arm, arm64: factorize common cpu capacity default code
arm and arm64 share lot of code relative to parsing CPU capacity information from DT, using that information for appropriate scaling and exposing a sysfs interface for chaging such values at runtime. Factorize such code in a common place (driver/base/arch_topology.c) in preparation for further additions. Suggested-by: Will Deacon <will.deacon@arm.com> Suggested-by: Mark Rutland <mark.rutland@arm.com> Suggested-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Juri Lelli <juri.lelli@arm.com> Acked-by: Russell King <rmk+kernel@armlinux.org.uk> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
parent
f70b281b59
commit
2ef7a2953c
@ -25,6 +25,7 @@ config ARM
|
||||
select EDAC_SUPPORT
|
||||
select EDAC_ATOMIC_SCRUB
|
||||
select GENERIC_ALLOCATOR
|
||||
select GENERIC_ARCH_TOPOLOGY if ARM_CPU_TOPOLOGY
|
||||
select GENERIC_ATOMIC64 if (CPU_V7M || CPU_V6 || !CPU_32v6K || !AEABI)
|
||||
select GENERIC_CLOCKEVENTS_BROADCAST if SMP
|
||||
select GENERIC_CPU_AUTOPROBE
|
||||
|
@ -44,75 +44,10 @@
|
||||
* to run the rebalance_domains for all idle cores and the cpu_capacity can be
|
||||
* updated during this sequence.
|
||||
*/
|
||||
static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
|
||||
static DEFINE_MUTEX(cpu_scale_mutex);
|
||||
|
||||
unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
|
||||
{
|
||||
return per_cpu(cpu_scale, cpu);
|
||||
}
|
||||
|
||||
static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
|
||||
{
|
||||
per_cpu(cpu_scale, cpu) = capacity;
|
||||
}
|
||||
|
||||
static ssize_t cpu_capacity_show(struct device *dev,
|
||||
struct device_attribute *attr,
|
||||
char *buf)
|
||||
{
|
||||
struct cpu *cpu = container_of(dev, struct cpu, dev);
|
||||
|
||||
return sprintf(buf, "%lu\n",
|
||||
arch_scale_cpu_capacity(NULL, cpu->dev.id));
|
||||
}
|
||||
|
||||
static ssize_t cpu_capacity_store(struct device *dev,
|
||||
struct device_attribute *attr,
|
||||
const char *buf,
|
||||
size_t count)
|
||||
{
|
||||
struct cpu *cpu = container_of(dev, struct cpu, dev);
|
||||
int this_cpu = cpu->dev.id, i;
|
||||
unsigned long new_capacity;
|
||||
ssize_t ret;
|
||||
|
||||
if (count) {
|
||||
ret = kstrtoul(buf, 0, &new_capacity);
|
||||
if (ret)
|
||||
return ret;
|
||||
if (new_capacity > SCHED_CAPACITY_SCALE)
|
||||
return -EINVAL;
|
||||
|
||||
mutex_lock(&cpu_scale_mutex);
|
||||
for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
|
||||
set_capacity_scale(i, new_capacity);
|
||||
mutex_unlock(&cpu_scale_mutex);
|
||||
}
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static DEVICE_ATTR_RW(cpu_capacity);
|
||||
|
||||
static int register_cpu_capacity_sysctl(void)
|
||||
{
|
||||
int i;
|
||||
struct device *cpu;
|
||||
|
||||
for_each_possible_cpu(i) {
|
||||
cpu = get_cpu_device(i);
|
||||
if (!cpu) {
|
||||
pr_err("%s: too early to get CPU%d device!\n",
|
||||
__func__, i);
|
||||
continue;
|
||||
}
|
||||
device_create_file(cpu, &dev_attr_cpu_capacity);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
subsys_initcall(register_cpu_capacity_sysctl);
|
||||
extern unsigned long
|
||||
arch_scale_cpu_capacity(struct sched_domain *sd, int cpu);
|
||||
extern void set_capacity_scale(unsigned int cpu, unsigned long capacity);
|
||||
|
||||
#ifdef CONFIG_OF
|
||||
struct cpu_efficiency {
|
||||
@ -141,145 +76,9 @@ static unsigned long *__cpu_capacity;
|
||||
|
||||
static unsigned long middle_capacity = 1;
|
||||
static bool cap_from_dt = true;
|
||||
static u32 *raw_capacity;
|
||||
