can: usb: PEAK-System Technik PCAN-USB specific part

This patch adds the specific part which handles the PCAN-USB adapter from
PEAK-System Technik (http://www.peak-system.com). The PCAN-USB adapter is
a sja1000 based, mono-channel USB 1.1 adapter compliant with CAN
specifications 2.0A (11-bit ID) and 2.0B (29-bit ID).

Tested-by: Oliver Hartkopp <socketcan@hartkopp.net>
Acked-by: Wolfgang Grandegger <wg@grandegger.com>
Signed-off-by: Stephane Grosjean <s.grosjean@peak-system.com>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
This commit is contained in:
Stephane Grosjean 2012-03-02 16:13:05 +01:00 committed by Marc Kleine-Budde
parent bb4785551f
commit 46be265d33
2 changed files with 902 additions and 1 deletions

View File

@ -1,2 +1,2 @@
obj-$(CONFIG_CAN_PEAK_USB) += peak_usb.o obj-$(CONFIG_CAN_PEAK_USB) += peak_usb.o
peak_usb-y = pcan_usb_core.o peak_usb-y = pcan_usb_core.o pcan_usb.o

View File

@ -0,0 +1,901 @@
/*
* CAN driver for PEAK System PCAN-USB adapter
* Derived from the PCAN project file driver/src/pcan_usb.c
*
* Copyright (C) 2003-2010 PEAK System-Technik GmbH
* Copyright (C) 2011-2012 Stephane Grosjean <s.grosjean@peak-system.com>
*
* Many thanks to Klaus Hitschler <klaus.hitschler@gmx.de>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published
* by the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/netdevice.h>
#include <linux/usb.h>
#include <linux/module.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
#include "pcan_usb_core.h"
MODULE_SUPPORTED_DEVICE("PEAK-System PCAN-USB adapter");
/* PCAN-USB Endpoints */
#define PCAN_USB_EP_CMDOUT 1
#define PCAN_USB_EP_CMDIN (PCAN_USB_EP_CMDOUT | USB_DIR_IN)
#define PCAN_USB_EP_MSGOUT 2
#define PCAN_USB_EP_MSGIN (PCAN_USB_EP_MSGOUT | USB_DIR_IN)
/* PCAN-USB command struct */
#define PCAN_USB_CMD_FUNC 0
#define PCAN_USB_CMD_NUM 1
#define PCAN_USB_CMD_ARGS 2
#define PCAN_USB_CMD_ARGS_LEN 14
#define PCAN_USB_CMD_LEN (PCAN_USB_CMD_ARGS + \
PCAN_USB_CMD_ARGS_LEN)
/* PCAN-USB command timeout (ms.) */
#define PCAN_USB_COMMAND_TIMEOUT 1000
/* PCAN-USB startup timeout (ms.) */
#define PCAN_USB_STARTUP_TIMEOUT 10
/* PCAN-USB rx/tx buffers size */
#define PCAN_USB_RX_BUFFER_SIZE 64
#define PCAN_USB_TX_BUFFER_SIZE 64
#define PCAN_USB_MSG_HEADER_LEN 2
/* PCAN-USB adapter internal clock (MHz) */
#define PCAN_USB_CRYSTAL_HZ 16000000
/* PCAN-USB USB message record status/len field */
#define PCAN_USB_STATUSLEN_TIMESTAMP (1 << 7)
#define PCAN_USB_STATUSLEN_INTERNAL (1 << 6)
#define PCAN_USB_STATUSLEN_EXT_ID (1 << 5)
#define PCAN_USB_STATUSLEN_RTR (1 << 4)
#define PCAN_USB_STATUSLEN_DLC (0xf)
/* PCAN-USB error flags */
#define PCAN_USB_ERROR_TXFULL 0x01
#define PCAN_USB_ERROR_RXQOVR 0x02
#define PCAN_USB_ERROR_BUS_LIGHT 0x04
#define PCAN_USB_ERROR_BUS_HEAVY 0x08
#define PCAN_USB_ERROR_BUS_OFF 0x10
#define PCAN_USB_ERROR_RXQEMPTY 0x20
#define PCAN_USB_ERROR_QOVR 0x40
#define PCAN_USB_ERROR_TXQFULL 0x80
