arm64: Import updated version of Cortex Strings' strlen
Import an updated version of the former Cortex Strings - now Arm Optimized Routines - strcmp function. The latest version introduces Advanced SIMD usage which rules it out for our purposes, but we can still pick an intermediate improvement from the previous version, namely string/aarch64/strlen.S at commit 98e4d6a from https://github.com/ARM-software/optimized-routines Note that for simplicity Arm have chosen to contribute this code to Linux under GPLv2 rather than the original MIT license. Signed-off-by: Sam Tebbs <sam.tebbs@arm.com> [ rm: update attribution and commit message ] Signed-off-by: Robin Murphy <robin.murphy@arm.com> Link: https://lore.kernel.org/r/32e3489398a24b23ae6e996935ac4818f8fd9dfd.1622128527.git.robin.murphy@arm.com Signed-off-by: Will Deacon <will@kernel.org>
This commit is contained in:
parent
758602c044
commit
325a1de812
@ -1,115 +1,203 @@
|
||||
/* SPDX-License-Identifier: GPL-2.0-only */
|
||||
/*
|
||||
* Copyright (C) 2013 ARM Ltd.
|
||||
* Copyright (C) 2013 Linaro.
|
||||
* Copyright (c) 2013, Arm Limited.
|
||||
*
|
||||
* This code is based on glibc cortex strings work originally authored by Linaro
|
||||
* be found @
|
||||
*
|
||||
* http://bazaar.launchpad.net/~linaro-toolchain-dev/cortex-strings/trunk/
|
||||
* files/head:/src/aarch64/
|
||||
* Adapted from the original at:
|
||||
* https://github.com/ARM-software/optimized-routines/blob/master/string/aarch64/strlen.S
|
||||
*/
|
||||
|
||||
#include <linux/linkage.h>
|
||||
#include <asm/assembler.h>
|
||||
|
||||
/*
|
||||
* calculate the length of a string
|
||||
/* Assumptions:
|
||||
*
|
||||
* Parameters:
|
||||
* x0 - const string pointer
|
||||
* Returns:
|
||||
* x0 - the return length of specific string
|
||||
* ARMv8-a, AArch64, unaligned accesses, min page size 4k.
|
||||
*/
|
||||
|
||||
#define L(label) .L ## label
|
||||
|
||||
/* Arguments and results. */
|
||||
srcin .req x0
|
||||
len .req x0
|
||||
#define srcin x0
|
||||
#define len x0
|
||||
|
||||
/* Locals and temporaries. */
|
||||
src .req x1
|
||||
data1 .req x2
|
||||
data2 .req x3
|
||||
data2a .req x4
|
||||
has_nul1 .req x5
|
||||
has_nul2 .req x6
|
||||
tmp1 .req x7
|
||||
tmp2 .req x8
|
||||
tmp3 .req x9
|
||||
tmp4 .req x10
|
||||
zeroones .req x11
|
||||
pos .req x12
|
||||
#define src x1
|
||||
#define data1 x2
|
||||
#define data2 x3
|
||||
#define has_nul1 x4
|
||||
#define has_nul2 x5
|
||||
#define tmp1 x4
|
||||
#define tmp2 x5
|
||||
#define tmp3 x6
|
||||
#define tmp4 x7
|
||||
#define zeroones x8
|
||||
|
||||
/* NUL detection works on the principle that (X - 1) & (~X) & 0x80
|
||||
(=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
|
||||
can be done in parallel across the entire word. A faster check
|
||||
(X - 1) & 0x80 is zero for non-NUL ASCII characters, but gives
|
||||
false hits for characters 129..255. */
|
||||
|
||||
#define REP8_01 0x0101010101010101
|
||||
#define REP8_7f 0x7f7f7f7f7f7f7f7f
|
||||
#define REP8_80 0x8080808080808080
|
||||
|
||||
#define MIN_PAGE_SIZE 4096
|
||||
|
||||
/* Since strings are short on average, we check the first 16 bytes
|
||||
of the string for a NUL character. In order to do an unaligned ldp
|
||||
safely we have to do a page cross check first. If there is a NUL
|
||||
byte we calculate the length from the 2 8-byte words using
|
||||
conditional select to reduce branch mispredictions (it is unlikely
|
||||
strlen will be repeatedly called on strings with the same length).
|
||||
|
||||
If the string is longer than 16 bytes, we align src so don't need
|
||||
further page cross checks, and process 32 bytes per iteration
|
||||
using the fast NUL check. If we encounter non-ASCII characters,
|
||||
fallback to a second loop using the full NUL check.
|
||||
|
||||
If the page cross check fails, we read 16 bytes from an aligned
|
||||
address, remove any characters before the string, and continue
|
||||
in the main loop using aligned loads. Since strings crossing a
|
||||
page in the first 16 bytes are rare (probability of
|
||||
16/MIN_PAGE_SIZE ~= 0.4%), this case does not need to be optimized.