static bool cap_parsing_failed;
|
||||
static u32 capacity_scale;
|
||||
|
||||
static int __init parse_cpu_capacity(struct device_node *cpu_node, int cpu)
|
||||
{
|
||||
int ret = 1;
|
||||
u32 cpu_capacity;
|
||||
|
||||
if (cap_parsing_failed)
|
||||
return !ret;
|
||||
|
||||
ret = of_property_read_u32(cpu_node,
|
||||
"capacity-dmips-mhz",
|
||||
&cpu_capacity);
|
||||
if (!ret) {
|
||||
if (!raw_capacity) {
|
||||
raw_capacity = kcalloc(num_possible_cpus(),
|
||||
sizeof(*raw_capacity),
|
||||
GFP_KERNEL);
|
||||
if (!raw_capacity) {
|
||||
pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
|
||||
cap_parsing_failed = true;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
capacity_scale = max(cpu_capacity, capacity_scale);
|
||||
raw_capacity[cpu] = cpu_capacity;
|
||||
pr_debug("cpu_capacity: %s cpu_capacity=%u (raw)\n",
|
||||
cpu_node->full_name, raw_capacity[cpu]);
|
||||
} else {
|
||||
if (raw_capacity) {
|
||||
pr_err("cpu_capacity: missing %s raw capacity\n",
|
||||
cpu_node->full_name);
|
||||
pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
|
||||
}
|
||||
cap_parsing_failed = true;
|
||||
kfree(raw_capacity);
|
||||
}
|
||||
|
||||
return !ret;
|
||||
}
|
||||
|
||||
static void normalize_cpu_capacity(void)
|
||||
{
|
||||
u64 capacity;
|
||||
int cpu;
|
||||
|
||||
if (!raw_capacity || cap_parsing_failed)
|
||||
return;
|
||||
|
||||
pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
|
||||
mutex_lock(&cpu_scale_mutex);
|
||||
for_each_possible_cpu(cpu) {
|
||||
capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
|
||||
/ capacity_scale;
|
||||
set_capacity_scale(cpu, capacity);
|
||||
pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
|
||||
cpu, arch_scale_cpu_capacity(NULL, cpu));
|
||||
}
|
||||
mutex_unlock(&cpu_scale_mutex);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_CPU_FREQ
|
||||
static cpumask_var_t cpus_to_visit;
|
||||
static bool cap_parsing_done;
|
||||
static void parsing_done_workfn(struct work_struct *work);
|
||||
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
|
||||
|
||||
static int
|
||||
init_cpu_capacity_callback(struct notifier_block *nb,
|
||||
unsigned long val,
|
||||
void *data)
|
||||
{
|
||||
struct cpufreq_policy *policy = data;
|
||||
int cpu;
|
||||
|
||||
if (cap_parsing_failed || cap_parsing_done)
|
||||
return 0;
|
||||
|
||||
switch (val) {
|
||||
case CPUFREQ_NOTIFY:
|
||||
pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
|
||||
cpumask_pr_args(policy->related_cpus),
|
||||
cpumask_pr_args(cpus_to_visit));
|
||||
cpumask_andnot(cpus_to_visit,
|
||||
cpus_to_visit,
|
||||
policy->related_cpus);
|
||||
for_each_cpu(cpu, policy->related_cpus) {
|
||||
raw_capacity[cpu] = arch_scale_cpu_capacity(NULL, cpu) *
|
||||
policy->cpuinfo.max_freq / 1000UL;
|
||||
capacity_scale = max(raw_capacity[cpu], capacity_scale);
|
||||
}
|
||||
if (cpumask_empty(cpus_to_visit)) {
|
||||
normalize_cpu_capacity();
|
||||
kfree(raw_capacity);
|
||||
pr_debug("cpu_capacity: parsing done\n");
|
||||
cap_parsing_done = true;
|
||||
schedule_work(&parsing_done_work);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct notifier_block init_cpu_capacity_notifier = {
|
||||
.notifier_call = init_cpu_capacity_callback,
|
||||
};
|
||||
|
||||
static int __init register_cpufreq_notifier(void)
|
||||
{
|
||||
if (cap_parsing_failed)
|
||||
return -EINVAL;
|
||||
|
||||
if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
|
||||
pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
