tools/power turbostat: Read Core-cstates via perf

Reading the counters via perf can be done in bulk with a single syscall,
making the counter values more accurate with respect to one another by
minimizing the time gap between individual counter reads.

Signed-off-by: Patryk Wlazlyn <patryk.wlazlyn@linux.intel.com>
Signed-off-by: Len Brown <len.brown@intel.com>
This commit is contained in:
Patryk Wlazlyn 2024-03-11 18:06:16 +01:00 committed by Len Brown
parent 3559ea813a
commit 1f9e46da9c

View File

@ -63,6 +63,7 @@ enum counter_type { COUNTER_ITEMS, COUNTER_CYCLES, COUNTER_SECONDS, COUNTER_USEC
enum counter_format { FORMAT_RAW, FORMAT_DELTA, FORMAT_PERCENT, FORMAT_AVERAGE }; enum counter_format { FORMAT_RAW, FORMAT_DELTA, FORMAT_PERCENT, FORMAT_AVERAGE };
enum amperf_source { AMPERF_SOURCE_PERF, AMPERF_SOURCE_MSR }; enum amperf_source { AMPERF_SOURCE_PERF, AMPERF_SOURCE_MSR };
enum rapl_source { RAPL_SOURCE_NONE, RAPL_SOURCE_PERF, RAPL_SOURCE_MSR }; enum rapl_source { RAPL_SOURCE_NONE, RAPL_SOURCE_PERF, RAPL_SOURCE_MSR };
enum cstate_source { CSTATE_SOURCE_NONE, CSTATE_SOURCE_PERF, CSTATE_SOURCE_MSR };
struct sysfs_path { struct sysfs_path {
char path[PATH_BYTES]; char path[PATH_BYTES];
@ -1183,6 +1184,77 @@ struct rapl_counter {
double scale; double scale;
}; };
/* Indexes used to map data read from perf and MSRs into global variables */
enum ccstate_rci_index {
CCSTATE_RCI_INDEX_C1_RESIDENCY = 0,
CCSTATE_RCI_INDEX_C3_RESIDENCY = 1,
CCSTATE_RCI_INDEX_C6_RESIDENCY = 2,
CCSTATE_RCI_INDEX_C7_RESIDENCY = 3,
NUM_CCSTATE_COUNTERS,
};
struct cstate_counter_info_t {
unsigned long long data[NUM_CCSTATE_COUNTERS];
enum cstate_source source[NUM_CCSTATE_COUNTERS];
unsigned long long msr[NUM_CCSTATE_COUNTERS];
int fd_perf;
};
struct cstate_counter_info_t *ccstate_counter_info;
unsigned int ccstate_counter_info_size;
#define CSTATE_COUNTER_FLAG_COLLECT_PER_THREAD (1u << 0)
#define CSTATE_COUNTER_FLAG_SOFT_C1_DEPENDENCY (1u << 1)
struct cstate_counter_arch_info {
int feature_mask; /* Mask for testing if the counter is supported on host */
const char *perf_subsys;
const char *perf_name;
unsigned long long msr;
unsigned int rci_index; /* Maps data from perf counters to global variables */
unsigned long long bic;
unsigned long long flags;
};
static struct cstate_counter_arch_info ccstate_counter_arch_infos[] = {
{
.feature_mask = CC1,
.perf_subsys = "cstate_core",
.perf_name = "c1-residency",
.msr = MSR_CORE_C1_RES,
.rci_index = CCSTATE_RCI_INDEX_C1_RESIDENCY,
.bic = BIC_CPU_c1,
.flags = CSTATE_COUNTER_FLAG_COLLECT_PER_THREAD,
},
{
.feature_mask = CC3,
.perf_subsys = "cstate_core",
.perf_name = "c3-residency",
.msr = MSR_CORE_C3_RESIDENCY,
.rci_index = CCSTATE_RCI_INDEX_C3_RESIDENCY,
.bic = BIC_CPU_c3,
.flags = CSTATE_COUNTER_FLAG_SOFT_C1_DEPENDENCY,
},
{
.feature_mask = CC6,
.perf_subsys = "cstate_core",
.perf_name = "c6-residency",
.msr = MSR_CORE_C6_RESIDENCY,
.rci_index = CCSTATE_RCI_INDEX_C6_RESIDENCY,
.bic = BIC_CPU_c6,
.flags = CSTATE_COUNTER_FLAG_SOFT_C1_DEPENDENCY,
