OBJCNT(datamsg);
|
||||
SCTP_DBG_OBJCNT(keys);
|
||||
|
||||
/* An array to make it easy to pretty print the debug information
|
||||
* to the proc fs.
|
||||
@ -73,6 +74,7 @@ static sctp_dbg_objcnt_entry_t sctp_dbg_objcnt[] = {
|
||||
SCTP_DBG_OBJCNT_ENTRY(addr),
|
||||
SCTP_DBG_OBJCNT_ENTRY(ssnmap),
|
||||
SCTP_DBG_OBJCNT_ENTRY(datamsg),
|
||||
SCTP_DBG_OBJCNT_ENTRY(keys),
|
||||
};
|
||||
|
||||
/* Callback from procfs to read out objcount information.
|
||||
|
Loading…
x
Reference in New Issue
Block a user