/* SJA1000 modes */
#define SJA1000_MODE_NORMAL 0x00
#define SJA1000_MODE_INIT 0x01
/*
* tick duration = 42.666 us =>
* (tick_number * 44739243) >> 20 ~ (tick_number * 42666) / 1000
* accuracy = 10^-7
*/
#define PCAN_USB_TS_DIV_SHIFTER 20
#define PCAN_USB_TS_US_PER_TICK 44739243
/* PCAN-USB messages record types */
#define PCAN_USB_REC_ERROR 1
#define PCAN_USB_REC_ANALOG 2
#define PCAN_USB_REC_BUSLOAD 3
#define PCAN_USB_REC_TS 4
#define PCAN_USB_REC_BUSEVT 5
/* private to PCAN-USB adapter */
struct pcan_usb {
struct peak_usb_device dev;
struct peak_time_ref time_ref;
struct timer_list restart_timer;
};
/* incoming message context for decoding */
struct pcan_usb_msg_context {
u16 ts16;
u8 prev_ts8;
u8 *ptr;
u8 *end;
u8 rec_cnt;
u8 rec_idx;
u8 rec_data_idx;
struct net_device *netdev;
struct pcan_usb *pdev;
};
/*
* send a command
*/
static int pcan_usb_send_cmd(struct peak_usb_device *dev, u8 f, u8 n, u8 *p)
{
int err;
int actual_length;
/* usb device unregistered? */
if (!(dev->state & PCAN_USB_STATE_CONNECTED))
return 0;
dev->cmd_buf[PCAN_USB_CMD_FUNC] = f;
dev->cmd_buf[PCAN_USB_CMD_NUM] = n;
if (p)
memcpy(dev->cmd_buf + PCAN_USB_CMD_ARGS,
p, PCAN_USB_CMD_ARGS_LEN);
err = usb_bulk_msg(dev->udev,
usb_sndbulkpipe(dev->udev, PCAN_USB_EP_CMDOUT),
dev->cmd_buf, PCAN_USB_CMD_LEN, &actual_length,
PCAN_USB_COMMAND_TIMEOUT);
if (err)
netdev_err(dev->netdev,
"sending cmd f=0x%x n=0x%x failure: %d\n",
f, n, err);
return err;
}
/*
* send a command then wait for its response
*/
static int pcan_usb_wait_rsp(struct peak_usb_device *dev, u8 f, u8 n, u8 *p)
{
int err;
int actual_length;
/* usb device unregistered? */
if (!(dev->state & PCAN_USB_STATE_CONNECTED))
return 0;
/* first, send command */
err = pcan_usb_send_cmd(dev, f, n, NULL);
if (err)
return err;
err = usb_bulk_msg(dev->udev,
usb_rcvbulkpipe(dev->udev, PCAN_USB_EP_CMDIN),
dev->cmd_buf, PCAN_USB_CMD_LEN, &actual_length,
PCAN_USB_COMMAND_TIMEOUT);
if (err)
netdev_err(dev->netdev,
"waiting rsp f=0x%x n=0x%x failure: %d\n", f, n, err);
else if (p)
memcpy(p, dev->cmd_buf + PCAN_USB_CMD_ARGS,
PCAN_USB_CMD_ARGS_LEN);
return err;
}
static int pcan_usb_set_sja1000(struct peak_usb_device *dev, u8 mode)
{
u8 args[PCAN_USB_CMD_ARGS_LEN] = {
[1] = mode,
};
return pcan_usb_send_cmd(dev, 9, 2, args);
}
static int pcan_usb_set_bus(struct peak_usb_device *dev, u8 onoff)
{
u8 args[PCAN_USB_CMD_ARGS_LEN] = {
[0] = !!onoff,
};
return pcan_usb_send_cmd(dev, 3, 2, args);
}
static int pcan_usb_set_silent(struct peak_usb_device *dev, u8 onoff)
{
u8 args[PCAN_USB_CMD_ARGS_LEN] = {
[0] = !!onoff,
};
return pcan_usb_send_cmd(dev, 3, 3, args);
}
static int pcan_usb_set_ext_vcc(struct peak_usb_device *dev, u8 onoff)
{
u8 args[PCAN_USB_CMD_ARGS_LEN] = {
[0] = !!onoff,
};
return pcan_usb_send_cmd(dev, 10, 2, args);
}
/*
* set bittiming value to can
*/
static int pcan_usb_set_bittiming(struct peak_usb_device *dev,
struct can_bittiming *bt)
{
