drm/imx: IPUv3 image converter fixes and improvements

Fix image converter seam handling for 1024x1024 pixel hardware
 limitation at the main processing section input, improve error
 handling, and slightly optimize for 1:1 conversions.
 Add support for newly defined 32-bit RGB V4L2 pixel formats.
 -----BEGIN PGP SIGNATURE-----
 
 iI0EABYIADUWIQRRO6F6WdpH1R0vGibVhaclGDdiwAUCXV/+phcccC56YWJlbEBw
 ZW5ndXRyb25peC5kZQAKCRDVhaclGDdiwJk/AP91Z8dTyRq2gaSJqRRYqe+dkyTI
 SzfUKMA+nJG5ybRq4wD+MhLdbyq5MUEhg4ZDqvDjFKdXm8dO1YpBh4gkbj++gwA=
 =PVTc
 -----END PGP SIGNATURE-----

Merge tag 'imx-drm-next-2019-08-23' of git://git.pengutronix.de/pza/linux into drm-next

drm/imx: IPUv3 image converter fixes and improvements

Fix image converter seam handling for 1024x1024 pixel hardware
limitation at the main processing section input, improve error
handling, and slightly optimize for 1:1 conversions.
Add support for newly defined 32-bit RGB V4L2 pixel formats.

Signed-off-by: Dave Airlie <airlied@redhat.com>

From: Philipp Zabel <p.zabel@pengutronix.de>
Link: https://patchwork.freedesktop.org/patch/msgid/1566573659.23587.2.camel@pengutronix.de
This commit is contained in:
Dave Airlie 2019-08-27 16:52:06 +10:00
commit 2467d946f9
4 changed files with 175 additions and 94 deletions

View File

@ -8,5 +8,4 @@ obj-$(CONFIG_DRM_IMX_PARALLEL_DISPLAY) += parallel-display.o
obj-$(CONFIG_DRM_IMX_TVE) += imx-tve.o obj-$(CONFIG_DRM_IMX_TVE) += imx-tve.o
obj-$(CONFIG_DRM_IMX_LDB) += imx-ldb.o obj-$(CONFIG_DRM_IMX_LDB) += imx-ldb.o
obj-$(CONFIG_DRM_IMX_IPUV3) += imx-ipuv3-crtc.o
obj-$(CONFIG_DRM_IMX_HDMI) += dw_hdmi-imx.o obj-$(CONFIG_DRM_IMX_HDMI) += dw_hdmi-imx.o

View File

@ -113,13 +113,17 @@ enum ipu_color_space ipu_pixelformat_to_colorspace(u32 pixelformat)
case V4L2_PIX_FMT_NV16: case V4L2_PIX_FMT_NV16:
case V4L2_PIX_FMT_NV61: case V4L2_PIX_FMT_NV61:
return IPUV3_COLORSPACE_YUV; return IPUV3_COLORSPACE_YUV;
case V4L2_PIX_FMT_XRGB32:
case V4L2_PIX_FMT_XBGR32:
case V4L2_PIX_FMT_RGB32:
case V4L2_PIX_FMT_BGR32:
case V4L2_PIX_FMT_RGB24:
case V4L2_PIX_FMT_BGR24:
case V4L2_PIX_FMT_RGB565: case V4L2_PIX_FMT_RGB565:
case V4L2_PIX_FMT_BGR24:
case V4L2_PIX_FMT_RGB24:
case V4L2_PIX_FMT_ABGR32:
case V4L2_PIX_FMT_XBGR32:
case V4L2_PIX_FMT_BGRA32:
case V4L2_PIX_FMT_BGRX32:
case V4L2_PIX_FMT_RGBA32:
case V4L2_PIX_FMT_RGBX32:
case V4L2_PIX_FMT_ARGB32:
case V4L2_PIX_FMT_XRGB32:
return IPUV3_COLORSPACE_RGB; return IPUV3_COLORSPACE_RGB;
default: default:
return IPUV3_COLORSPACE_UNKNOWN; return IPUV3_COLORSPACE_UNKNOWN;