cpumask_copy(cpus_to_visit, cpu_possible_mask);
|
||||
|
||||
return cpufreq_register_notifier(&init_cpu_capacity_notifier,
|
||||
CPUFREQ_POLICY_NOTIFIER);
|
||||
}
|
||||
core_initcall(register_cpufreq_notifier);
|
||||
|
||||
static void parsing_done_workfn(struct work_struct *work)
|
||||
{
|
||||
cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
|
||||
CPUFREQ_POLICY_NOTIFIER);
|
||||
}
|
||||
|
||||
#else
|
||||
static int __init free_raw_capacity(void)
|
||||
{
|
||||
kfree(raw_capacity);
|
||||
|
||||
return 0;
|
||||
}
|
||||
core_initcall(free_raw_capacity);
|
||||
#endif
|
||||
extern bool cap_parsing_failed;
|
||||
extern void normalize_cpu_capacity(void);
|
||||
extern int __init parse_cpu_capacity(struct device_node *cpu_node, int cpu);
|
||||
|
||||
/*
|
||||
* Iterate all CPUs' descriptor in DT and compute the efficiency
|
||||
|
@ -41,6 +41,7 @@ config ARM64
|
||||
select EDAC_SUPPORT
|
||||
select FRAME_POINTER
|
||||
select GENERIC_ALLOCATOR
|
||||
select GENERIC_ARCH_TOPOLOGY
|
||||
select GENERIC_CLOCKEVENTS
|
||||
select GENERIC_CLOCKEVENTS_BROADCAST
|
||||
select GENERIC_CPU_AUTOPROBE
|
||||
|
@ -11,7 +11,6 @@
|
||||
* for more details.
|
||||
*/
|
||||
|
||||
#include <linux/acpi.h>
|
||||
#include <linux/cpu.h>
|
||||
#include <linux/cpumask.h>
|
||||
#include <linux/init.h>
|
||||
@ -23,226 +22,14 @@
|
||||
#include <linux/sched/topology.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/cpufreq.h>
|
||||
|
||||
#include <asm/cpu.h>
|
||||
#include <asm/cputype.h>
|
||||
#include <asm/topology.h>
|
||||
|
||||
static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
|
||||
static DEFINE_MUTEX(cpu_scale_mutex);
|
||||
|
||||
unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
|
||||
{
|
||||
return per_cpu(cpu_scale, cpu);
|
||||
}
|
||||
|
||||
static void set_capacity_scale(unsigned int cpu, unsigned long capacity)
|
||||
{
|
||||
per_cpu(cpu_scale, cpu) = capacity;
|
||||
}
|
||||
|
||||
static ssize_t cpu_capacity_show(struct device *dev,
|
||||
struct device_attribute *attr,
|
||||
char *buf)
|
||||
{
|
||||
struct cpu *cpu = container_of(dev, struct cpu, dev);
|
||||
|
||||
return sprintf(buf, "%lu\n",
|
||||
arch_scale_cpu_capacity(NULL, cpu->dev.id));
|
||||
}
|
||||
|
||||
static ssize_t cpu_capacity_store(struct device *dev,
|
||||
struct device_attribute *attr,
|
||||
const char *buf,
|
||||
size_t count)
|
||||
{
|
||||
struct cpu *cpu = container_of(dev, struct cpu, dev);
|
||||
int this_cpu = cpu->dev.id, i;
|
||||
unsigned long new_capacity;
|
||||
ssize_t ret;
|
||||
|
||||
if (count) {
|
||||
ret = kstrtoul(buf, 0, &new_capacity);
|
||||
if (ret)
|
||||
return ret;
|
||||
if (new_capacity > SCHED_CAPACITY_SCALE)
|
||||
return -EINVAL;
|
||||
|
||||
mutex_lock(&cpu_scale_mutex);
|
||||
for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
|
||||
set_capacity_scale(i, new_capacity);
|
||||
mutex_unlock(&cpu_scale_mutex);
|
||||
}
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static DEVICE_ATTR_RW(cpu_capacity);
|
||||
|
||||
static int register_cpu_capacity_sysctl(void)
|
||||
{
|
||||
int i;
|
||||
struct device *cpu;
|
||||
|
||||
for_each_possible_cpu(i) {
|
||||
cpu = get_cpu_device(i);
|
||||
if (!cpu) {
|
||||
pr_err("%s: too early to get CPU%d device!\n",
|
||||
__func__, i);
|
||||
continue;
|
||||
}
|
||||
device_create_file(cpu, &dev_attr_cpu_capacity);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
subsys_initcall(register_cpu_capacity_sysctl);
|
||||
|
||||
static u32 capacity_scale;
|
||||
static u32 *raw_capacity;
|
||||