u8 args[PCAN_USB_CMD_ARGS_LEN];
u8 btr0, btr1;
btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
(((bt->phase_seg2 - 1) & 0x7) << 4);
if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
btr1 |= 0x80;
netdev_info(dev->netdev, "setting BTR0=0x%02x BTR1=0x%02x\n",
btr0, btr1);
args[0] = btr1;
args[1] = btr0;
return pcan_usb_send_cmd(dev, 1, 2, args);
}
/*
* init/reset can
*/
static int pcan_usb_write_mode(struct peak_usb_device *dev, u8 onoff)
{
int err;
err = pcan_usb_set_bus(dev, onoff);
if (err)
return err;
if (!onoff) {
err = pcan_usb_set_sja1000(dev, SJA1000_MODE_INIT);
} else {
/* the PCAN-USB needs time to init */
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(msecs_to_jiffies(PCAN_USB_STARTUP_TIMEOUT));
}
return err;
}
/*
* handle end of waiting for the device to reset
*/
static void pcan_usb_restart(unsigned long arg)
{
/* notify candev and netdev */
peak_usb_restart_complete((struct peak_usb_device *)arg);
}
/*
* handle the submission of the restart urb
*/
static void pcan_usb_restart_pending(struct urb *urb)
{
struct pcan_usb *pdev = urb->context;
/* the PCAN-USB needs time to restart */
mod_timer(&pdev->restart_timer,
jiffies + msecs_to_jiffies(PCAN_USB_STARTUP_TIMEOUT));
/* can delete usb resources */
peak_usb_async_complete(urb);
}
/*
* handle asynchronous restart
*/
static int pcan_usb_restart_async(struct peak_usb_device *dev, struct urb *urb,
u8 *buf)
{
struct pcan_usb *pdev = container_of(dev, struct pcan_usb, dev);
if (timer_pending(&pdev->restart_timer))
return -EBUSY;
/* set bus on */
buf[PCAN_USB_CMD_FUNC] = 3;
buf[PCAN_USB_CMD_NUM] = 2;
buf[PCAN_USB_CMD_ARGS] = 1;
usb_fill_bulk_urb(urb, dev->udev,
usb_sndbulkpipe(dev->udev, PCAN_USB_EP_CMDOUT),
buf, PCAN_USB_CMD_LEN,
pcan_usb_restart_pending, pdev);
return usb_submit_urb(urb, GFP_ATOMIC);
}
/*
* read serial number from device
*/
static int pcan_usb_get_serial(struct peak_usb_device *dev, u32 *serial_number)
{
u8 args[PCAN_USB_CMD_ARGS_LEN];
int err;
err = pcan_usb_wait_rsp(dev, 6, 1, args);
if (err) {
netdev_err(dev->netdev, "getting serial failure: %d\n", err);
} else if (serial_number) {
u32 tmp32;
memcpy(&tmp32, args, 4);
*serial_number = le32_to_cpu(tmp32);
}
return err;
}
/*
* read device id from device
*/
static int pcan_usb_get_device_id(struct peak_usb_device *dev, u32 *device_id)
{
u8 args[PCAN_USB_CMD_ARGS_LEN];
int err;
err = pcan_usb_wait_rsp(dev, 4, 1, args);
if (err)
netdev_err(dev->netdev, "getting device id failure: %d\n", err);
else if (device_id)
*device_id = args[0];
return err;
}
/*
* update current time ref with received timestamp
*/
static int pcan_usb_update_ts(struct pcan_usb_msg_context *mc)
{
u16 tmp16;
if ((mc->ptr+2) > mc->end)
return -EINVAL;
memcpy(&tmp16, mc->ptr, 2);
mc->ts16 = le16_to_cpu(tmp16);
if (mc->rec_idx > 0)
peak_usb_update_ts_now(&mc->pdev->time_ref, mc->ts16);
else
peak_usb_set_ts_now(&mc->pdev->time_ref, mc->ts16);
return 0;
}
/*
* decode received timestamp
