chelsio: remove unused code for 1G boards
Some code for Chelsio 1G boards was put in the driver based on the vendor version (minus TOE). Well some of those board versions are only supported with TOE on the vendor driver, so additional dead code was added. Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
This commit is contained in:
parent
0ae08183d8
commit
4d2b8f66b8
@ -4,8 +4,6 @@
|
||||
|
||||
obj-$(CONFIG_CHELSIO_T1) += cxgb.o
|
||||
|
||||
cxgb-$(CONFIG_CHELSIO_T1_1G) += ixf1010.o mac.o mv88e1xxx.o vsc7326.o vsc8244.o
|
||||
cxgb-$(CONFIG_CHELSIO_T1_1G) += mac.o mv88e1xxx.o vsc7326.o
|
||||
cxgb-objs := cxgb2.o espi.o tp.o pm3393.o sge.o subr.o \
|
||||
mv88x201x.o my3126.o $(cxgb-y)
|
||||
|
||||
|
||||
|
@ -1,505 +0,0 @@
|
||||
/* $Date: 2005/11/12 02:13:49 $ $RCSfile: ixf1010.c,v $ $Revision: 1.36 $ */
|
||||
#include "gmac.h"
|
||||
#include "elmer0.h"
|
||||
|
||||
/* Update fast changing statistics every 15 seconds */
|
||||
#define STATS_TICK_SECS 15
|
||||
/* 30 minutes for full statistics update */
|
||||
#define MAJOR_UPDATE_TICKS (1800 / STATS_TICK_SECS)
|
||||
|
||||
/*
|
||||
* The IXF1010 can handle frames up to 16383 bytes but it's optimized for
|
||||
* frames up to 9831 (0x2667) bytes, so we limit jumbo frame size to this.
|
||||
* This length includes ethernet header and FCS.
|
||||
*/
|
||||
#define MAX_FRAME_SIZE 0x2667
|
||||
|
||||
/* MAC registers */
|
||||
enum {
|
||||
/* Per-port registers */
|
||||
REG_MACADDR_LOW = 0,
|
||||
REG_MACADDR_HIGH = 0x4,
|
||||
REG_FDFC_TYPE = 0xC,
|
||||
REG_FC_TX_TIMER_VALUE = 0x1c,
|
||||
REG_IPG_RX_TIME1 = 0x28,
|
||||
REG_IPG_RX_TIME2 = 0x2c,
|
||||
REG_IPG_TX_TIME = 0x30,
|
||||
REG_PAUSE_THRES = 0x38,
|
||||
REG_MAX_FRAME_SIZE = 0x3c,
|
||||
REG_RGMII_SPEED = 0x40,
|
||||
REG_FC_ENABLE = 0x48,
|
||||
REG_DISCARD_CTRL_FRAMES = 0x54,
|
||||
REG_DIVERSE_CONFIG = 0x60,
|
||||
REG_RX_FILTER = 0x64,
|
||||
REG_MC_ADDR_LOW = 0x68,
|
||||
REG_MC_ADDR_HIGH = 0x6c,
|
||||
|
||||
REG_RX_OCTETS_OK = 0x80,
|
||||
REG_RX_OCTETS_BAD = 0x84,
|
||||
REG_RX_UC_PKTS = 0x88,
|
||||
REG_RX_MC_PKTS = 0x8c,
|
||||
REG_RX_BC_PKTS = 0x90,
|
||||
REG_RX_FCS_ERR = 0xb0,
|
||||
REG_RX_TAGGED = 0xb4,
|
||||
REG_RX_DATA_ERR = 0xb8,
|
||||
REG_RX_ALIGN_ERR = 0xbc,
|
||||
REG_RX_LONG_ERR = 0xc0,
|
||||
REG_RX_JABBER_ERR = 0xc4,
|
||||
REG_RX_PAUSE_FRAMES = 0xc8,
|
||||
REG_RX_UNKNOWN_CTRL_FRAMES = 0xcc,
|
||||
REG_RX_VERY_LONG_ERR = 0xd0,
|
||||
REG_RX_RUNT_ERR = 0xd4,
|
||||
REG_RX_SHORT_ERR = 0xd8,
|
||||
REG_RX_SYMBOL_ERR = 0xe4,
|
||||
|
||||
REG_TX_OCTETS_OK = 0x100,
|
||||
REG_TX_OCTETS_BAD = 0x104,
|
||||
REG_TX_UC_PKTS = 0x108,
|
||||
REG_TX_MC_PKTS = 0x10c,
|
||||
REG_TX_BC_PKTS = 0x110,