static bool cap_parsing_failed;
|
||||
|
||||
static void __init parse_cpu_capacity(struct device_node *cpu_node, int cpu)
|
||||
{
|
||||
int ret;
|
||||
u32 cpu_capacity;
|
||||
|
||||
if (cap_parsing_failed)
|
||||
return;
|
||||
|
||||
ret = of_property_read_u32(cpu_node,
|
||||
"capacity-dmips-mhz",
|
||||
&cpu_capacity);
|
||||
if (!ret) {
|
||||
if (!raw_capacity) {
|
||||
raw_capacity = kcalloc(num_possible_cpus(),
|
||||
sizeof(*raw_capacity),
|
||||
GFP_KERNEL);
|
||||
if (!raw_capacity) {
|
||||
pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
|
||||
cap_parsing_failed = true;
|
||||
return;
|
||||
}
|
||||
}
|
||||
capacity_scale = max(cpu_capacity, capacity_scale);
|
||||
raw_capacity[cpu] = cpu_capacity;
|
||||
pr_debug("cpu_capacity: %s cpu_capacity=%u (raw)\n",
|
||||
cpu_node->full_name, raw_capacity[cpu]);
|
||||
} else {
|
||||
if (raw_capacity) {
|
||||
pr_err("cpu_capacity: missing %s raw capacity\n",
|
||||
cpu_node->full_name);
|
||||
pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
|
||||
}
|
||||
cap_parsing_failed = true;
|
||||
kfree(raw_capacity);
|
||||
}
|
||||
}
|
||||
|
||||
static void normalize_cpu_capacity(void)
|
||||
{
|
||||
u64 capacity;
|
||||
int cpu;
|
||||
|
||||
if (!raw_capacity || cap_parsing_failed)
|
||||
return;
|
||||
|
||||
pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
|
||||
mutex_lock(&cpu_scale_mutex);
|
||||
for_each_possible_cpu(cpu) {
|
||||
pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
|
||||
cpu, raw_capacity[cpu]);
|
||||
capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
|
||||
/ capacity_scale;
|
||||
set_capacity_scale(cpu, capacity);
|
||||
pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
|
||||
cpu, arch_scale_cpu_capacity(NULL, cpu));
|
||||
}
|
||||
mutex_unlock(&cpu_scale_mutex);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_CPU_FREQ
|
||||
static cpumask_var_t cpus_to_visit;
|
||||
static bool cap_parsing_done;
|
||||
static void parsing_done_workfn(struct work_struct *work);
|
||||
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
|
||||
|
||||
static int
|
||||
init_cpu_capacity_callback(struct notifier_block *nb,
|
||||
unsigned long val,
|
||||
void *data)
|
||||
{
|
||||
struct cpufreq_policy *policy = data;
|
||||
int cpu;
|
||||
|
||||
if (cap_parsing_failed || cap_parsing_done)
|
||||
return 0;
|
||||
|
||||
switch (val) {
|
||||
case CPUFREQ_NOTIFY:
|
||||
pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
|
||||
cpumask_pr_args(policy->related_cpus),
|
||||
cpumask_pr_args(cpus_to_visit));
|
||||
cpumask_andnot(cpus_to_visit,
|
||||
cpus_to_visit,
|
||||
policy->related_cpus);
|
||||
for_each_cpu(cpu, policy->related_cpus) {
|
||||
raw_capacity[cpu] = arch_scale_cpu_capacity(NULL, cpu) *
|
||||
policy->cpuinfo.max_freq / 1000UL;
|
||||
capacity_scale = max(raw_capacity[cpu], capacity_scale);
|
||||
}
|
||||
if (cpumask_empty(cpus_to_visit)) {
|
||||
normalize_cpu_capacity();
|
||||
kfree(raw_capacity);
|
||||
pr_debug("cpu_capacity: parsing done\n");
|
||||
cap_parsing_done = true;
|
||||
schedule_work(&parsing_done_work);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct notifier_block init_cpu_capacity_notifier = {
|
||||
.notifier_call = init_cpu_capacity_callback,
|
||||
};
|
||||
|
||||
static int __init register_cpufreq_notifier(void)
|
||||
{
|
||||
/*
|
||||
* on ACPI-based systems we need to use the default cpu capacity
|
||||
* until we have the necessary code to parse the cpu capacity, so
|
||||
* skip registering cpufreq notifier.