*/
static int pcan_usb_decode_ts(struct pcan_usb_msg_context *mc, u8 first_packet)
{
/* only 1st packet supplies a word timestamp */
if (first_packet) {
u16 tmp16;
if ((mc->ptr + 2) > mc->end)
return -EINVAL;
memcpy(&tmp16, mc->ptr, 2);
mc->ptr += 2;
mc->ts16 = le16_to_cpu(tmp16);
mc->prev_ts8 = mc->ts16 & 0x00ff;
} else {
u8 ts8;
if ((mc->ptr + 1) > mc->end)
return -EINVAL;
ts8 = *mc->ptr++;
if (ts8 < mc->prev_ts8)
mc->ts16 += 0x100;
mc->ts16 &= 0xff00;
mc->ts16 |= ts8;
mc->prev_ts8 = ts8;
}
return 0;
}
static int pcan_usb_decode_error(struct pcan_usb_msg_context *mc, u8 n,
u8 status_len)
{
struct sk_buff *skb;
struct can_frame *cf;
struct timeval tv;
enum can_state new_state;
/* ignore this error until 1st ts received */
if (n == PCAN_USB_ERROR_QOVR)
if (!mc->pdev->time_ref.tick_count)
return 0;
new_state = mc->pdev->dev.can.state;
switch (mc->pdev->dev.can.state) {
case CAN_STATE_ERROR_ACTIVE:
if (n & PCAN_USB_ERROR_BUS_LIGHT) {
new_state = CAN_STATE_ERROR_WARNING;
break;
}
case CAN_STATE_ERROR_WARNING:
if (n & PCAN_USB_ERROR_BUS_HEAVY) {
new_state = CAN_STATE_ERROR_PASSIVE;
break;
}
if (n & PCAN_USB_ERROR_BUS_OFF) {
new_state = CAN_STATE_BUS_OFF;
break;
}
if (n & (PCAN_USB_ERROR_RXQOVR | PCAN_USB_ERROR_QOVR)) {
/*
* trick to bypass next comparison and process other
* errors
*/
new_state = CAN_STATE_MAX;
break;
}
if ((n & PCAN_USB_ERROR_BUS_LIGHT) == 0) {
/* no error (back to active state) */
mc->pdev->dev.can.state = CAN_STATE_ERROR_ACTIVE;
return 0;
}
break;
case CAN_STATE_ERROR_PASSIVE:
if (n & PCAN_USB_ERROR_BUS_OFF) {
new_state = CAN_STATE_BUS_OFF;
break;
}
if (n & PCAN_USB_ERROR_BUS_LIGHT) {
new_state = CAN_STATE_ERROR_WARNING;
break;
}
if (n & (PCAN_USB_ERROR_RXQOVR | PCAN_USB_ERROR_QOVR)) {
/*
* trick to bypass next comparison and process other
* errors
*/
new_state = CAN_STATE_MAX;
break;
}
if ((n & PCAN_USB_ERROR_BUS_HEAVY) == 0) {
/* no error (back to active state) */
mc->pdev->dev.can.state = CAN_STATE_ERROR_ACTIVE;
return 0;
}
break;
default:
/* do nothing waiting for restart */
return 0;
}
/* donot post any error if current state didn't change */
if (mc->pdev->dev.can.state == new_state)
return 0;
/* allocate an skb to store the error frame */
skb = alloc_can_err_skb(mc->netdev, &cf);
if (!skb)
return -ENOMEM;
switch (new_state) {
case CAN_STATE_BUS_OFF:
cf->can_id |= CAN_ERR_BUSOFF;
can_bus_off(mc->netdev);
break;
case CAN_STATE_ERROR_PASSIVE:
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE |
CAN_ERR_CRTL_RX_PASSIVE;
mc->pdev->dev.can.can_stats.error_passive++;
break;
case CAN_STATE_ERROR_WARNING:
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] |= CAN_ERR_CRTL_TX_WARNING |
CAN_ERR_CRTL_RX_WARNING;
mc->pdev->dev.can.can_stats.error_warning++;
break;
default:
/* CAN_STATE_MAX (trick to handle other errors) */
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
mc->netdev->stats.rx_over_errors++;
mc->netdev->stats.rx_errors++;