|
||||
REG_TX_EXCESSIVE_LEN_DROP = 0x14c,
|
||||
REG_TX_UNDERRUN = 0x150,
|
||||
REG_TX_TAGGED = 0x154,
|
||||
REG_TX_PAUSE_FRAMES = 0x15C,
|
||||
|
||||
/* Global registers */
|
||||
REG_PORT_ENABLE = 0x1400,
|
||||
|
||||
REG_JTAG_ID = 0x1430,
|
||||
|
||||
RX_FIFO_HIGH_WATERMARK_BASE = 0x1600,
|
||||
RX_FIFO_LOW_WATERMARK_BASE = 0x1628,
|
||||
RX_FIFO_FRAMES_REMOVED_BASE = 0x1650,
|
||||
|
||||
REG_RX_ERR_DROP = 0x167c,
|
||||
REG_RX_FIFO_OVERFLOW_EVENT = 0x1680,
|
||||
|
||||
TX_FIFO_HIGH_WATERMARK_BASE = 0x1800,
|
||||
TX_FIFO_LOW_WATERMARK_BASE = 0x1828,
|
||||
TX_FIFO_XFER_THRES_BASE = 0x1850,
|
||||
|
||||
REG_TX_FIFO_OVERFLOW_EVENT = 0x1878,
|
||||
REG_TX_FIFO_OOS_EVENT = 0x1884,
|
||||
|
||||
TX_FIFO_FRAMES_REMOVED_BASE = 0x1888,
|
||||
|
||||
REG_SPI_RX_BURST = 0x1c00,
|
||||
REG_SPI_RX_TRAINING = 0x1c04,
|
||||
REG_SPI_RX_CALENDAR = 0x1c08,
|
||||
REG_SPI_TX_SYNC = 0x1c0c
|
||||
};
|
||||
|
||||
enum { /* RMON registers */
|
||||
REG_RxOctetsTotalOK = 0x80,
|
||||
REG_RxOctetsBad = 0x84,
|
||||
REG_RxUCPkts = 0x88,
|
||||
REG_RxMCPkts = 0x8c,
|
||||
REG_RxBCPkts = 0x90,
|
||||
REG_RxJumboPkts = 0xac,
|
||||
REG_RxFCSErrors = 0xb0,
|
||||
REG_RxDataErrors = 0xb8,
|
||||
REG_RxAlignErrors = 0xbc,
|
||||
REG_RxLongErrors = 0xc0,
|
||||
REG_RxJabberErrors = 0xc4,
|
||||
REG_RxPauseMacControlCounter = 0xc8,
|
||||
REG_RxVeryLongErrors = 0xd0,
|
||||
REG_RxRuntErrors = 0xd4,
|
||||
REG_RxShortErrors = 0xd8,
|
||||
REG_RxSequenceErrors = 0xe0,
|
||||
REG_RxSymbolErrors = 0xe4,
|
||||
|
||||
REG_TxOctetsTotalOK = 0x100,
|
||||
REG_TxOctetsBad = 0x104,
|
||||
REG_TxUCPkts = 0x108,
|
||||
REG_TxMCPkts = 0x10c,
|
||||
REG_TxBCPkts = 0x110,
|
||||
REG_TxJumboPkts = 0x12C,
|
||||
REG_TxTotalCollisions = 0x134,
|
||||
REG_TxExcessiveLengthDrop = 0x14c,
|
||||
REG_TxUnderrun = 0x150,
|
||||
REG_TxCRCErrors = 0x158,
|
||||
REG_TxPauseFrames = 0x15c
|
||||
};
|
||||
|
||||
enum {
|
||||
DIVERSE_CONFIG_PAD_ENABLE = 0x80,
|
||||
DIVERSE_CONFIG_CRC_ADD = 0x40
|
||||
};
|
||||
|
||||
#define MACREG_BASE 0
|
||||
#define MACREG(mac, mac_reg) ((mac)->instance->mac_base + (mac_reg))
|
||||
|
||||
struct _cmac_instance {
|
||||
u32 mac_base;
|
||||
u32 index;
|
||||
u32 version;
|
||||
u32 ticks;
|
||||
};
|
||||
|
||||
static void disable_port(struct cmac *mac)
|
||||
{
|
||||
u32 val;
|
||||
|
||||
t1_tpi_read(mac->adapter, REG_PORT_ENABLE, &val);
|
||||
val &= ~(1 << mac->instance->index);
|
||||
t1_tpi_write(mac->adapter, REG_PORT_ENABLE, val);
|
||||
}
|
||||
|
||||
/*
|
||||
* Read the current values of the RMON counters and add them to the cumulative
|
||||
* port statistics. The HW RMON counters are cleared by this operation.