|
||||
|
||||
AArch64 systems have a minimum page size of 4k. We don't bother
|
||||
checking for larger page sizes - the cost of setting up the correct
|
||||
page size is just not worth the extra gain from a small reduction in
|
||||
the cases taking the slow path. Note that we only care about
|
||||
whether the first fetch, which may be misaligned, crosses a page
|
||||
boundary. */
|
||||
|
||||
SYM_FUNC_START_WEAK_PI(strlen)
|
||||
mov zeroones, #REP8_01
|
||||
bic src, srcin, #15
|
||||
ands tmp1, srcin, #15
|
||||
b.ne .Lmisaligned
|
||||
/*
|
||||
* NUL detection works on the principle that (X - 1) & (~X) & 0x80
|
||||
* (=> (X - 1) & ~(X | 0x7f)) is non-zero iff a byte is zero, and
|
||||
* can be done in parallel across the entire word.
|
||||
*/
|
||||
/*
|
||||
* The inner loop deals with two Dwords at a time. This has a
|
||||
* slightly higher start-up cost, but we should win quite quickly,
|
||||
* especially on cores with a high number of issue slots per
|
||||
* cycle, as we get much better parallelism out of the operations.
|
||||
*/
|
||||
.Lloop:
|
||||
ldp data1, data2, [src], #16
|
||||
.Lrealigned:
|
||||
and tmp1, srcin, MIN_PAGE_SIZE - 1
|
||||
mov zeroones, REP8_01
|
||||
cmp tmp1, MIN_PAGE_SIZE - 16
|
||||
b.gt L(page_cross)
|
||||
ldp data1, data2, [srcin]
|
||||
#ifdef __AARCH64EB__
|
||||
/* For big-endian, carry propagation (if the final byte in the
|
||||
string is 0x01) means we cannot use has_nul1/2 directly.
|
||||
Since we expect strings to be small and early-exit,
|
||||
byte-swap the data now so has_null1/2 will be correct. */
|
||||
rev data1, data1
|
||||
rev data2, data2
|
||||
#endif
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, #REP8_7f
|
||||
orr tmp2, data1, REP8_7f
|
||||
sub tmp3, data2, zeroones
|
||||
orr tmp4, data2, #REP8_7f
|
||||
bic has_nul1, tmp1, tmp2
|
||||
bics has_nul2, tmp3, tmp4
|
||||
ccmp has_nul1, #0, #0, eq /* NZCV = 0000 */
|
||||
b.eq .Lloop
|
||||
orr tmp4, data2, REP8_7f
|
||||
bics has_nul1, tmp1, tmp2
|
||||
bic has_nul2, tmp3, tmp4
|
||||
ccmp has_nul2, 0, 0, eq
|
||||
beq L(main_loop_entry)
|
||||
|
||||
sub len, src, srcin
|
||||
cbz has_nul1, .Lnul_in_data2
|
||||
CPU_BE( mov data2, data1 ) /*prepare data to re-calculate the syndrome*/
|
||||
sub len, len, #8
|
||||
mov has_nul2, has_nul1
|
||||
.Lnul_in_data2:
|
||||
/*
|
||||
* For big-endian, carry propagation (if the final byte in the
|
||||
* string is 0x01) means we cannot use has_nul directly. The
|
||||
* easiest way to get the correct byte is to byte-swap the data
|
||||
* and calculate the syndrome a second time.
|
||||
*/
|
||||
CPU_BE( rev data2, data2 )
|
||||
CPU_BE( sub tmp1, data2, zeroones )
|
||||
CPU_BE( orr tmp2, data2, #REP8_7f )
|
||||
CPU_BE( bic has_nul2, tmp1, tmp2 )
|
||||
|
||||
sub len, len, #8
|
||||
rev has_nul2, has_nul2
|
||||
clz pos, has_nul2
|
||||
add len, len, pos, lsr #3 /* Bits to bytes. */
|
||||
/* Enter with C = has_nul1 == 0. */
|
||||
csel has_nul1, has_nul1, has_nul2, cc
|
||||
mov len, 8
|
||||
rev has_nul1, has_nul1
|
||||
clz tmp1, has_nul1
|
||||
csel len, xzr, len, cc
|
||||
add len, len, tmp1, lsr 3
|
||||
ret
|
||||
|
||||
.Lmisaligned:
|
||||
cmp tmp1, #8
|
||||
neg tmp1, tmp1
|
||||
ldp data1, data2, [src], #16
|
||||
lsl tmp1, tmp1, #3 /* Bytes beyond alignment -> bits. */
|
||||
mov tmp2, #~0
|
||||
/* Big-endian. Early bytes are at MSB. */
|
||||
CPU_BE( lsl tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */
|
||||
/* Little-endian. Early bytes are at LSB. */
|
||||
CPU_LE( lsr tmp2, tmp2, tmp1 ) /* Shift (tmp1 & 63). */
|
||||
/* The inner loop processes 32 bytes per iteration and uses the fast
|
||||
NUL check. If we encounter non-ASCII characters, use a second
|
||||
loop with the accurate NUL check. */
|
||||
.p2align 4
|
||||
L(main_loop_entry):
|
||||
bic src, srcin, 15
|
||||
sub src, src, 16
|
||||
L(main_loop):
|
||||
ldp data1, data2, [src, 32]!
