From 1f586614f3ffa80fdf2116b2a1bebcdb5969cef8 Mon Sep 17 00:00:00 2001 From: Harishankar Vishwanathan Date: Tue, 16 Apr 2024 07:53:02 -0400 Subject: [PATCH] bpf: Harden and/or/xor value tracking in verifier This patch addresses a latent unsoundness issue in the scalar(32)_min_max_and/or/xor functions. While it is not a bugfix, it ensures that the functions produce sound outputs for all inputs. The issue occurs in these functions when setting signed bounds. The following example illustrates the issue for scalar_min_max_and(), but it applies to the other functions. In scalar_min_max_and() the following clause is executed when ANDing positive numbers: /* ANDing two positives gives a positive, so safe to * cast result into s64. */ dst_reg->smin_value = dst_reg->umin_value; dst_reg->smax_value = dst_reg->umax_value; However, if umin_value and umax_value of dst_reg cross the sign boundary (i.e., if (s64)dst_reg->umin_value > (s64)dst_reg->umax_value), then we will end up with smin_value > smax_value, which is unsound. Previous works [1, 2] have discovered and reported this issue. Our tool Agni [2, 3] consideres it a false positive. This is because, during the verification of the abstract operator scalar_min_max_and(), Agni restricts its inputs to those passing through reg_bounds_sync(). This mimics real-world verifier behavior, as reg_bounds_sync() is invariably executed at the tail of every abstract operator. Therefore, such behavior is unlikely in an actual verifier execution. However, it is still unsound for an abstract operator to set signed bounds such that smin_value > smax_value. This patch fixes it, making the abstract operator sound for all (well-formed) inputs. It is worth noting that while the previous code updated the signed bounds (using the output unsigned bounds) only when the *input signed* bounds were positive, the new code updates them whenever the *output unsigned* bounds do not cross the sign boundary. An alternative approach to fix this latent unsoundness would be to unconditionally set the signed bounds to unbounded [S64_MIN, S64_MAX], and let reg_bounds_sync() refine the signed bounds using the unsigned bounds and the tnum. We found that our approach produces more precise (tighter) bounds. For example, consider these inputs to BPF_AND: /* dst_reg */ var_off.value: 8608032320201083347 var_off.mask: 615339716653692460 smin_value: 8070450532247928832 smax_value: 8070450532247928832 umin_value: 13206380674380886586 umax_value: 13206380674380886586 s32_min_value: -2110561598 s32_max_value: -133438816 u32_min_value: 4135055354 u32_max_value: 4135055354 /* src_reg */ var_off.value: 8584102546103074815 var_off.mask: 9862641527606476800 smin_value: 2920655011908158522 smax_value: 7495731535348625717 umin_value: 7001104867969363969 umax_value: 8584102543730304042 s32_min_value: -2097116671 s32_max_value: 71704632 u32_min_value: 1047457619 u32_max_value: 4268683090 After going through tnum_and() -> scalar32_min_max_and() -> scalar_min_max_and() -> reg_bounds_sync(), our patch produces the following bounds for s32: s32_min_value: -1263875629 s32_max_value: -159911942 Whereas, setting the signed bounds to unbounded in scalar_min_max_and() produces: s32_min_value: -1263875629 s32_max_value: -1 As observed, our patch produces a tighter s32 bound. We also confirmed using Agni and SMT verification that our patch always produces signed bounds that are equal to or more precise than setting the signed bounds to unbounded in scalar_min_max_and(). [1] https://sanjit-bhat.github.io/assets/pdf/ebpf-verifier-range-analysis22.pdf [2] https://link.springer.com/chapter/10.1007/978-3-031-37709-9_12 [3] https://github.com/bpfverif/agni Co-developed-by: Matan Shachnai Signed-off-by: Matan Shachnai Co-developed-by: Srinivas Narayana Signed-off-by: Srinivas Narayana