|
||||
*/
|
||||
static void port_stats_update(struct cmac *mac)
|
||||
{
|
||||
static struct {
|
||||
unsigned int reg;
|
||||
unsigned int offset;
|
||||
} hw_stats[] = {
|
||||
|
||||
#define HW_STAT(name, stat_name) \
|
||||
{ REG_##name, \
|
||||
(&((struct cmac_statistics *)NULL)->stat_name) - (u64 *)NULL }
|
||||
|
||||
/* Rx stats */
|
||||
HW_STAT(RxOctetsTotalOK, RxOctetsOK),
|
||||
HW_STAT(RxOctetsBad, RxOctetsBad),
|
||||
HW_STAT(RxUCPkts, RxUnicastFramesOK),
|
||||
HW_STAT(RxMCPkts, RxMulticastFramesOK),
|
||||
HW_STAT(RxBCPkts, RxBroadcastFramesOK),
|
||||
HW_STAT(RxJumboPkts, RxJumboFramesOK),
|
||||
HW_STAT(RxFCSErrors, RxFCSErrors),
|
||||
HW_STAT(RxAlignErrors, RxAlignErrors),
|
||||
HW_STAT(RxLongErrors, RxFrameTooLongErrors),
|
||||
HW_STAT(RxVeryLongErrors, RxFrameTooLongErrors),
|
||||
HW_STAT(RxPauseMacControlCounter, RxPauseFrames),
|
||||
HW_STAT(RxDataErrors, RxDataErrors),
|
||||
HW_STAT(RxJabberErrors, RxJabberErrors),
|
||||
HW_STAT(RxRuntErrors, RxRuntErrors),
|
||||
HW_STAT(RxShortErrors, RxRuntErrors),
|
||||
HW_STAT(RxSequenceErrors, RxSequenceErrors),
|
||||
HW_STAT(RxSymbolErrors, RxSymbolErrors),
|
||||
|
||||
/* Tx stats (skip collision stats as we are full-duplex only) */
|
||||
HW_STAT(TxOctetsTotalOK, TxOctetsOK),
|
||||
HW_STAT(TxOctetsBad, TxOctetsBad),
|
||||
HW_STAT(TxUCPkts, TxUnicastFramesOK),
|
||||
HW_STAT(TxMCPkts, TxMulticastFramesOK),
|
||||
HW_STAT(TxBCPkts, TxBroadcastFramesOK),
|
||||
HW_STAT(TxJumboPkts, TxJumboFramesOK),
|
||||
HW_STAT(TxPauseFrames, TxPauseFrames),
|
||||
HW_STAT(TxExcessiveLengthDrop, TxLengthErrors),
|
||||
HW_STAT(TxUnderrun, TxUnderrun),
|
||||
HW_STAT(TxCRCErrors, TxFCSErrors)
|
||||
}, *p = hw_stats;
|
||||
u64 *stats = (u64 *) &mac->stats;
|
||||
unsigned int i;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(hw_stats); i++) {
|
||||
u32 val;
|
||||
|
||||
t1_tpi_read(mac->adapter, MACREG(mac, p->reg), &val);
|
||||
stats[p->offset] += val;
|
||||
}
|
||||
}
|
||||
|
||||
/* No-op interrupt operation as this MAC does not support interrupts */
|
||||
static int mac_intr_op(struct cmac *mac)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Expect MAC address to be in network byte order. */
|
||||
static int mac_set_address(struct cmac *mac, u8 addr[6])
|
||||
{
|
||||
u32 addr_lo, addr_hi;
|
||||
|
||||
addr_lo = addr[2];
|
||||
addr_lo = (addr_lo << 8) | addr[3];
|
||||
addr_lo = (addr_lo << 8) | addr[4];
|
||||
addr_lo = (addr_lo << 8) | addr[5];
|
||||
|
||||
addr_hi = addr[0];
|
||||
addr_hi = (addr_hi << 8) | addr[1];
|
||||
|
||||
t1_tpi_write(mac->adapter, MACREG(mac, REG_MACADDR_LOW), addr_lo);
|
||||
t1_tpi_write(mac->adapter, MACREG(mac, REG_MACADDR_HIGH), addr_hi);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int mac_get_address(struct cmac *mac, u8 addr[6])
|
||||
{
|
||||
u32 addr_lo, addr_hi;
|
||||
|
||||
t1_tpi_read(mac->adapter, MACREG(mac, REG_MACADDR_LOW), &addr_lo);
|
||||
t1_tpi_read(mac->adapter, MACREG(mac, REG_MACADDR_HIGH), &addr_hi);
|
||||
|
||||
addr[0] = (u8) (addr_hi >> 8);
|
||||
addr[1] = (u8) addr_hi;
|
||||