View File

@ -182,9 +182,27 @@ static int v4l2_pix_fmt_to_drm_fourcc(u32 pixelformat)
case V4L2_PIX_FMT_RGB32: case V4L2_PIX_FMT_RGB32:
/* R G B A <=> [32:0] A:B:G:R */ /* R G B A <=> [32:0] A:B:G:R */
return DRM_FORMAT_XBGR8888; return DRM_FORMAT_XBGR8888;
case V4L2_PIX_FMT_ABGR32:
/* B G R A <=> [32:0] A:R:G:B */
return DRM_FORMAT_ARGB8888;
case V4L2_PIX_FMT_XBGR32: case V4L2_PIX_FMT_XBGR32:
/* B G R X <=> [32:0] X:R:G:B */ /* B G R X <=> [32:0] X:R:G:B */
return DRM_FORMAT_XRGB8888; return DRM_FORMAT_XRGB8888;
case V4L2_PIX_FMT_BGRA32:
/* A B G R <=> [32:0] R:G:B:A */
return DRM_FORMAT_RGBA8888;
case V4L2_PIX_FMT_BGRX32:
/* X B G R <=> [32:0] R:G:B:X */
return DRM_FORMAT_RGBX8888;
case V4L2_PIX_FMT_RGBA32:
/* R G B A <=> [32:0] A:B:G:R */
return DRM_FORMAT_ABGR8888;
case V4L2_PIX_FMT_RGBX32:
/* R G B X <=> [32:0] X:B:G:R */
return DRM_FORMAT_XBGR8888;
case V4L2_PIX_FMT_ARGB32:
/* A R G B <=> [32:0] B:G:R:A */
return DRM_FORMAT_BGRA8888;
case V4L2_PIX_FMT_XRGB32: case V4L2_PIX_FMT_XRGB32:
/* X R G B <=> [32:0] B:G:R:X */ /* X R G B <=> [32:0] B:G:R:X */
return DRM_FORMAT_BGRX8888; return DRM_FORMAT_BGRX8888;
@ -823,8 +841,14 @@ int ipu_cpmem_set_image(struct ipuv3_channel *ch, struct ipu_image *image)
break; break;
case V4L2_PIX_FMT_RGB32: case V4L2_PIX_FMT_RGB32:
case V4L2_PIX_FMT_BGR32: case V4L2_PIX_FMT_BGR32:
case V4L2_PIX_FMT_XRGB32: case V4L2_PIX_FMT_ABGR32:
case V4L2_PIX_FMT_XBGR32: case V4L2_PIX_FMT_XBGR32:
case V4L2_PIX_FMT_BGRA32:
case V4L2_PIX_FMT_BGRX32:
case V4L2_PIX_FMT_RGBA32:
case V4L2_PIX_FMT_RGBX32:
case V4L2_PIX_FMT_ARGB32:
case V4L2_PIX_FMT_XRGB32:
offset = image->rect.left * 4 + offset = image->rect.left * 4 +
image->rect.top * pix->bytesperline; image->rect.top * pix->bytesperline;
break; break;