|
||||
*/
|
||||
if (!acpi_disabled || cap_parsing_failed)
|
||||
return -EINVAL;
|
||||
|
||||
if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
|
||||
pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
cpumask_copy(cpus_to_visit, cpu_possible_mask);
|
||||
|
||||
return cpufreq_register_notifier(&init_cpu_capacity_notifier,
|
||||
CPUFREQ_POLICY_NOTIFIER);
|
||||
}
|
||||
core_initcall(register_cpufreq_notifier);
|
||||
|
||||
static void parsing_done_workfn(struct work_struct *work)
|
||||
{
|
||||
cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
|
||||
CPUFREQ_POLICY_NOTIFIER);
|
||||
}
|
||||
|
||||
#else
|
||||
static int __init free_raw_capacity(void)
|
||||
{
|
||||
kfree(raw_capacity);
|
||||
|
||||
return 0;
|
||||
}
|
||||
core_initcall(free_raw_capacity);
|
||||
#endif
|
||||
extern bool cap_parsing_failed;
|
||||
extern void normalize_cpu_capacity(void);
|
||||
extern int __init parse_cpu_capacity(struct device_node *cpu_node, int cpu);
|
||||
|
||||
static int __init get_cpu_for_node(struct device_node *node)
|
||||
{
|
||||
|
@ -339,4 +339,12 @@ config CMA_ALIGNMENT
|
||||
|
||||
endif
|
||||
|
||||
config GENERIC_ARCH_TOPOLOGY
|
||||
bool
|
||||
help
|
||||
Enable support for architectures common topology code: e.g., parsing
|
||||
CPU capacity information from DT, usage of such information for
|
||||
appropriate scaling, sysfs interface for changing capacity values at
|
||||
runtime.
|
||||
|
||||
endmenu
|
||||
|
@ -23,6 +23,7 @@ obj-$(CONFIG_SOC_BUS) += soc.o
|
||||
obj-$(CONFIG_PINCTRL) += pinctrl.o
|
||||
obj-$(CONFIG_DEV_COREDUMP) += devcoredump.o
|
||||
obj-$(CONFIG_GENERIC_MSI_IRQ_DOMAIN) += platform-msi.o
|
||||
obj-$(CONFIG_GENERIC_ARCH_TOPOLOGY) += arch_topology.o
|
||||
|
||||
obj-y += test/
|
||||
|
||||
|
242
drivers/base/arch_topology.c
Normal file
242
drivers/base/arch_topology.c
Normal file
@ -0,0 +1,242 @@
|
||||
/*
|
||||
* Arch specific cpu topology information
|
||||
*
|
||||
* Copyright (C) 2016, ARM Ltd.
|
||||
* Written by: Juri Lelli, ARM Ltd.
|
||||
*
|
||||
* This file is subject to the terms and conditions of the GNU General Public
|
||||
* License. See the file "COPYING" in the main directory of this archive
|
||||
* for more details.
|
||||
*
|
||||
* Released under the GPLv2 only.