addr[2] = (u8) (addr_lo >> 24);
|
||||
addr[3] = (u8) (addr_lo >> 16);
|
||||
addr[4] = (u8) (addr_lo >> 8);
|
||||
addr[5] = (u8) addr_lo;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* This is intended to reset a port, not the whole MAC */
|
||||
static int mac_reset(struct cmac *mac)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int mac_set_rx_mode(struct cmac *mac, struct t1_rx_mode *rm)
|
||||
{
|
||||
u32 val, new_mode;
|
||||
adapter_t *adapter = mac->adapter;
|
||||
u32 addr_lo, addr_hi;
|
||||
u8 *addr;
|
||||
|
||||
t1_tpi_read(adapter, MACREG(mac, REG_RX_FILTER), &val);
|
||||
new_mode = val & ~7;
|
||||
if (!t1_rx_mode_promisc(rm) && mac->instance->version > 0)
|
||||
new_mode |= 1; /* only set if version > 0 due to erratum */
|
||||
if (!t1_rx_mode_promisc(rm) && !t1_rx_mode_allmulti(rm)
|
||||
&& t1_rx_mode_mc_cnt(rm) <= 1)
|
||||
new_mode |= 2;
|
||||
if (new_mode != val)
|
||||
t1_tpi_write(adapter, MACREG(mac, REG_RX_FILTER), new_mode);
|
||||
switch (t1_rx_mode_mc_cnt(rm)) {
|
||||
case 0:
|
||||
t1_tpi_write(adapter, MACREG(mac, REG_MC_ADDR_LOW), 0);
|
||||
t1_tpi_write(adapter, MACREG(mac, REG_MC_ADDR_HIGH), 0);
|
||||
break;
|
||||
case 1:
|
||||
addr = t1_get_next_mcaddr(rm);
|
||||
addr_lo = (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
|
||||
addr[5];
|
||||
addr_hi = (addr[0] << 8) | addr[1];
|
||||
t1_tpi_write(adapter, MACREG(mac, REG_MC_ADDR_LOW), addr_lo);
|
||||
t1_tpi_write(adapter, MACREG(mac, REG_MC_ADDR_HIGH), addr_hi);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int mac_set_mtu(struct cmac *mac, int mtu)
|
||||
{
|
||||
/* MAX_FRAME_SIZE inludes header + FCS, mtu doesn't */
|
||||
if (mtu > (MAX_FRAME_SIZE - 14 - 4))
|
||||
return -EINVAL;
|
||||
t1_tpi_write(mac->adapter, MACREG(mac, REG_MAX_FRAME_SIZE),
|
||||
mtu + 14 + 4);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int mac_set_speed_duplex_fc(struct cmac *mac, int speed, int duplex,
|
||||
int fc)
|
||||
{
|
||||
u32 val;
|
||||
|
||||
if (speed >= 0 && speed != SPEED_100 && speed != SPEED_1000)
|
||||
return -1;
|
||||
if (duplex >= 0 && duplex != DUPLEX_FULL)
|
||||
return -1;
|
||||
|
||||
if (speed >= 0) {
|
||||
val = speed == SPEED_100 ? 1 : 2;
|
||||
t1_tpi_write(mac->adapter, MACREG(mac, REG_RGMII_SPEED), val);
|
||||
}
|
||||
|
||||
t1_tpi_read(mac->adapter, MACREG(mac, REG_FC_ENABLE), &val);
|
||||
val &= ~3;
|
||||
if (fc & PAUSE_RX)
|
||||
val |= 1;
|
||||
if (fc & PAUSE_TX)
|
||||
val |= 2;
|
||||
t1_tpi_write(mac->adapter, MACREG(mac, REG_FC_ENABLE), val);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int mac_get_speed_duplex_fc(struct cmac *mac, int *speed, int *duplex,
|
||||
int *fc)
|
||||
{
|
||||
u32 val;
|
||||
|
||||
if (duplex)
|
||||
*duplex = DUPLEX_FULL;
|
||||
if (speed) {
|
||||
t1_tpi_read(mac->adapter, MACREG(mac, REG_RGMII_SPEED),
|
||||
&val);
|
||||
*speed = (val & 2) ? SPEED_1000 : SPEED_100;
|
||||
}
|
||||
if (fc) {
|
||||
t1_tpi_read(mac->adapter, MACREG(mac, REG_FC_ENABLE), &val);
|
||||
*fc = 0;
|
||||
if (val & 1)
|
||||
*fc |= PAUSE_RX;
|
||||
if (val & 2)
|