View File

@ -251,6 +251,12 @@ static const struct ipu_image_pixfmt image_convert_formats[] = {
}, { }, {
.fourcc = V4L2_PIX_FMT_XBGR32, .fourcc = V4L2_PIX_FMT_XBGR32,
.bpp = 32, .bpp = 32,
}, {
.fourcc = V4L2_PIX_FMT_BGRX32,
.bpp = 32,
}, {
.fourcc = V4L2_PIX_FMT_RGBX32,
.bpp = 32,
}, { }, {
.fourcc = V4L2_PIX_FMT_YUYV, .fourcc = V4L2_PIX_FMT_YUYV,
.bpp = 16, .bpp = 16,
@ -376,8 +382,11 @@ static inline int num_stripes(int dim)
/* /*
* Calculate downsizing coefficients, which are the same for all tiles, * Calculate downsizing coefficients, which are the same for all tiles,
* and bilinear resizing coefficients, which are used to find the best * and initial bilinear resizing coefficients, which are used to find the
* seam positions. * best seam positions.
* Also determine the number of tiles necessary to guarantee that no tile
* is larger than 1024 pixels in either dimension at the output and between
* IC downsizing and main processing sections.
*/ */
static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx, static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
struct ipu_image *in, struct ipu_image *in,
@ -391,6 +400,8 @@ static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
u32 resized_height = out->rect.height; u32 resized_height = out->rect.height;
u32 resize_coeff_h; u32 resize_coeff_h;
u32 resize_coeff_v; u32 resize_coeff_v;
u32 cols;
u32 rows;
if (ipu_rot_mode_is_irt(ctx->rot_mode)) { if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
resized_width = out->rect.height; resized_width = out->rect.height;
@ -401,14 +412,12 @@ static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
if (WARN_ON(resized_width == 0 || resized_height == 0)) if (WARN_ON(resized_width == 0 || resized_height == 0))
return -EINVAL; return -EINVAL;
while (downsized_width > 1024 || while (downsized_width >= resized_width * 2) {
downsized_width >= resized_width * 2) {
downsized_width >>= 1; downsized_width >>= 1;
downsize_coeff_h++; downsize_coeff_h++;
} }
while (downsized_height > 1024 || while (downsized_height >= resized_height * 2) {
downsized_height >= resized_height * 2) {
downsized_height >>= 1; downsized_height >>= 1;
downsize_coeff_v++; downsize_coeff_v++;
} }
@ -422,10 +431,18 @@ static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1); resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1); resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
/*
* Both the output of the IC downsizing section before being passed to
* the IC main processing section and the final output of the IC main
* processing section must be <= 1024 pixels in both dimensions.
*/
cols = num_stripes(max_t(u32, downsized_width, resized_width));
rows = num_stripes(max_t(u32, downsized_height, resized_height));
dev_dbg(ctx->chan->priv->ipu->dev, dev_dbg(ctx->chan->priv->ipu->dev,
"%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n", "%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
__func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v, __func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
resize_coeff_v, ctx->in.num_cols, ctx->in.num_rows); resize_coeff_v, cols, rows);
if (downsize_coeff_h > 2 || downsize_coeff_v > 2 || if (downsize_coeff_h > 2 || downsize_coeff_v > 2 ||
resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff) resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
@ -435,6 +452,8 @@ static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
ctx->downsize_coeff_v = downsize_coeff_v; ctx->downsize_coeff_v = downsize_coeff_v;
ctx->image_resize_coeff_h = resize_coeff_h; ctx->image_resize_coeff_h = resize_coeff_h;
ctx->image_resize_coeff_v = resize_coeff_v; ctx->image_resize_coeff_v = resize_coeff_v;
ctx->in.num_cols = cols;
ctx->in.num_rows = rows;
return 0; return 0;
} }
@ -442,12 +461,10 @@ static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
#define round_closest(x, y) round_down((x) + (y)/2, (y)) #define round_closest(x, y) round_down((x) + (y)/2, (y))
/* /*
* Find the best aligned seam position in the inverval [out_start, out_end]. * Find the best aligned seam position for the given column / row index.
* Rotation and image offsets are out of scope. * Rotation and image offsets are out of scope.
* *
* @out_start: start of inverval, must be within 1024 pixels / lines * @index: column / row index, used to calculate valid interval
* of out_end
* @out_end: end of interval, smaller than or equal to out_edge
* @in_edge: input right / bottom edge * @in_edge: input right / bottom edge
* @out_edge: output right / bottom edge * @out_edge: output right / bottom edge