Co-developed-by: Santosh Nagarakatte Signed-off-by: Santosh Nagarakatte Signed-off-by: Harishankar Vishwanathan Signed-off-by: Daniel Borkmann Acked-by: Daniel Borkmann Link: https://lore.kernel.org/bpf/20240402212039.51815-1-harishankar.vishwanathan@gmail.com Link: https://lore.kernel.org/bpf/20240416115303.331688-1-harishankar.vishwanathan@gmail.com --- kernel/bpf/verifier.c | 94 ++++++++++++++++++------------------------- 1 file changed, 40 insertions(+), 54 deletions(-) diff --git a/kernel/bpf/verifier.c b/kernel/bpf/verifier.c index 2aad6d90550f..68cfd6fc6ad4 100644 --- a/kernel/bpf/verifier.c +++ b/kernel/bpf/verifier.c @@ -13320,7 +13320,6 @@ static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, bool src_known = tnum_subreg_is_const(src_reg->var_off); bool dst_known = tnum_subreg_is_const(dst_reg->var_off); struct tnum var32_off = tnum_subreg(dst_reg->var_off); - s32 smin_val = src_reg->s32_min_value; u32 umax_val = src_reg->u32_max_value; if (src_known && dst_known) { @@ -13333,18 +13332,16 @@ static void scalar32_min_max_and(struct bpf_reg_state *dst_reg, */ dst_reg->u32_min_value = var32_off.value; dst_reg->u32_max_value = min(dst_reg->u32_max_value, umax_val); - if (dst_reg->s32_min_value < 0 || smin_val < 0) { - /* Lose signed bounds when ANDing negative numbers, - * ain't nobody got time for that. - */ - dst_reg->s32_min_value = S32_MIN; - dst_reg->s32_max_value = S32_MAX; - } else { - /* ANDing two positives gives a positive, so safe to - * cast result into s64. - */ + + /* Safe to set s32 bounds by casting u32 result into s32 when u32 + * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. + */ + if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { dst_reg->s32_min_value = dst_reg->u32_min_value; dst_reg->s32_max_value = dst_reg->u32_max_value; + } else { + dst_reg->s32_min_value = S32_MIN; + dst_reg->s32_max_value = S32_MAX; } } @@ -13353,7 +13350,6 @@ static void scalar_min_max_and(struct bpf_reg_state *dst_reg, { bool src_known = tnum_is_const(src_reg->var_off); bool dst_known = tnum_is_const(dst_reg->var_off); - s64 smin_val = src_reg->smin_value; u64 umax_val = src_reg->umax_value; if (src_known && dst_known) { @@ -13366,18 +13362,16 @@ static void scalar_min_max_and(struct bpf_reg_state *dst_reg, */ dst_reg->umin_value = dst_reg->var_off.value; dst_reg->umax_value = min(dst_reg->umax_value, umax_val); - if (dst_reg->smin_value < 0 || smin_val < 0) { - /* Lose signed bounds when ANDing negative numbers, - * ain't nobody got time for that. - */ - dst_reg->smin_value = S64_MIN; - dst_reg->smax_value = S64_MAX; - } else { - /* ANDing two positives gives a positive, so safe to - * cast result into s64. - */ + + /* Safe to set s64 bounds by casting u64 result into s64 when u64 + * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. + */ + if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { dst_reg->smin_value = dst_reg->umin_value; dst_reg->smax_value = dst_reg->umax_value; + } else { + dst_reg->smin_value = S64_MIN; + dst_reg->smax_value = S64_MAX; } /* We may learn something more from the var_off */ __update_reg_bounds(dst_reg); @@ -13389,7 +13383,6 @@ static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, bool src_known = tnum_subreg_is_const(src_reg->var_off); bool dst_known = tnum_subreg_is_const(dst_reg->var_off); struct tnum var32_off = tnum_subreg(dst_reg->var_off); - s32 smin_val = src_reg->s32_min_value; u32 umin_val = src_reg->u32_min_value; if (src_known && dst_known) { @@ -13402,18 +13395,16 @@ static void scalar32_min_max_or(struct bpf_reg_state *dst_reg, */ dst_reg->u32_min_value = max(dst_reg->u32_min_value, umin_val); dst_reg->u32_max_value = var32_off.value | var32_off.mask; - if (dst_reg->s32_min_value < 0 || smin_val < 0) { - /* Lose signed bounds when ORing negative numbers, - * ain't