||||
*fc |= PAUSE_TX;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void enable_port(struct cmac *mac)
|
||||
{
|
||||
u32 val;
|
||||
u32 index = mac->instance->index;
|
||||
adapter_t *adapter = mac->adapter;
|
||||
|
||||
t1_tpi_read(adapter, MACREG(mac, REG_DIVERSE_CONFIG), &val);
|
||||
val |= DIVERSE_CONFIG_CRC_ADD | DIVERSE_CONFIG_PAD_ENABLE;
|
||||
t1_tpi_write(adapter, MACREG(mac, REG_DIVERSE_CONFIG), val);
|
||||
if (mac->instance->version > 0)
|
||||
t1_tpi_write(adapter, MACREG(mac, REG_RX_FILTER), 3);
|
||||
else /* Don't enable unicast address filtering due to IXF1010 bug */
|
||||
t1_tpi_write(adapter, MACREG(mac, REG_RX_FILTER), 2);
|
||||
|
||||
t1_tpi_read(adapter, REG_RX_ERR_DROP, &val);
|
||||
val |= (1 << index);
|
||||
t1_tpi_write(adapter, REG_RX_ERR_DROP, val);
|
||||
|
||||
/*
|
||||
* Clear the port RMON registers by adding their current values to the
|
||||
* cumulatice port stats and then clearing the stats. Really.
|
||||
*/
|
||||
port_stats_update(mac);
|
||||
memset(&mac->stats, 0, sizeof(struct cmac_statistics));
|
||||
mac->instance->ticks = 0;
|
||||
|
||||
t1_tpi_read(adapter, REG_PORT_ENABLE, &val);
|
||||
val |= (1 << index);
|
||||
t1_tpi_write(adapter, REG_PORT_ENABLE, val);
|
||||
|
||||
index <<= 2;
|
||||
if (is_T2(adapter)) {
|
||||
/* T204: set the Fifo water level & threshold */
|
||||
t1_tpi_write(adapter, RX_FIFO_HIGH_WATERMARK_BASE + index, 0x740);
|
||||
t1_tpi_write(adapter, RX_FIFO_LOW_WATERMARK_BASE + index, 0x730);
|
||||
t1_tpi_write(adapter, TX_FIFO_HIGH_WATERMARK_BASE + index, 0x600);
|
||||
t1_tpi_write(adapter, TX_FIFO_LOW_WATERMARK_BASE + index, 0x1d0);
|
||||
t1_tpi_write(adapter, TX_FIFO_XFER_THRES_BASE + index, 0x1100);
|
||||
} else {
|
||||
/*
|
||||
* Set the TX Fifo Threshold to 0x400 instead of 0x100 to work around
|
||||
* Underrun problem. Intel has blessed this solution.
|
||||
*/
|
||||
t1_tpi_write(adapter, TX_FIFO_XFER_THRES_BASE + index, 0x400);
|
||||
}
|
||||
}
|
||||
|
||||
/* IXF1010 ports do not have separate enables for TX and RX */
|
||||
static int mac_enable(struct cmac *mac, int which)
|
||||
{
|
||||
if (which & (MAC_DIRECTION_RX | MAC_DIRECTION_TX))
|
||||
enable_port(mac);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int mac_disable(struct cmac *mac, int which)
|
||||
{
|
||||
if (which & (MAC_DIRECTION_RX | MAC_DIRECTION_TX))
|
||||
disable_port(mac);
|
||||
return 0;
|
||||
}
|
||||
|
||||
#define RMON_UPDATE(mac, name, stat_name) \
|
||||
t1_tpi_read((mac)->adapter, MACREG(mac, REG_##name), &val); \
|
||||
(mac)->stats.stat_name += val;
|
||||
|
||||
/*
|
||||
* This function is called periodically to accumulate the current values of the
|
||||
* RMON counters into the port statistics. Since the counters are only 32 bits
|
||||
* some of them can overflow in less than a minute at GigE speeds, so this
|
||||
* function should be called every 30 seconds or so.
|
||||
*
|
||||
* To cut down on reading costs we update only the octet counters at each tick
|
||||
* and do a full update at major ticks, which can be every 30 minutes or more.