|
||||
* SPDX-License-Identifier: GPL-2.0
|
||||
*/
|
||||
|
||||
#include <linux/acpi.h>
|
||||
#include <linux/cpu.h>
|
||||
#include <linux/cpufreq.h>
|
||||
#include <linux/device.h>
|
||||
#include <linux/of.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/sched/topology.h>
|
||||
|
||||
static DEFINE_MUTEX(cpu_scale_mutex);
|
||||
static DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
|
||||
|
||||
unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
|
||||
{
|
||||
return per_cpu(cpu_scale, cpu);
|
||||
}
|
||||
|
||||
void set_capacity_scale(unsigned int cpu, unsigned long capacity)
|
||||
{
|
||||
per_cpu(cpu_scale, cpu) = capacity;
|
||||
}
|
||||
|
||||
static ssize_t cpu_capacity_show(struct device *dev,
|
||||
struct device_attribute *attr,
|
||||
char *buf)
|
||||
{
|
||||
struct cpu *cpu = container_of(dev, struct cpu, dev);
|
||||
|
||||
return sprintf(buf, "%lu\n",
|
||||
arch_scale_cpu_capacity(NULL, cpu->dev.id));
|
||||
}
|
||||
|
||||
static ssize_t cpu_capacity_store(struct device *dev,
|
||||
struct device_attribute *attr,
|
||||
const char *buf,
|
||||
size_t count)
|
||||
{
|
||||
struct cpu *cpu = container_of(dev, struct cpu, dev);
|
||||
int this_cpu = cpu->dev.id;
|
||||
int i;
|
||||
unsigned long new_capacity;
|
||||
ssize_t ret;
|
||||
|
||||
if (!count)
|
||||
return 0;
|
||||
|
||||
ret = kstrtoul(buf, 0, &new_capacity);
|
||||
if (ret)
|
||||
return ret;
|
||||
if (new_capacity > SCHED_CAPACITY_SCALE)
|
||||
return -EINVAL;
|
||||
|
||||
mutex_lock(&cpu_scale_mutex);
|
||||
for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
|
||||
set_capacity_scale(i, new_capacity);
|
||||
mutex_unlock(&cpu_scale_mutex);
|
||||
|
||||
return count;
|
||||
}
|
||||
|
||||
static DEVICE_ATTR_RW(cpu_capacity);
|
||||
|
||||
static int register_cpu_capacity_sysctl(void)
|
||||
{
|
||||
int i;
|
||||
struct device *cpu;
|
||||
|
||||
for_each_possible_cpu(i) {
|
||||
cpu = get_cpu_device(i);
|
||||
if (!cpu) {
|
||||
pr_err("%s: too early to get CPU%d device!\n",
|
||||
__func__, i);
|
||||
continue;
|
||||
}
|
||||
device_create_file(cpu, &dev_attr_cpu_capacity);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
subsys_initcall(register_cpu_capacity_sysctl);
|
||||
|
||||
static u32 capacity_scale;
|
||||
static u32 *raw_capacity;
|
||||
bool cap_parsing_failed;
|
||||
|
||||
void normalize_cpu_capacity(void)
|
||||
{
|
||||
u64 capacity;
|
||||
int cpu;
|
||||
|
||||
if (!raw_capacity || cap_parsing_failed)
|
||||
return;
|
||||
|
||||
pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
|
||||
mutex_lock(&cpu_scale_mutex);
|
||||
for_each_possible_cpu(cpu) {
|
||||
pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
|
||||
cpu, raw_capacity[cpu]);
|
||||
capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
|
||||
/ capacity_scale;
|
||||
set_capacity_scale(cpu, capacity);
|
||||
pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
|
||||
cpu, arch_scale_cpu_capacity(NULL, cpu));
|
||||
}
|
||||
mutex_unlock(&cpu_scale_mutex);
|
||||
}
|
||||
|
||||
int __init parse_cpu_capacity(struct device_node *cpu_node, int cpu)
|
||||
{
|
||||
int ret = 1;
|
||||
u32 cpu_capacity;
|
||||
|
||||
if (cap_parsing_failed)
|
||||
return !ret;
|
||||
|
||||
ret = of_property_read_u32(cpu_node,
|
||||
"capacity-dmips-mhz",
|
||||
&cpu_capacity);
|
||||
if (!ret) {
|
||||