* @in_align: input alignment, either horizontal 8-byte line start address * @in_align: input alignment, either horizontal 8-byte line start address
@ -463,8 +480,7 @@ static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
* @_out_seam: aligned output seam position return value * @_out_seam: aligned output seam position return value
*/ */
static void find_best_seam(struct ipu_image_convert_ctx *ctx, static void find_best_seam(struct ipu_image_convert_ctx *ctx,
unsigned int out_start, unsigned int index,
unsigned int out_end,
unsigned int in_edge, unsigned int in_edge,
unsigned int out_edge, unsigned int out_edge,
unsigned int in_align, unsigned int in_align,
@ -482,6 +498,24 @@ static void find_best_seam(struct ipu_image_convert_ctx *ctx,
unsigned int out_seam = 0; unsigned int out_seam = 0;
unsigned int in_seam = 0; unsigned int in_seam = 0;
unsigned int min_diff = UINT_MAX; unsigned int min_diff = UINT_MAX;
unsigned int out_start;
unsigned int out_end;
unsigned int in_start;
unsigned int in_end;
/* Start within 1024 pixels of the right / bottom edge */
out_start = max_t(int, index * out_align, out_edge - 1024);
/* End before having to add more columns to the left / rows above */
out_end = min_t(unsigned int, out_edge, index * 1024 + 1);
/*
* Limit input seam position to make sure that the downsized input tile
* to the right or bottom does not exceed 1024 pixels.
*/
in_start = max_t(int, index * in_align,
in_edge - (1024 << downsize_coeff));
in_end = min_t(unsigned int, in_edge,
index * (1024 << downsize_coeff) + 1);
/* /*
* Output tiles must start at a multiple of 8 bytes horizontally and * Output tiles must start at a multiple of 8 bytes horizontally and
@ -492,6 +526,7 @@ static void find_best_seam(struct ipu_image_convert_ctx *ctx,
for (out_pos = out_start; out_pos < out_end; out_pos += out_align) { for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
unsigned int in_pos; unsigned int in_pos;
unsigned int in_pos_aligned; unsigned int in_pos_aligned;
unsigned int in_pos_rounded;
unsigned int abs_diff; unsigned int abs_diff;
/* /*
@ -512,9 +547,16 @@ static void find_best_seam(struct ipu_image_convert_ctx *ctx,
* start the input tile at, 19.13 fixed point. * start the input tile at, 19.13 fixed point.
*/ */
in_pos_aligned = round_closest(in_pos, 8192U * in_align); in_pos_aligned = round_closest(in_pos, 8192U * in_align);
/* Convert 19.13 fixed point to integer */
in_pos_rounded = in_pos_aligned / 8192U;
if (in_pos_rounded < in_start)
continue;
if (in_pos_rounded >= in_end)
break;
if ((in_burst > 1) && if ((in_burst > 1) &&
(in_edge - in_pos_aligned / 8192U) % in_burst) (in_edge - in_pos_rounded) % in_burst)
continue; continue;
if (in_pos < in_pos_aligned) if (in_pos < in_pos_aligned)
@ -523,19 +565,18 @@ static void find_best_seam(struct ipu_image_convert_ctx *ctx,
abs_diff = in_pos - in_pos_aligned; abs_diff = in_pos - in_pos_aligned;
if (abs_diff < min_diff) { if (abs_diff < min_diff) {
in_seam = in_pos_aligned; in_seam = in_pos_rounded;
out_seam = out_pos; out_seam = out_pos;
min_diff = abs_diff; min_diff = abs_diff;
} }
} }
*_out_seam = out_seam; *_out_seam = out_seam;
/* Convert 19.13 fixed point to integer seam position */ *_in_seam = in_seam;
*_in_seam = DIV_ROUND_CLOSEST(in_seam, 8192U);
dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) diff %u.%03u\n", dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n",
__func__, out_seam, out_align, out_start, out_end, __func__, out_seam, out_align, out_start, out_end,
*_in_seam, in_align, min_diff / 8192, in_seam, in_align, in_start, in_end, min_diff / 8192,
DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192)); DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
} }
@ -712,8 +753,6 @@ static void find_seams(struct ipu_image_convert_ctx *ctx,
!(ctx->rot_mode & IPU_ROT_BIT_HFLIP); !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
bool allow_out_overshoot = (col < in->num_cols - 1) && bool allow_out_overshoot = (col < in->num_cols - 1) &&
!(ctx->rot_mode & IPU_ROT_BIT_HFLIP); !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
unsigned int out_start;
unsigned int out_end;
unsigned int in_left; unsigned int in_left;
unsigned int out_left; unsigned int out_left;
@ -722,12 +761,7 @@ static void find_seams(struct ipu_image_convert_ctx *ctx,
* horizontally. * horizontally.
*/ */
/* Start within 1024 pixels of the right edge */ find_best_seam(ctx, col,
out_start = max_t(int, 0, out_right - 1024);
/* End before having to add more columns to the left */