|
||||
*/
|
||||
static const struct cmac_statistics *mac_update_statistics(struct cmac *mac,
|
||||
int flag)
|
||||
{
|
||||
if (flag == MAC_STATS_UPDATE_FULL ||
|
||||
MAJOR_UPDATE_TICKS <= mac->instance->ticks) {
|
||||
port_stats_update(mac);
|
||||
mac->instance->ticks = 0;
|
||||
} else {
|
||||
u32 val;
|
||||
|
||||
RMON_UPDATE(mac, RxOctetsTotalOK, RxOctetsOK);
|
||||
RMON_UPDATE(mac, TxOctetsTotalOK, TxOctetsOK);
|
||||
mac->instance->ticks++;
|
||||
}
|
||||
return &mac->stats;
|
||||
}
|
||||
|
||||
static void mac_destroy(struct cmac *mac)
|
||||
{
|
||||
kfree(mac);
|
||||
}
|
||||
|
||||
static struct cmac_ops ixf1010_ops = {
|
||||
.destroy = mac_destroy,
|
||||
.reset = mac_reset,
|
||||
.interrupt_enable = mac_intr_op,
|
||||
.interrupt_disable = mac_intr_op,
|
||||
.interrupt_clear = mac_intr_op,
|
||||
.enable = mac_enable,
|
||||
.disable = mac_disable,
|
||||
.set_mtu = mac_set_mtu,
|
||||
.set_rx_mode = mac_set_rx_mode,
|
||||
.set_speed_duplex_fc = mac_set_speed_duplex_fc,
|
||||
.get_speed_duplex_fc = mac_get_speed_duplex_fc,
|
||||
.statistics_update = mac_update_statistics,
|
||||
.macaddress_get = mac_get_address,
|
||||
.macaddress_set = mac_set_address,
|
||||
};
|
||||
|
||||
static int ixf1010_mac_reset(adapter_t *adapter)
|
||||
{
|
||||
u32 val;
|
||||
|
||||
t1_tpi_read(adapter, A_ELMER0_GPO, &val);
|
||||
if ((val & 1) != 0) {
|
||||
val &= ~1;
|
||||
t1_tpi_write(adapter, A_ELMER0_GPO, val);
|
||||
udelay(2);
|
||||
}
|
||||
val |= 1;
|
||||
t1_tpi_write(adapter, A_ELMER0_GPO, val);
|
||||
udelay(2);
|
||||
|
||||
t1_tpi_write(adapter, REG_PORT_ENABLE, 0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct cmac *ixf1010_mac_create(adapter_t *adapter, int index)
|
||||
{
|
||||
struct cmac *mac;
|
||||
u32 val;
|
||||
|
||||
if (index > 9)
|
||||
return NULL;
|
||||
|
||||
mac = kzalloc(sizeof(*mac) + sizeof(cmac_instance), GFP_KERNEL);
|
||||
if (!mac)
|
||||
return NULL;
|
||||
|
||||
mac->ops = &ixf1010_ops;
|
||||
mac->instance = (cmac_instance *)(mac + 1);
|
||||
|
||||
mac->instance->mac_base = MACREG_BASE + (index * 0x200);
|
||||
mac->instance->index = index;
|
||||
mac->adapter = adapter;
|
||||
mac->instance->ticks = 0;
|
||||
|
||||
t1_tpi_read(adapter, REG_JTAG_ID, &val);
|
||||
mac->instance->version = val >> 28;
|
||||
return mac;
|
||||
}
|
||||
|
||||
struct gmac t1_ixf1010_ops = {
|
||||
STATS_TICK_SECS,
|
||||
ixf1010_mac_create,
|
||||
ixf1010_mac_reset
|
||||
};
|
@ -1,367 +0,0 @@
|
||||
/*
|
||||
* This file is part of the Chelsio T2 Ethernet driver.
|
||||
*
|
||||
* Copyright (C) 2005 Chelsio Communications. All rights reserved.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
* FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this
|
||||
* release for licensing terms and conditions.