new_state = mc->pdev->dev.can.state;
break;
}
mc->pdev->dev.can.state = new_state;
if (status_len & PCAN_USB_STATUSLEN_TIMESTAMP) {
peak_usb_get_ts_tv(&mc->pdev->time_ref, mc->ts16, &tv);
skb->tstamp = timeval_to_ktime(tv);
}
netif_rx(skb);
mc->netdev->stats.rx_packets++;
mc->netdev->stats.rx_bytes += cf->can_dlc;
return 0;
}
/*
* decode non-data usb message
*/
static int pcan_usb_decode_status(struct pcan_usb_msg_context *mc,
u8 status_len)
{
u8 rec_len = status_len & PCAN_USB_STATUSLEN_DLC;
u8 f, n;
int err;
/* check whether function and number can be read */
if ((mc->ptr + 2) > mc->end)
return -EINVAL;
f = mc->ptr[PCAN_USB_CMD_FUNC];
n = mc->ptr[PCAN_USB_CMD_NUM];
mc->ptr += PCAN_USB_CMD_ARGS;
if (status_len & PCAN_USB_STATUSLEN_TIMESTAMP) {
int err = pcan_usb_decode_ts(mc, !mc->rec_idx);
if (err)
return err;
}
switch (f) {
case PCAN_USB_REC_ERROR:
err = pcan_usb_decode_error(mc, n, status_len);
if (err)
return err;
break;
case PCAN_USB_REC_ANALOG:
/* analog values (ignored) */
rec_len = 2;
break;
case PCAN_USB_REC_BUSLOAD:
/* bus load (ignored) */
rec_len = 1;
break;
case PCAN_USB_REC_TS:
/* only timestamp */
if (pcan_usb_update_ts(mc))
return -EINVAL;
break;
case PCAN_USB_REC_BUSEVT:
/* error frame/bus event */
if (n & PCAN_USB_ERROR_TXQFULL)
netdev_dbg(mc->netdev, "device Tx queue full)\n");
break;
default:
netdev_err(mc->netdev, "unexpected function %u\n", f);
break;
}
if ((mc->ptr + rec_len) > mc->end)
return -EINVAL;
mc->ptr += rec_len;
return 0;
}
/*
* decode data usb message
*/
static int pcan_usb_decode_data(struct pcan_usb_msg_context *mc, u8 status_len)
{
u8 rec_len = status_len & PCAN_USB_STATUSLEN_DLC;
struct sk_buff *skb;
struct can_frame *cf;
struct timeval tv;
skb = alloc_can_skb(mc->netdev, &cf);
if (!skb)
return -ENOMEM;
if (status_len & PCAN_USB_STATUSLEN_EXT_ID) {
u32 tmp32;
if ((mc->ptr + 4) > mc->end)
goto decode_failed;
memcpy(&tmp32, mc->ptr, 4);
mc->ptr += 4;
cf->can_id = le32_to_cpu(tmp32 >> 3) | CAN_EFF_FLAG;
} else {
u16 tmp16;
if ((mc->ptr + 2) > mc->end)
goto decode_failed;
memcpy(&tmp16, mc->ptr, 2);
mc->ptr += 2;
cf->can_id = le16_to_cpu(tmp16 >> 5);
}
cf->can_dlc = get_can_dlc(rec_len);
/* first data packet timestamp is a word */
if (pcan_usb_decode_ts(mc, !mc->rec_data_idx))
goto decode_failed;
/* read data */
memset(cf->data, 0x0, sizeof(cf->data));
if (status_len & PCAN_USB_STATUSLEN_RTR) {
cf->can_id |= CAN_RTR_FLAG;
} else {
if ((mc->ptr + rec_len) > mc->end)
goto decode_failed;
memcpy(cf->data, mc->ptr, rec_len);
mc->ptr += rec_len;
}
/* convert timestamp into kernel time */
peak_usb_get_ts_tv(&mc->pdev->time_ref, mc->ts16, &tv);
skb->tstamp = timeval_to_ktime(tv);
/* push the skb */
netif_rx(skb);
/* update statistics */
mc->netdev->stats.rx_packets++;
mc->netdev->stats.rx_bytes += cf->can_dlc;
return 0;
decode_failed:
dev_kfree_skb(skb);
return -EINVAL;
}
/*
* process incoming message
*/