if (!raw_capacity) {
|
||||
raw_capacity = kcalloc(num_possible_cpus(),
|
||||
sizeof(*raw_capacity),
|
||||
GFP_KERNEL);
|
||||
if (!raw_capacity) {
|
||||
pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
|
||||
cap_parsing_failed = true;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
capacity_scale = max(cpu_capacity, capacity_scale);
|
||||
raw_capacity[cpu] = cpu_capacity;
|
||||
pr_debug("cpu_capacity: %s cpu_capacity=%u (raw)\n",
|
||||
cpu_node->full_name, raw_capacity[cpu]);
|
||||
} else {
|
||||
if (raw_capacity) {
|
||||
pr_err("cpu_capacity: missing %s raw capacity\n",
|
||||
cpu_node->full_name);
|
||||
pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
|
||||
}
|
||||
cap_parsing_failed = true;
|
||||
kfree(raw_capacity);
|
||||
}
|
||||
|
||||
return !ret;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_CPU_FREQ
|
||||
static cpumask_var_t cpus_to_visit;
|
||||
static bool cap_parsing_done;
|
||||
static void parsing_done_workfn(struct work_struct *work);
|
||||
static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
|
||||
|
||||
static int
|
||||
init_cpu_capacity_callback(struct notifier_block *nb,
|
||||
unsigned long val,
|
||||
void *data)
|
||||
{
|
||||
struct cpufreq_policy *policy = data;
|
||||
int cpu;
|
||||
|
||||
if (cap_parsing_failed || cap_parsing_done)
|
||||
return 0;
|
||||
|
||||
switch (val) {
|
||||
case CPUFREQ_NOTIFY:
|
||||
pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
|
||||
cpumask_pr_args(policy->related_cpus),
|
||||
cpumask_pr_args(cpus_to_visit));
|
||||
cpumask_andnot(cpus_to_visit,
|
||||
cpus_to_visit,
|
||||
policy->related_cpus);
|
||||
for_each_cpu(cpu, policy->related_cpus) {
|
||||
raw_capacity[cpu] = arch_scale_cpu_capacity(NULL, cpu) *
|
||||
policy->cpuinfo.max_freq / 1000UL;
|
||||
capacity_scale = max(raw_capacity[cpu], capacity_scale);
|
||||
}
|
||||
if (cpumask_empty(cpus_to_visit)) {
|
||||
normalize_cpu_capacity();
|
||||
kfree(raw_capacity);
|
||||
pr_debug("cpu_capacity: parsing done\n");
|
||||
cap_parsing_done = true;
|
||||
schedule_work(&parsing_done_work);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct notifier_block init_cpu_capacity_notifier = {
|
||||
.notifier_call = init_cpu_capacity_callback,
|
||||
};
|
||||
|
||||
static int __init register_cpufreq_notifier(void)
|
||||
{
|
||||
/*
|
||||
* on ACPI-based systems we need to use the default cpu capacity
|
||||
* until we have the necessary code to parse the cpu capacity, so
|
||||
* skip registering cpufreq notifier.
|
||||
*/
|
||||
if (!acpi_disabled || cap_parsing_failed)
|
||||
return -EINVAL;
|
||||
|
||||
if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
|
||||
pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
cpumask_copy(cpus_to_visit, cpu_possible_mask);
|
||||
|
||||
return cpufreq_register_notifier(&init_cpu_capacity_notifier,
|
||||
CPUFREQ_POLICY_NOTIFIER);
|
||||
}
|
||||
core_initcall(register_cpufreq_notifier);
|
||||
|
||||
static void parsing_done_workfn(struct work_struct *work)
|
||||
{
|
||||
cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
|
||||
CPUFREQ_POLICY_NOTIFIER);
|
||||
}
|
||||
|
||||
#else
|
||||
static int __init free_raw_capacity(void)
|
||||
{
|
||||
kfree(raw_capacity);
|
||||
|
||||
return 0;
|
||||
}
|
||||
core_initcall(free_raw_capacity);
|
||||
#endif
|
Loading…
Reference in New Issue
Block a user