|
||||
*/
|
||||
|
||||
#include "common.h"
|
||||
#include "cphy.h"
|
||||
#include "elmer0.h"
|
||||
|
||||
#ifndef ADVERTISE_PAUSE_CAP
|
||||
# define ADVERTISE_PAUSE_CAP 0x400
|
||||
#endif
|
||||
#ifndef ADVERTISE_PAUSE_ASYM
|
||||
# define ADVERTISE_PAUSE_ASYM 0x800
|
||||
#endif
|
||||
|
||||
/* Gigabit MII registers */
|
||||
#ifndef MII_CTRL1000
|
||||
# define MII_CTRL1000 9
|
||||
#endif
|
||||
|
||||
#ifndef ADVERTISE_1000FULL
|
||||
# define ADVERTISE_1000FULL 0x200
|
||||
# define ADVERTISE_1000HALF 0x100
|
||||
#endif
|
||||
|
||||
/* VSC8244 PHY specific registers. */
|
||||
enum {
|
||||
VSC8244_INTR_ENABLE = 25,
|
||||
VSC8244_INTR_STATUS = 26,
|
||||
VSC8244_AUX_CTRL_STAT = 28,
|
||||
};
|
||||
|
||||
enum {
|
||||
VSC_INTR_RX_ERR = 1 << 0,
|
||||
VSC_INTR_MS_ERR = 1 << 1, /* master/slave resolution error */
|
||||
VSC_INTR_CABLE = 1 << 2, /* cable impairment */
|
||||
VSC_INTR_FALSE_CARR = 1 << 3, /* false carrier */
|
||||
VSC_INTR_MEDIA_CHG = 1 << 4, /* AMS media change */
|
||||
VSC_INTR_RX_FIFO = 1 << 5, /* Rx FIFO over/underflow */
|
||||
VSC_INTR_TX_FIFO = 1 << 6, /* Tx FIFO over/underflow */
|
||||
VSC_INTR_DESCRAMBL = 1 << 7, /* descrambler lock-lost */
|
||||
VSC_INTR_SYMBOL_ERR = 1 << 8, /* symbol error */
|
||||
VSC_INTR_NEG_DONE = 1 << 10, /* autoneg done */
|
||||
VSC_INTR_NEG_ERR = 1 << 11, /* autoneg error */
|
||||
VSC_INTR_LINK_CHG = 1 << 13, /* link change */
|
||||
VSC_INTR_ENABLE = 1 << 15, /* interrupt enable */
|
||||
};
|
||||
|
||||
#define CFG_CHG_INTR_MASK (VSC_INTR_LINK_CHG | VSC_INTR_NEG_ERR | \
|
||||
VSC_INTR_NEG_DONE)
|
||||
#define INTR_MASK (CFG_CHG_INTR_MASK | VSC_INTR_TX_FIFO | VSC_INTR_RX_FIFO | \
|
||||
VSC_INTR_ENABLE)
|
||||
|
||||
/* PHY specific auxiliary control & status register fields */
|
||||
#define S_ACSR_ACTIPHY_TMR 0
|
||||
#define M_ACSR_ACTIPHY_TMR 0x3
|
||||
#define V_ACSR_ACTIPHY_TMR(x) ((x) << S_ACSR_ACTIPHY_TMR)
|
||||
|
||||
#define S_ACSR_SPEED 3
|
||||
#define M_ACSR_SPEED 0x3
|
||||
#define G_ACSR_SPEED(x) (((x) >> S_ACSR_SPEED) & M_ACSR_SPEED)
|
||||
|
||||
#define S_ACSR_DUPLEX 5
|
||||
#define F_ACSR_DUPLEX (1 << S_ACSR_DUPLEX)
|
||||
|
||||
#define S_ACSR_ACTIPHY 6
|
||||
#define F_ACSR_ACTIPHY (1 << S_ACSR_ACTIPHY)
|
||||
|
||||
/*
|
||||
* Reset the PHY. This PHY completes reset immediately so we never wait.
|
||||
*/
|
||||
static int vsc8244_reset(struct cphy *cphy, int wait)
|
||||
{
|
||||
int err;
|
||||
unsigned int ctl;
|
||||
|
||||
err = simple_mdio_read(cphy, MII_BMCR, &ctl);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
ctl &= ~BMCR_PDOWN;
|
||||
ctl |= BMCR_RESET;
|
||||
return simple_mdio_write(cphy, MII_BMCR, ctl);
|
||||
}
|
||||
|
||||
static int vsc8244_intr_enable(struct cphy *cphy)
|
||||
{
|
||||
simple_mdio_write(cphy, VSC8244_INTR_ENABLE, INTR_MASK);
|
||||
|
||||
/* Enable interrupts through Elmer */
|
||||
if (t1_is_asic(cphy->adapter)) {
|
||||
u32 elmer;
|
||||
|
||||
t1_tpi_read(cphy->adapter, A_ELMER0_INT_ENABLE, &elmer);
|
||||
elmer |= ELMER0_GP_BIT1;
|
||||
if (is_T2(cphy->adapter))
|
||||
elmer |= ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4;
|
||||
t1_tpi_write(cphy->adapter, A_ELMER0_INT_ENABLE, elmer);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int vsc8244_intr_disable(struct cphy *cphy)
|
||||
{
|
||||
simple_mdio_write(cphy, VSC8244_INTR_ENABLE, 0);
|
||||
|
||||
if (t1_is_asic(cphy->adapter)) {
|
||||
u32 elmer;
|
||||
|
||||
t1_tpi_read(cphy->adapter, A_ELMER0_INT_ENABLE, &elmer);
|
||||
elmer &= ~ELMER0_GP_BIT1;
|
||||
if (is_T2(cphy->adapter))
|
||||
elmer &= ~(ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4);
|
||||
t1_tpi_write(cphy->adapter, A_ELMER0_INT_ENABLE, elmer);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int vsc8244_intr_clear(struct cphy *cphy)
|
||||
{
|
||||
u32 val;
|
||||
u32 elmer;
|
||||
|
||||
/* Clear PHY interrupts by reading the register. */
|
||||
simple_mdio_read(cphy, VSC8244_INTR_ENABLE, &val);
|
||||
|
||||
if (t1_is_asic(cphy->adapter)) {
|
||||
t1_tpi_read(cphy->adapter, A_ELMER0_INT_CAUSE, &elmer);
|
||||
elmer |= ELMER0_GP_BIT1;
|
||||
if (is_T2(cphy->adapter))
|
||||
elmer |= ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4;
|
||||
t1_tpi_write(cphy->adapter, A_ELMER0_INT_CAUSE, elmer);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Force the PHY speed and duplex. This also disables auto-negotiation, except
|
||||
* for 1Gb/s, where auto-negotiation is mandatory.