static int pcan_usb_decode_msg(struct peak_usb_device *dev, u8 *ibuf, u32 lbuf)
{
struct pcan_usb_msg_context mc = {
.rec_cnt = ibuf[1],
.ptr = ibuf + PCAN_USB_MSG_HEADER_LEN,
.end = ibuf + lbuf,
.netdev = dev->netdev,
.pdev = container_of(dev, struct pcan_usb, dev),
};
int err;
for (err = 0; mc.rec_idx < mc.rec_cnt && !err; mc.rec_idx++) {
u8 sl = *mc.ptr++;
/* handle status and error frames here */
if (sl & PCAN_USB_STATUSLEN_INTERNAL) {
err = pcan_usb_decode_status(&mc, sl);
/* handle normal can frames here */
} else {
err = pcan_usb_decode_data(&mc, sl);
mc.rec_data_idx++;
}
}
return err;
}
/*
* process any incoming buffer
*/
static int pcan_usb_decode_buf(struct peak_usb_device *dev, struct urb *urb)
{
int err = 0;
if (urb->actual_length > PCAN_USB_MSG_HEADER_LEN) {
err = pcan_usb_decode_msg(dev, urb->transfer_buffer,
urb->actual_length);
} else if (urb->actual_length > 0) {
netdev_err(dev->netdev, "usb message length error (%u)\n",
urb->actual_length);
err = -EINVAL;
}
return err;
}
/*
* process outgoing packet
*/
static int pcan_usb_encode_msg(struct peak_usb_device *dev, struct sk_buff *skb,
u8 *obuf, size_t *size)
{
struct net_device *netdev = dev->netdev;
struct net_device_stats *stats = &netdev->stats;
struct can_frame *cf = (struct can_frame *)skb->data;
u8 *pc;
obuf[0] = 2;
obuf[1] = 1;
pc = obuf + PCAN_USB_MSG_HEADER_LEN;
/* status/len byte */
*pc = cf->can_dlc;
if (cf->can_id & CAN_RTR_FLAG)
*pc |= PCAN_USB_STATUSLEN_RTR;
/* can id */
if (cf->can_id & CAN_EFF_FLAG) {
__le32 tmp32 = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
tmp32 <<= 3;
*pc |= PCAN_USB_STATUSLEN_EXT_ID;
memcpy(++pc, &tmp32, 4);
pc += 4;
} else {
__le16 tmp16 = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
tmp16 <<= 5;
memcpy(++pc, &tmp16, 2);
pc += 2;
}
/* can data */
if (!(cf->can_id & CAN_RTR_FLAG)) {
memcpy(pc, cf->data, cf->can_dlc);
pc += cf->can_dlc;
}
obuf[(*size)-1] = (u8)(stats->tx_packets & 0xff);
return 0;
}
/*
* start interface
*/
static int pcan_usb_start(struct peak_usb_device *dev)
{
struct pcan_usb *pdev = container_of(dev, struct pcan_usb, dev);
/* number of bits used in timestamps read from adapter struct */
peak_usb_init_time_ref(&pdev->time_ref, &pcan_usb);
/* if revision greater than 3, can put silent mode on/off */
if (dev->device_rev > 3) {
int err;
err = pcan_usb_set_silent(dev,
dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY);
if (err)
return err;
}
return pcan_usb_set_ext_vcc(dev, 0);
}
static int pcan_usb_init(struct peak_usb_device *dev)
{
struct pcan_usb *pdev = container_of(dev, struct pcan_usb, dev);
u32 serial_number;
int err;
/* initialize a timer needed to wait for hardware restart */
init_timer(&pdev->restart_timer);
pdev->restart_timer.function = pcan_usb_restart;
pdev->restart_timer.data = (unsigned long)dev;
/*
* explicit use of dev_xxx() instead of netdev_xxx() here:
* information displayed are related to the device itself, not
* to the canx netdevice.
