dmaengine: xilinx: xdma: Prepare the introduction of interleaved DMA transfers
Make generic code generic. As descriptor-filling logic stays the same regardless of a dmaengine's type of transfer, it is possible to write the descriptor-filling function in a generic way, so that it can be used for every single type of transfer preparation callback. Signed-off-by: Jan Kuliga <jankul@alatek.krakow.pl> Link: https://lore.kernel.org/r/20231218113943.9099-8-jankul@alatek.krakow.pl Signed-off-by: Vinod Koul <vkoul@kernel.org>
This commit is contained in:
parent
fd0e1d83a8
commit
3e184e64c2
@ -542,6 +542,43 @@ static void xdma_synchronize(struct dma_chan *chan)
|
||||
vchan_synchronize(&xdma_chan->vchan);
|
||||
}
|
||||
|
||||
/**
|
||||
* xdma_fill_descs - Fill hardware descriptors with contiguous memory block addresses
|
||||
* @sw_desc - tx descriptor state container
|
||||
* @src_addr - Value for a ->src_addr field of a first descriptor
|
||||
* @dst_addr - Value for a ->dst_addr field of a first descriptor
|
||||
* @size - Total size of a contiguous memory block
|
||||
* @filled_descs_num - Number of filled hardware descriptors for corresponding sw_desc
|
||||
*/
|
||||
static inline u32 xdma_fill_descs(struct xdma_desc *sw_desc, u64 src_addr,
|
||||
u64 dst_addr, u32 size, u32 filled_descs_num)
|
||||
{
|
||||
u32 left = size, len, desc_num = filled_descs_num;
|
||||
struct xdma_desc_block *dblk;
|
||||
struct xdma_hw_desc *desc;
|
||||
|
||||
dblk = sw_desc->desc_blocks + (desc_num / XDMA_DESC_ADJACENT);
|
||||
desc = dblk->virt_addr;
|
||||
desc += desc_num & XDMA_DESC_ADJACENT_MASK;
|
||||
do {
|
||||
len = min_t(u32, left, XDMA_DESC_BLEN_MAX);
|
||||
/* set hardware descriptor */
|
||||
desc->bytes = cpu_to_le32(len);
|
||||
desc->src_addr = cpu_to_le64(src_addr);
|
||||
desc->dst_addr = cpu_to_le64(dst_addr);
|
||||
if (!(++desc_num & XDMA_DESC_ADJACENT_MASK))
|
||||
desc = (++dblk)->virt_addr;
|
||||
else
|
||||
desc++;
|
||||
|
||||
src_addr += len;
|
||||
dst_addr += len;
|
||||
left -= len;
|
||||
} while (left);
|
||||
|
||||
return desc_num - filled_descs_num;
|
||||
}
|
||||
|
||||
/**
|
||||
* xdma_prep_device_sg - prepare a descriptor for a DMA transaction
|
||||
* @chan: DMA channel pointer
|
||||
@ -558,13 +595,10 @@ xdma_prep_device_sg(struct dma_chan *chan, struct scatterlist *sgl,
|
||||
{
|
||||
struct xdma_chan *xdma_chan = to_xdma_chan(chan);
|
||||
struct dma_async_tx_descriptor *tx_desc;
|
||||
u32 desc_num = 0, i, len, rest;
|
||||
struct xdma_desc_block *dblk;
|
||||
struct xdma_hw_desc *desc;
|
||||
struct xdma_desc *sw_desc;
|
||||
u64 dev_addr, *src, *dst;
|
||||
u32 desc_num = 0, i;
|
||||
u64 addr, dev_addr, *src, *dst;
|
||||
struct scatterlist *sg;
|
||||
u64 addr;
|
||||
|
||||
for_each_sg(sgl, sg, sg_len, i)
|
||||