},
{
.feature_mask = CC7,
.perf_subsys = "cstate_core",
.perf_name = "c7-residency",
.msr = MSR_CORE_C7_RESIDENCY,
.rci_index = CCSTATE_RCI_INDEX_C7_RESIDENCY,
.bic = BIC_CPU_c7,
.flags = CSTATE_COUNTER_FLAG_SOFT_C1_DEPENDENCY,
},
};
struct thread_data { struct thread_data {
struct timeval tv_begin; struct timeval tv_begin;
struct timeval tv_end; struct timeval tv_end;
@ -1571,10 +1643,6 @@ static void bic_disable_msr_access(void)
{ {
const unsigned long bic_msrs = const unsigned long bic_msrs =
BIC_SMI | BIC_SMI |
BIC_CPU_c1 |
BIC_CPU_c3 |
BIC_CPU_c6 |
BIC_CPU_c7 |
BIC_Mod_c6 | BIC_Mod_c6 |
BIC_CoreTmp | BIC_CoreTmp |
BIC_Totl_c0 | BIC_Totl_c0 |
@ -3421,6 +3489,17 @@ size_t rapl_counter_info_count_perf(const struct rapl_counter_info_t *rci)
return ret; return ret;
} }
static size_t cstate_counter_info_count_perf(const struct cstate_counter_info_t *cci)
{
size_t ret = 0;
for (int i = 0; i < NUM_CCSTATE_COUNTERS; ++i)
if (cci->source[i] == CSTATE_SOURCE_PERF)
++ret;
return ret;
}
void write_rapl_counter(struct rapl_counter *rc, struct rapl_counter_info_t *rci, unsigned int idx) void write_rapl_counter(struct rapl_counter *rc, struct rapl_counter_info_t *rci, unsigned int idx)
{ {
rc->raw_value = rci->data[idx]; rc->raw_value = rci->data[idx];
@ -3519,6 +3598,90 @@ char *find_sysfs_path_by_id(struct sysfs_path *sp, int id)
return NULL; return NULL;
} }
int get_cstate_counters(unsigned int cpu, struct thread_data *t, struct core_data *c)
{
unsigned long long perf_data[NUM_CCSTATE_COUNTERS + 1];
struct cstate_counter_info_t *cci;
if (debug)
fprintf(stderr, "%s: cpu%d\n", __func__, cpu);
assert(ccstate_counter_info);
assert(cpu <= ccstate_counter_info_size);
cci = &ccstate_counter_info[cpu];
/*
* If we have any perf counters to read, read them all now, in bulk
*/
if (cci->fd_perf != -1) {
const size_t num_perf_counters = cstate_counter_info_count_perf(cci);
const ssize_t expected_read_size =
(num_perf_counters + 1) * sizeof(unsigned long long);
const ssize_t actual_read_size =
read(cci->fd_perf, &perf_data[0], sizeof(perf_data));
if (actual_read_size != expected_read_size)
err(-1, "%s: failed to read perf_data (%zu %zu)",
__func__, expected_read_size, actual_read_size);
}
for (unsigned int i = 0, pi = 1; i < NUM_CCSTATE_COUNTERS; ++i) {
switch (cci->source[i]) {
case CSTATE_SOURCE_NONE:
break;
case CSTATE_SOURCE_PERF:
assert(pi < ARRAY_SIZE(perf_data));
assert(cci->fd_perf != -1);
if (debug) {
fprintf(stderr, "cstate via %s %u: %llu\n",
"perf", i, perf_data[pi]);
}
cci->data[i] = perf_data[pi];
++pi;
break;
case CSTATE_SOURCE_MSR:
assert(!no_msr);
if (get_msr(cpu, cci->msr[i], &cci->data[i]))
return -13 - i;
if (debug) {
fprintf(stderr, "cstate via %s0x%llx %u: %llu\n",
"msr", cci->msr[i], i, cci->data[i]);
}
break;
}
}
/*
* Helper to write the data only if the source of
* the counter for the current cpu is not none.
*
* Otherwise we would overwrite core data with 0 (default value),
* when invoked for the thread sibling.