*/
err = pcan_usb_get_serial(dev, &serial_number);
if (err) {
dev_err(dev->netdev->dev.parent,
"unable to read %s serial number (err %d)\n",
pcan_usb.name, err);
return err;
}
dev_info(dev->netdev->dev.parent,
"PEAK-System %s adapter hwrev %u serial %08X (%u channel)\n",
pcan_usb.name, dev->device_rev, serial_number,
pcan_usb.ctrl_count);
return 0;
}
/*
* probe function for new PCAN-USB usb interface
*/
static int pcan_usb_probe(struct usb_interface *intf)
{
struct usb_host_interface *if_desc;
int i;
if_desc = intf->altsetting;
/* check interface endpoint addresses */
for (i = 0; i < if_desc->desc.bNumEndpoints; i++) {
struct usb_endpoint_descriptor *ep = &if_desc->endpoint[i].desc;
switch (ep->bEndpointAddress) {
case PCAN_USB_EP_CMDOUT:
case PCAN_USB_EP_CMDIN:
case PCAN_USB_EP_MSGOUT:
case PCAN_USB_EP_MSGIN:
break;
default:
return -ENODEV;
}
}
return 0;
}
/*
* describe the PCAN-USB adapter
*/
struct peak_usb_adapter pcan_usb = {
.name = "PCAN-USB",
.device_id = PCAN_USB_PRODUCT_ID,
.ctrl_count = 1,
.clock = {
.freq = PCAN_USB_CRYSTAL_HZ / 2 ,
},
.bittiming_const = {
.name = "pcan_usb",
.tseg1_min = 1,
.tseg1_max = 16,
.tseg2_min = 1,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 64,
.brp_inc = 1,
},
/* size of device private data */
.sizeof_dev_private = sizeof(struct pcan_usb),
/* timestamps usage */
.ts_used_bits = 16,
.ts_period = 24575, /* calibration period in ts. */
.us_per_ts_scale = PCAN_USB_TS_US_PER_TICK, /* us=(ts*scale) */
.us_per_ts_shift = PCAN_USB_TS_DIV_SHIFTER, /* >> shift */
/* give here messages in/out endpoints */
.ep_msg_in = PCAN_USB_EP_MSGIN,
.ep_msg_out = {PCAN_USB_EP_MSGOUT},
/* size of rx/tx usb buffers */
.rx_buffer_size = PCAN_USB_RX_BUFFER_SIZE,
.tx_buffer_size = PCAN_USB_TX_BUFFER_SIZE,
/* device callbacks */
.intf_probe = pcan_usb_probe,
.dev_init = pcan_usb_init,
.dev_set_bus = pcan_usb_write_mode,
.dev_set_bittiming = pcan_usb_set_bittiming,
.dev_get_device_id = pcan_usb_get_device_id,
.dev_decode_buf = pcan_usb_decode_buf,
.dev_encode_msg = pcan_usb_encode_msg,
.dev_start = pcan_usb_start,
.dev_restart_async = pcan_usb_restart_async,
};