desc_num += DIV_ROUND_UP(sg_dma_len(sg), XDMA_DESC_BLEN_MAX);
|
||||
@ -584,32 +618,11 @@ xdma_prep_device_sg(struct dma_chan *chan, struct scatterlist *sgl,
|
||||
dst = &addr;
|
||||
}
|
||||
|
||||
dblk = sw_desc->desc_blocks;
|
||||
desc = dblk->virt_addr;
|
||||
desc_num = 1;
|
||||
desc_num = 0;
|
||||
for_each_sg(sgl, sg, sg_len, i) {
|
||||
addr = sg_dma_address(sg);
|
||||
rest = sg_dma_len(sg);
|
||||
|
||||
do {
|
||||
len = min_t(u32, rest, XDMA_DESC_BLEN_MAX);
|
||||
/* set hardware descriptor */
|
||||
desc->bytes = cpu_to_le32(len);
|
||||
desc->src_addr = cpu_to_le64(*src);
|
||||
desc->dst_addr = cpu_to_le64(*dst);
|
||||
|
||||
if (!(desc_num & XDMA_DESC_ADJACENT_MASK)) {
|
||||
dblk++;
|
||||
desc = dblk->virt_addr;
|
||||
} else {
|
||||
desc++;
|
||||
}
|
||||
|
||||
desc_num++;
|
||||
dev_addr += len;
|
||||
addr += len;
|
||||
rest -= len;
|
||||
} while (rest);
|
||||
desc_num += xdma_fill_descs(sw_desc, *src, *dst, sg_dma_len(sg), desc_num);
|
||||
dev_addr += sg_dma_len(sg);
|
||||
}
|
||||
|
||||
tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags);
|
||||
@ -643,9 +656,9 @@ xdma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t address,
|
||||
struct xdma_device *xdev = xdma_chan->xdev_hdl;
|
||||
unsigned int periods = size / period_size;
|
||||
struct dma_async_tx_descriptor *tx_desc;
|
||||
struct xdma_desc_block *dblk;
|
||||
struct xdma_hw_desc *desc;
|
||||
struct xdma_desc *sw_desc;
|
||||
u64 addr, dev_addr, *src, *dst;
|
||||
u32 desc_num;
|
||||
unsigned int i;
|
||||
|
||||
/*
|
||||
@ -670,21 +683,21 @@ xdma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t address,
|
||||
sw_desc->period_size = period_size;
|
||||
sw_desc->dir = dir;
|
||||
|
||||
dblk = sw_desc->desc_blocks;
|
||||
desc = dblk->virt_addr;
|
||||
addr = address;
|
||||
if (dir == DMA_MEM_TO_DEV) {
|
||||
dev_addr = xdma_chan->cfg.dst_addr;
|
||||
src = &addr;
|
||||
dst = &dev_addr;
|
||||
} else {
|
||||
dev_addr = xdma_chan->cfg.src_addr;
|
||||
src = &dev_addr;
|
||||
dst = &addr;
|
||||
}
|
||||
|
||||
/* fill hardware descriptor */
|
||||
desc_num = 0;
|
||||
for (i = 0; i < periods; i++) {
|
||||
desc->bytes = cpu_to_le32(period_size);
|
||||
if (dir == DMA_MEM_TO_DEV) {
|
||||
desc->src_addr = cpu_to_le64(address + i * period_size);
|
||||
desc->dst_addr = cpu_to_le64(xdma_chan->cfg.dst_addr);
|
||||
} else {
|
||||
desc->src_addr = cpu_to_le64(xdma_chan->cfg.src_addr);
|
||||
desc->dst_addr = cpu_to_le64(address + i * period_size);
|
||||
}
|
||||
|
||||
desc++;
|
||||
desc_num += xdma_fill_descs(sw_desc, *src, *dst, period_size, desc_num);
|
||||
addr += i * period_size;
|
||||
}
|
||||
|
||||
tx_desc = vchan_tx_prep(&xdma_chan->vchan, &sw_desc->vdesc, flags);
|
||||
|
Loading…
x
Reference in New Issue
Block a user