*/
#define PERF_COUNTER_WRITE_DATA(out_counter, index) do { \
if (cci->source[index] != CSTATE_SOURCE_NONE) \
out_counter = cci->data[index]; \
} while (0)
BUILD_BUG_ON(NUM_CCSTATE_COUNTERS != 4);
PERF_COUNTER_WRITE_DATA(t->c1, CCSTATE_RCI_INDEX_C1_RESIDENCY);
PERF_COUNTER_WRITE_DATA(c->c3, CCSTATE_RCI_INDEX_C3_RESIDENCY);
PERF_COUNTER_WRITE_DATA(c->c6, CCSTATE_RCI_INDEX_C6_RESIDENCY);
PERF_COUNTER_WRITE_DATA(c->c7, CCSTATE_RCI_INDEX_C7_RESIDENCY);
#undef PERF_COUNTER_WRITE_DATA
return 0;
}
/* /*
* get_counters(...) * get_counters(...)
* migrate to cpu * migrate to cpu
@ -3574,10 +3737,8 @@ int get_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p)
return -5; return -5;
t->smi_count = msr & 0xFFFFFFFF; t->smi_count = msr & 0xFFFFFFFF;
} }
if (DO_BIC(BIC_CPU_c1) && platform->has_msr_core_c1_res) {
if (get_msr(cpu, MSR_CORE_C1_RES, &t->c1)) get_cstate_counters(cpu, t, c);
return -6;
}
for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) { for (i = 0, mp = sys.tp; mp; i++, mp = mp->next) {
if (get_mp(cpu, mp, &t->counter[i], mp->sp->path)) if (get_mp(cpu, mp, &t->counter[i], mp->sp->path))
@ -3594,31 +3755,14 @@ int get_counters(struct thread_data *t, struct core_data *c, struct pkg_data *p)
return status; return status;
} }
if (DO_BIC(BIC_CPU_c3) || soft_c1_residency_display(BIC_CPU_c3)) { if (DO_BIC(BIC_CPU_c7) && t->is_atom) {
if (get_msr(cpu, MSR_CORE_C3_RESIDENCY, &c->c3)) /*
return -6; * For Atom CPUs that has core cstate deeper than c6,
} * MSR_CORE_C6_RESIDENCY returns residency of cc6 and deeper.
* Minus CC7 (and deeper cstates) residency to get
if ((DO_BIC(BIC_CPU_c6) || soft_c1_residency_display(BIC_CPU_c6)) && !platform->has_msr_knl_core_c6_residency) { * accturate cc6 residency.
if (get_msr(cpu, MSR_CORE_C6_RESIDENCY, &c->c6)) */
return -7; c->c6 -= c->c7;
} else if (platform->has_msr_knl_core_c6_residency && soft_c1_residency_display(BIC_CPU_c6)) {
if (get_msr(cpu, MSR_KNL_CORE_C6_RESIDENCY, &c->c6))
return -7;
}
if (DO_BIC(BIC_CPU_c7) || soft_c1_residency_display(BIC_CPU_c7)) {
if (get_msr(cpu, MSR_CORE_C7_RESIDENCY, &c->c7))
return -8;
else if (t->is_atom) {
/*
* For Atom CPUs that has core cstate deeper than c6,
* MSR_CORE_C6_RESIDENCY returns residency of cc6 and deeper.
* Minus CC7 (and deeper cstates) residency to get
* accturate cc6 residency.