out_end = min_t(unsigned int, out_right, col * 1024);
find_best_seam(ctx, out_start, out_end,
in_right, out_right, in_right, out_right,
in_left_align, out_left_align, in_left_align, out_left_align,
allow_in_overshoot ? 1 : 8 /* burst length */, allow_in_overshoot ? 1 : 8 /* burst length */,
@ -762,17 +796,10 @@ static void find_seams(struct ipu_image_convert_ctx *ctx,
for (row = in->num_rows - 1; row > 0; row--) { for (row = in->num_rows - 1; row > 0; row--) {
bool allow_overshoot = row < in->num_rows - 1; bool allow_overshoot = row < in->num_rows - 1;
unsigned int out_start;
unsigned int out_end;
unsigned int in_top; unsigned int in_top;
unsigned int out_top; unsigned int out_top;
/* Start within 1024 lines of the bottom edge */ find_best_seam(ctx, row,
out_start = max_t(int, 0, out_bottom - 1024);
/* End before having to add more rows above */
out_end = min_t(unsigned int, out_bottom, row * 1024);
find_best_seam(ctx, out_start, out_end,
in_bottom, out_bottom, in_bottom, out_bottom,
in_top_align, out_top_align, in_top_align, out_top_align,
1, allow_overshoot ? 1 : out_height_align, 1, allow_overshoot ? 1 : out_height_align,
@ -809,13 +836,21 @@ static void find_seams(struct ipu_image_convert_ctx *ctx,
in_bottom, flipped_out_top, out_bottom); in_bottom, flipped_out_top, out_bottom);
} }
static void calc_tile_dimensions(struct ipu_image_convert_ctx *ctx, static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
struct ipu_image_convert_image *image) struct ipu_image_convert_image *image)
{ {
struct ipu_image_convert_chan *chan = ctx->chan; struct ipu_image_convert_chan *chan = ctx->chan;
struct ipu_image_convert_priv *priv = chan->priv; struct ipu_image_convert_priv *priv = chan->priv;
unsigned int max_width = 1024;
unsigned int max_height = 1024;
unsigned int i; unsigned int i;
if (image->type == IMAGE_CONVERT_IN) {
/* Up to 4096x4096 input tile size */
max_width <<= ctx->downsize_coeff_h;
max_height <<= ctx->downsize_coeff_v;
}
for (i = 0; i < ctx->num_tiles; i++) { for (i = 0; i < ctx->num_tiles; i++) {
struct ipu_image_tile *tile; struct ipu_image_tile *tile;
const unsigned int row = i / image->num_cols; const unsigned int row = i / image->num_cols;
@ -845,7 +880,17 @@ static void calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
image->type == IMAGE_CONVERT_IN ? "Input" : "Output", image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
row, col, row, col,
tile->width, tile->height, tile->left, tile->top); tile->width, tile->height, tile->left, tile->top);
if (!tile->width || tile->width > max_width ||
!tile->height || tile->height > max_height) {
dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n",
image->type == IMAGE_CONVERT_IN ? "input" :
"output", tile->width, tile->height);
return -EINVAL;
}
} }
return 0;
} }
/* /*
@ -1076,6 +1121,7 @@ static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
!(ctx->rot_mode & IPU_ROT_BIT_HFLIP); !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
u32 resized_width; u32 resized_width;
u32 resize_coeff_h; u32 resize_coeff_h;
u32 in_width;
tile_idx = col; tile_idx = col;
in_tile = &ctx->in.tile[tile_idx]; in_tile = &ctx->in.tile[tile_idx];
@ -1093,33 +1139,35 @@ static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n", dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
__func__, col, resize_coeff_h); __func__, col, resize_coeff_h);
/*
* With the horizontal scaling factor known, round up resized
* width (output width or height) to burst size.
*/
resized_width = round_up(resized_width, 8);
/*
* Calculate input width from the last accessed input pixel
* given resized width and scaling coefficients. Round up to
* burst size.
*/
last_output = resized_width - 1;
if (closest && ((last_output * resize_coeff_h) % 8192))
last_output++;
in_width = round_up(
(DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1)
<< ctx->downsize_coeff_h, 8);
for (row = 0; row < ctx->in.num_rows; row++) { for (row = 0; row < ctx->in.num_rows; row++) {
tile_idx = row * ctx->in.num_cols + col; tile_idx = row * ctx->in.num_cols + col;
in_tile = &ctx->in.tile[tile_idx]; in_tile = &ctx->in.tile[tile_idx];
out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
/*
* With the horizontal scaling factor known, round up
* resized width (output width or height) to burst size.
*/
if (ipu_rot_mode_is_irt(ctx->rot_mode)) if (ipu_rot_mode_is_irt(ctx->rot_mode))
out_tile->height = round_up(resized_width, 8); out_tile->height = resized_width;
else else
out_tile->width = round_up(resized_width, 8); out_tile->width = resized_width;
