btrfs: scrub: handle RST lookup error correctly

[BUG]
When running btrfs/060 with forced RST feature, it would crash the
following ASSERT() inside scrub_read_endio():

	ASSERT(sector_nr < stripe->nr_sectors);

Before that, we would have tree dump from
btrfs_get_raid_extent_offset(), as we failed to find the RST entry for
the range.

[CAUSE]
Inside scrub_submit_extent_sector_read() every time we allocated a new
bbio we immediately called btrfs_map_block() to make sure there was some
RST range covering the scrub target.

But if btrfs_map_block() fails, we immediately call endio for the bbio,
while the bbio is newly allocated, it's completely empty.

Then inside scrub_read_endio(), we go through the bvecs to find
the sector number (as bi_sector is no longer reliable if the bio is
submitted to lower layers).

And since the bio is empty, such bvecs iteration would not find any
sector matching the sector, and return sector_nr == stripe->nr_sectors,
triggering the ASSERT().

[FIX]
Instead of calling btrfs_map_block() after allocating a new bbio, call
btrfs_map_block() first.

Since our only objective of calling btrfs_map_block() is only to update
stripe_len, there is really no need to do that after btrfs_alloc_bio().

This new timing would avoid the problem of handling empty bbio
completely, and in fact fixes a possible race window for the old code,
where if the submission thread is the only owner of the pending_io, the
scrub would never finish (since we didn't decrease the pending_io
counter).

Although the root cause of RST lookup failure still needs to be
addressed.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This commit is contained in:
Qu Wenruo 2024-06-17 15:18:44 +09:30 committed by David Sterba
parent b9fd2affe4
commit 2c49908634

View File

@ -1688,20 +1688,24 @@ static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
(i << fs_info->sectorsize_bits);
int err;
io_stripe.is_scrub = true;
stripe_len = (nr_sectors - i) << fs_info->sectorsize_bits;
/*
* For RST cases, we need to manually split the bbio to
* follow the RST boundary.
*/
err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
&stripe_len, &bioc, &io_stripe, &mirror);
btrfs_put_bioc(bioc);
if (err < 0) {
set_bit(i, &stripe->io_error_bitmap);
set_bit(i, &stripe->error_bitmap);
continue;
}
bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
fs_info, scrub_read_endio, stripe);
bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
io_stripe.is_scrub = true;
err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
&stripe_len, &bioc, &io_stripe,
&mirror);
btrfs_put_bioc(bioc);
if (err) {
btrfs_bio_end_io(bbio,
errno_to_blk_status(err));
return;
}
}
__bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);