*/
c->c6 -= c->c7;
}
} }
if (DO_BIC(BIC_Mod_c6)) if (DO_BIC(BIC_Mod_c6))
@ -4258,6 +4402,23 @@ void free_fd_instr_count_percpu(void)
fd_instr_count_percpu = NULL; fd_instr_count_percpu = NULL;
} }
void free_fd_cstate(void)
{
if (!ccstate_counter_info)
return;
const int counter_info_num = ccstate_counter_info_size;
for (int counter_id = 0; counter_id < counter_info_num; ++counter_id) {
if (ccstate_counter_info[counter_id].fd_perf != -1)
close(ccstate_counter_info[counter_id].fd_perf);
}
free(ccstate_counter_info);
ccstate_counter_info = NULL;
ccstate_counter_info_size = 0;
}
void free_fd_rapl_percpu(void) void free_fd_rapl_percpu(void)
{ {
if (!rapl_counter_info_perdomain) if (!rapl_counter_info_perdomain)
@ -4319,6 +4480,7 @@ void free_all_buffers(void)
free_fd_instr_count_percpu(); free_fd_instr_count_percpu();
free_fd_amperf_percpu(); free_fd_amperf_percpu();
free_fd_rapl_percpu(); free_fd_rapl_percpu();
free_fd_cstate();
free(irq_column_2_cpu); free(irq_column_2_cpu);
free(irqs_per_cpu); free(irqs_per_cpu);
@ -4654,6 +4816,7 @@ static void update_effective_set(bool startup)
void linux_perf_init(void); void linux_perf_init(void);
void rapl_perf_init(void); void rapl_perf_init(void);
void cstate_perf_init(void);
void re_initialize(void) void re_initialize(void)
{ {
@ -4661,6 +4824,7 @@ void re_initialize(void)
setup_all_buffers(false); setup_all_buffers(false);
linux_perf_init(); linux_perf_init();
rapl_perf_init(); rapl_perf_init();
cstate_perf_init();
fprintf(outf, "turbostat: re-initialized with num_cpus %d, allowed_cpus %d\n", topo.num_cpus, fprintf(outf, "turbostat: re-initialized with num_cpus %d, allowed_cpus %d\n", topo.num_cpus,
topo.allowed_cpus); topo.allowed_cpus);
} }
@ -6517,7 +6681,8 @@ bool is_aperf_access_required(void)
return BIC_IS_ENABLED(BIC_Avg_MHz) return BIC_IS_ENABLED(BIC_Avg_MHz)
|| BIC_IS_ENABLED(BIC_Busy) || BIC_IS_ENABLED(BIC_Busy)
|| BIC_IS_ENABLED(BIC_Bzy_MHz) || BIC_IS_ENABLED(BIC_Bzy_MHz)
|| BIC_IS_ENABLED(BIC_IPC); || BIC_IS_ENABLED(BIC_IPC)
|| BIC_IS_ENABLED(BIC_CPU_c1);
} }
int add_rapl_perf_counter_(int cpu, struct rapl_counter_info_t *rci, const struct rapl_counter_arch_info *cai, int add_rapl_perf_counter_(int cpu, struct rapl_counter_info_t *rci, const struct rapl_counter_arch_info *cai,
@ -6749,22 +6914,133 @@ static int has_amperf_access(void)
return 0; return 0;
} }
int add_cstate_perf_counter_(int cpu, struct cstate_counter_info_t *cci,
const struct cstate_counter_arch_info *cai)
{
if (no_perf)
return -1;
const unsigned int type = read_perf_type(cai->perf_subsys);
const unsigned int config = read_rapl_config(cai->perf_subsys, cai->perf_name);
const int fd_counter =
open_perf_counter(cpu, type, config, cci->fd_perf, PERF_FORMAT_GROUP);
if (fd_counter == -1)
return -1;
/* If it's the first counter opened, make it a group descriptor */
if (cci->fd_perf == -1)
cci->fd_perf = fd_counter;
return fd_counter;
}
int add_cstate_perf_counter(int cpu, struct cstate_counter_info_t *cci,
const struct cstate_counter_arch_info *cai)
{
int ret = add_cstate_perf_counter_(cpu, cci, cai);
if (debug)
fprintf(stderr, "%s: %d (cpu: %d)\n", __func__, ret, cpu);
return ret;
}
void cstate_perf_init_(bool soft_c1)
{
bool has_counter;
bool *cores_visited;
const int cores_visited_elems = topo.max_core_id + 1;
const int cci_num = topo.max_cpu_num + 1;
ccstate_counter_info = calloc(cci_num, sizeof(*ccstate_counter_info));
if (!ccstate_counter_info)
err(1, "calloc ccstate_counter_arch_info");
ccstate_counter_info_size = cci_num;
cores_visited = calloc(cores_visited_elems, sizeof(*cores_visited));