/* in_tile->width = in_width;
* Calculate input width from the last accessed input
* pixel given resized width and scaling coefficients.
* Round up to burst size.
*/
last_output = round_up(resized_width, 8) - 1;
if (closest)
last_output++;
in_tile->width = round_up(
(DIV_ROUND_UP(last_output * resize_coeff_h,
8192) + 1)
<< ctx->downsize_coeff_h, 8);
} }
ctx->resize_coeffs_h[col] = resize_coeff_h; ctx->resize_coeffs_h[col] = resize_coeff_h;
@ -1130,6 +1178,7 @@ static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
!(ctx->rot_mode & IPU_ROT_BIT_VFLIP); !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
u32 resized_height; u32 resized_height;
u32 resize_coeff_v; u32 resize_coeff_v;
u32 in_height;
tile_idx = row * ctx->in.num_cols; tile_idx = row * ctx->in.num_cols;
in_tile = &ctx->in.tile[tile_idx]; in_tile = &ctx->in.tile[tile_idx];
@ -1147,33 +1196,35 @@ static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n", dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
__func__, row, resize_coeff_v); __func__, row, resize_coeff_v);
/*
* With the vertical scaling factor known, round up resized
* height (output width or height) to IDMAC limitations.
*/
resized_height = round_up(resized_height, 2);
/*
* Calculate input width from the last accessed input pixel
* given resized height and scaling coefficients. Align to
* IDMAC restrictions.
*/
last_output = resized_height - 1;
if (closest && ((last_output * resize_coeff_v) % 8192))
last_output++;
in_height = round_up(
(DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1)
<< ctx->downsize_coeff_v, 2);
for (col = 0; col < ctx->in.num_cols; col++) { for (col = 0; col < ctx->in.num_cols; col++) {
tile_idx = row * ctx->in.num_cols + col; tile_idx = row * ctx->in.num_cols + col;
in_tile = &ctx->in.tile[tile_idx]; in_tile = &ctx->in.tile[tile_idx];
out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]]; out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
/*
* With the vertical scaling factor known, round up
* resized height (output width or height) to IDMAC
* limitations.
*/
if (ipu_rot_mode_is_irt(ctx->rot_mode)) if (ipu_rot_mode_is_irt(ctx->rot_mode))
out_tile->width = round_up(resized_height, 2); out_tile->width = resized_height;
else else
out_tile->height = round_up(resized_height, 2); out_tile->height = resized_height;
/* in_tile->height = in_height;
* Calculate input width from the last accessed input
* pixel given resized height and scaling coefficients.
* Align to IDMAC restrictions.
*/
last_output = round_up(resized_height, 2) - 1;
if (closest)
last_output++;
in_tile->height = round_up(
(DIV_ROUND_UP(last_output * resize_coeff_v,
8192) + 1)
<< ctx->downsize_coeff_v, 2);
} }
ctx->resize_coeffs_v[row] = resize_coeff_v; ctx->resize_coeffs_v[row] = resize_coeff_v;
@ -2024,22 +2075,26 @@ ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
ctx->chan = chan; ctx->chan = chan;
init_completion(&ctx->aborted); init_completion(&ctx->aborted);
ctx->rot_mode = rot_mode;
/* Sets ctx->in.num_rows/cols as well */
ret = calc_image_resize_coefficients(ctx, in, out);
if (ret)
goto out_free;
s_image = &ctx->in; s_image = &ctx->in;
d_image = &ctx->out; d_image = &ctx->out;
/* set tiling and rotation */ /* set tiling and rotation */
d_image->num_rows = num_stripes(out->pix.height);
d_image->num_cols = num_stripes(out->pix.width);
if (ipu_rot_mode_is_irt(rot_mode)) { if (ipu_rot_mode_is_irt(rot_mode)) {
s_image->num_rows = d_image->num_cols; d_image->num_rows = s_image->num_cols;
s_image->num_cols = d_image->num_rows; d_image->num_cols = s_image->num_rows;
} else { } else {
s_image->num_rows = d_image->num_rows; d_image->num_rows = s_image->num_rows;
s_image->num_cols = d_image->num_cols; d_image->num_cols = s_image->num_cols;
} }
ctx->num_tiles = d_image->num_cols * d_image->num_rows; ctx->num_tiles = d_image->num_cols * d_image->num_rows;
ctx->rot_mode = rot_mode;
ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN); ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
if (ret) if (ret)
@ -2048,15 +2103,14 @@ ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
if (ret) if (ret)
goto out_free; goto out_free;
ret = calc_image_resize_coefficients(ctx, in, out);
if (ret)
goto out_free;
calc_out_tile_map(ctx); calc_out_tile_map(ctx);
find_seams(ctx, s_image, d_image); find_seams(ctx, s_image, d_image);
calc_tile_dimensions(ctx, s_image); ret = calc_tile_dimensions(ctx, s_image);
if (ret)
goto out_free;
ret = calc_tile_offsets(ctx, s_image); ret = calc_tile_offsets(ctx, s_image);
if (ret) if (ret)
goto out_free; goto out_free;