nobody got time for that. - */ - dst_reg->s32_min_value = S32_MIN; - dst_reg->s32_max_value = S32_MAX; - } else { - /* ORing two positives gives a positive, so safe to - * cast result into s64. - */ + + /* Safe to set s32 bounds by casting u32 result into s32 when u32 + * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. + */ + if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { dst_reg->s32_min_value = dst_reg->u32_min_value; dst_reg->s32_max_value = dst_reg->u32_max_value; + } else { + dst_reg->s32_min_value = S32_MIN; + dst_reg->s32_max_value = S32_MAX; } } @@ -13422,7 +13413,6 @@ static void scalar_min_max_or(struct bpf_reg_state *dst_reg, { bool src_known = tnum_is_const(src_reg->var_off); bool dst_known = tnum_is_const(dst_reg->var_off); - s64 smin_val = src_reg->smin_value; u64 umin_val = src_reg->umin_value; if (src_known && dst_known) { @@ -13435,18 +13425,16 @@ static void scalar_min_max_or(struct bpf_reg_state *dst_reg, */ dst_reg->umin_value = max(dst_reg->umin_value, umin_val); dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; - if (dst_reg->smin_value < 0 || smin_val < 0) { - /* Lose signed bounds when ORing negative numbers, - * ain't nobody got time for that. - */ - dst_reg->smin_value = S64_MIN; - dst_reg->smax_value = S64_MAX; - } else { - /* ORing two positives gives a positive, so safe to - * cast result into s64. - */ + + /* Safe to set s64 bounds by casting u64 result into s64 when u64 + * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. + */ + if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { dst_reg->smin_value = dst_reg->umin_value; dst_reg->smax_value = dst_reg->umax_value; + } else { + dst_reg->smin_value = S64_MIN; + dst_reg->smax_value = S64_MAX; } /* We may learn something more from the var_off */ __update_reg_bounds(dst_reg); @@ -13458,7 +13446,6 @@ static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, bool src_known = tnum_subreg_is_const(src_reg->var_off); bool dst_known = tnum_subreg_is_const(dst_reg->var_off); struct tnum var32_off = tnum_subreg(dst_reg->var_off); - s32 smin_val = src_reg->s32_min_value; if (src_known && dst_known) { __mark_reg32_known(dst_reg, var32_off.value); @@ -13469,10 +13456,10 @@ static void scalar32_min_max_xor(struct bpf_reg_state *dst_reg, dst_reg->u32_min_value = var32_off.value; dst_reg->u32_max_value = var32_off.value | var32_off.mask; - if (dst_reg->s32_min_value >= 0 && smin_val >= 0) { - /* XORing two positive sign numbers gives a positive, - * so safe to cast u32 result into s32. - */ + /* Safe to set s32 bounds by casting u32 result into s32 when u32 + * doesn't cross sign boundary. Otherwise set s32 bounds to unbounded. + */ + if ((s32)dst_reg->u32_min_value <= (s32)dst_reg->u32_max_value) { dst_reg->s32_min_value = dst_reg->u32_min_value; dst_reg->s32_max_value = dst_reg->u32_max_value; } else { @@ -13486,7 +13473,6 @@ static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, { bool src_known = tnum_is_const(src_reg->var_off); bool dst_known = tnum_is_const(dst_reg->var_off); - s64 smin_val = src_reg->smin_value; if (src_known && dst_known) { /* dst_reg->var_off.value has been updated earlier */ @@ -13498,10 +13484,10 @@ static void scalar_min_max_xor(struct bpf_reg_state *dst_reg, dst_reg->umin_value = dst_reg->var_off.value; dst_reg->umax_value = dst_reg->var_off.value | dst_reg->var_off.mask; - if (dst_reg->smin_value >= 0 && smin_val >= 0) { - /* XORing two positive sign numbers gives a positive, - * so safe to cast u64 result into s64. - */ + /* Safe to set s64 bounds by casting u64 result into s64 when u64 + * doesn't cross sign boundary. Otherwise set s64 bounds to unbounded. + */ + if ((s64)dst_reg->umin_value <= (s64)dst_reg->umax_value) { dst_reg->smin_value = dst_reg->umin_value; dst_reg->smax_value = dst_reg->umax_value; } else {