|
||||
L(page_cross_entry):
|
||||
sub tmp1, data1, zeroones
|
||||
sub tmp3, data2, zeroones
|
||||
orr tmp2, tmp1, tmp3
|
||||
tst tmp2, zeroones, lsl 7
|
||||
bne 1f
|
||||
ldp data1, data2, [src, 16]
|
||||
sub tmp1, data1, zeroones
|
||||
sub tmp3, data2, zeroones
|
||||
orr tmp2, tmp1, tmp3
|
||||
tst tmp2, zeroones, lsl 7
|
||||
beq L(main_loop)
|
||||
add src, src, 16
|
||||
1:
|
||||
/* The fast check failed, so do the slower, accurate NUL check. */
|
||||
orr tmp2, data1, REP8_7f
|
||||
orr tmp4, data2, REP8_7f
|
||||
bics has_nul1, tmp1, tmp2
|
||||
bic has_nul2, tmp3, tmp4
|
||||
ccmp has_nul2, 0, 0, eq
|
||||
beq L(nonascii_loop)
|
||||
|
||||
/* Enter with C = has_nul1 == 0. */
|
||||
L(tail):
|
||||
#ifdef __AARCH64EB__
|
||||
/* For big-endian, carry propagation (if the final byte in the
|
||||
string is 0x01) means we cannot use has_nul1/2 directly. The
|
||||
easiest way to get the correct byte is to byte-swap the data
|
||||
and calculate the syndrome a second time. */
|
||||
csel data1, data1, data2, cc
|
||||
rev data1, data1
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, REP8_7f
|
||||
bic has_nul1, tmp1, tmp2
|
||||
#else
|
||||
csel has_nul1, has_nul1, has_nul2, cc
|
||||
#endif
|
||||
sub len, src, srcin
|
||||
rev has_nul1, has_nul1
|
||||
add tmp2, len, 8
|
||||
clz tmp1, has_nul1
|
||||
csel len, len, tmp2, cc
|
||||
add len, len, tmp1, lsr 3
|
||||
ret
|
||||
|
||||
L(nonascii_loop):
|
||||
ldp data1, data2, [src, 16]!
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, REP8_7f
|
||||
sub tmp3, data2, zeroones
|
||||
orr tmp4, data2, REP8_7f
|
||||
bics has_nul1, tmp1, tmp2
|
||||
bic has_nul2, tmp3, tmp4
|
||||
ccmp has_nul2, 0, 0, eq
|
||||
bne L(tail)
|
||||
ldp data1, data2, [src, 16]!
|
||||
sub tmp1, data1, zeroones
|
||||
orr tmp2, data1, REP8_7f
|
||||
sub tmp3, data2, zeroones
|
||||
orr tmp4, data2, REP8_7f
|
||||
bics has_nul1, tmp1, tmp2
|
||||
bic has_nul2, tmp3, tmp4
|
||||
ccmp has_nul2, 0, 0, eq
|
||||
beq L(nonascii_loop)
|
||||
b L(tail)
|
||||
|
||||
/* Load 16 bytes from [srcin & ~15] and force the bytes that precede
|
||||
srcin to 0x7f, so we ignore any NUL bytes before the string.
|
||||
Then continue in the aligned loop. */
|
||||
L(page_cross):
|
||||
bic src, srcin, 15
|
||||
ldp data1, data2, [src]
|
||||
lsl tmp1, srcin, 3
|
||||
mov tmp4, -1
|
||||
#ifdef __AARCH64EB__
|
||||
/* Big-endian. Early bytes are at MSB. */
|
||||
lsr tmp1, tmp4, tmp1 /* Shift (tmp1 & 63). */
|
||||
#else
|
||||
/* Little-endian. Early bytes are at LSB. */
|
||||
lsl tmp1, tmp4, tmp1 /* Shift (tmp1 & 63). */
|
||||
#endif
|
||||
orr tmp1, tmp1, REP8_80
|
||||
orn data1, data1, tmp1
|
||||
orn tmp2, data2, tmp1
|
||||
tst srcin, 8
|
||||
csel data1, data1, tmp4, eq
|
||||
csel data2, data2, tmp2, eq
|
||||
b L(page_cross_entry)
|
||||
|
||||
orr data1, data1, tmp2
|
||||
orr data2a, data2, tmp2
|
||||
csinv data1, data1, xzr, le
|
||||
csel data2, data2, data2a, le
|
||||
b .Lrealigned
|
||||
SYM_FUNC_END_PI(strlen)
|
||||
EXPORT_SYMBOL_NOKASAN(strlen)
|
||||
|
Loading…
x
Reference in New Issue
Block a user