if (!cores_visited)
err(1, "calloc cores_visited");
/* Initialize cstate_counter_info_percpu */
for (int cpu = 0; cpu < cci_num; ++cpu)
ccstate_counter_info[cpu].fd_perf = -1;
for (int cidx = 0; cidx < NUM_CCSTATE_COUNTERS; ++cidx) {
has_counter = false;
memset(cores_visited, 0, cores_visited_elems * sizeof(*cores_visited));
const struct cstate_counter_arch_info *cai = &ccstate_counter_arch_infos[cidx];
for (int cpu = 0; cpu < cci_num; ++cpu) {
struct cstate_counter_info_t *const cci = &ccstate_counter_info[cpu];
if (cpu_is_not_allowed(cpu))
continue;
const int core_id = cpus[cpu].physical_core_id;
assert(core_id < cores_visited_elems);
const bool per_thread = cai->flags & CSTATE_COUNTER_FLAG_COLLECT_PER_THREAD;
if (!per_thread && cores_visited[core_id])
continue;
const bool counter_needed = BIC_IS_ENABLED(cai->bic) ||
(soft_c1 && (cai->flags & CSTATE_COUNTER_FLAG_SOFT_C1_DEPENDENCY));
const bool counter_supported =
platform->supported_cstates & cai->feature_mask;
if (counter_needed && counter_supported) {
/* Use perf API for this counter */
if (!no_perf && cai->perf_name
&& add_cstate_perf_counter(cpu, cci, cai) != -1) {
cci->source[cai->rci_index] = CSTATE_SOURCE_PERF;
/* User MSR for this counter */
} else if (!no_msr && cai->msr && probe_msr(cpu, cai->msr) == 0) {
cci->source[cai->rci_index] = CSTATE_SOURCE_MSR;
cci->msr[cai->rci_index] = cai->msr;
}
}
if (cci->source[cai->rci_index] != CSTATE_SOURCE_NONE) {
has_counter = true;
cores_visited[core_id] = true;
}
}
/* If any CPU has access to the counter, make it present */
if (has_counter)
BIC_PRESENT(cai->bic);
}
free(cores_visited);
}
void cstate_perf_init(void)
{
/*
* If we don't have a C1 residency MSR, we calculate it "in software",
* but we need APERF, MPERF too.
*/
const bool soft_c1 = !platform->has_msr_core_c1_res && has_amperf_access()
&& platform->supported_cstates & CC1;
if (soft_c1)
BIC_PRESENT(BIC_CPU_c1);
cstate_perf_init_(soft_c1);
}
void probe_cstates(void) void probe_cstates(void)
{ {
probe_cst_limit(); probe_cst_limit();
if (platform->supported_cstates & CC1)
BIC_PRESENT(BIC_CPU_c1);
if (platform->supported_cstates & CC3)
BIC_PRESENT(BIC_CPU_c3);
if (platform->supported_cstates & CC6)
BIC_PRESENT(BIC_CPU_c6);
if (platform->supported_cstates & CC7)
BIC_PRESENT(BIC_CPU_c7);
if (platform->supported_cstates & PC2 && (pkg_cstate_limit >= PCL__2)) if (platform->supported_cstates & PC2 && (pkg_cstate_limit >= PCL__2))
BIC_PRESENT(BIC_Pkgpc2); BIC_PRESENT(BIC_Pkgpc2);
@ -7042,6 +7318,19 @@ void process_cpuid()
BIC_PRESENT(BIC_TSC_MHz); BIC_PRESENT(BIC_TSC_MHz);
} }
static void counter_info_init(void)
{
for (int i = 0; i < NUM_CCSTATE_COUNTERS; ++i) {
struct cstate_counter_arch_info *const cai = &ccstate_counter_arch_infos[i];
if (platform->has_msr_knl_core_c6_residency && cai->msr == MSR_CORE_C6_RESIDENCY)
cai->msr = MSR_KNL_CORE_C6_RESIDENCY;
if (!platform->has_msr_core_c1_res && cai->msr == MSR_CORE_C1_RES)
cai->msr = 0;
}
}
void probe_pm_features(void) void probe_pm_features(void)
{ {
probe_pstates(); probe_pstates();
@ -7519,10 +7808,12 @@ void turbostat_init()
check_msr_access(); check_msr_access();
check_perf_access(); check_perf_access();
process_cpuid(); process_cpuid();
counter_info_init();
probe_pm_features(); probe_pm_features();
set_amperf_source(); set_amperf_source();
linux_perf_init(); linux_perf_init();
rapl_perf_init(); rapl_perf_init();
cstate_perf_init();
for_all_cpus(get_cpu_type, ODD_COUNTERS); for_all_cpus(get_cpu_type, ODD_COUNTERS);
for_all_cpus(get_cpu_type, EVEN_COUNTERS); for_all_cpus(get_cpu_type, EVEN_COUNTERS);