|
||||
*/
|
||||
static int vsc8244_set_speed_duplex(struct cphy *phy, int speed, int duplex)
|
||||
{
|
||||
int err;
|
||||
unsigned int ctl;
|
||||
|
||||
err = simple_mdio_read(phy, MII_BMCR, &ctl);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
if (speed >= 0) {
|
||||
ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
|
||||
if (speed == SPEED_100)
|
||||
ctl |= BMCR_SPEED100;
|
||||
else if (speed == SPEED_1000)
|
||||
ctl |= BMCR_SPEED1000;
|
||||
}
|
||||
if (duplex >= 0) {
|
||||
ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
|
||||
if (duplex == DUPLEX_FULL)
|
||||
ctl |= BMCR_FULLDPLX;
|
||||
}
|
||||
if (ctl & BMCR_SPEED1000) /* auto-negotiation required for 1Gb/s */
|
||||
ctl |= BMCR_ANENABLE;
|
||||
return simple_mdio_write(phy, MII_BMCR, ctl);
|
||||
}
|
||||
|
||||
int t1_mdio_set_bits(struct cphy *phy, int mmd, int reg, unsigned int bits)
|
||||
{
|
||||
int ret;
|
||||
unsigned int val;
|
||||
|
||||
ret = mdio_read(phy, mmd, reg, &val);
|
||||
if (!ret)
|
||||
ret = mdio_write(phy, mmd, reg, val | bits);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int vsc8244_autoneg_enable(struct cphy *cphy)
|
||||
{
|
||||
return t1_mdio_set_bits(cphy, 0, MII_BMCR,
|
||||
BMCR_ANENABLE | BMCR_ANRESTART);
|
||||
}
|
||||
|
||||
static int vsc8244_autoneg_restart(struct cphy *cphy)
|
||||
{
|
||||
return t1_mdio_set_bits(cphy, 0, MII_BMCR, BMCR_ANRESTART);
|
||||
}
|
||||
|
||||
static int vsc8244_advertise(struct cphy *phy, unsigned int advertise_map)
|
||||
{
|
||||
int err;
|
||||
unsigned int val = 0;
|
||||
|
||||
err = simple_mdio_read(phy, MII_CTRL1000, &val);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
|
||||
if (advertise_map & ADVERTISED_1000baseT_Half)
|
||||
val |= ADVERTISE_1000HALF;
|
||||
if (advertise_map & ADVERTISED_1000baseT_Full)
|
||||
val |= ADVERTISE_1000FULL;
|
||||
|
||||
err = simple_mdio_write(phy, MII_CTRL1000, val);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
val = 1;
|
||||
if (advertise_map & ADVERTISED_10baseT_Half)
|
||||
val |= ADVERTISE_10HALF;
|
||||
if (advertise_map & ADVERTISED_10baseT_Full)
|
||||
val |= ADVERTISE_10FULL;
|
||||
if (advertise_map & ADVERTISED_100baseT_Half)
|
||||
val |= ADVERTISE_100HALF;
|
||||
if (advertise_map & ADVERTISED_100baseT_Full)
|
||||
val |= ADVERTISE_100FULL;
|
||||
if (advertise_map & ADVERTISED_PAUSE)
|
||||
val |= ADVERTISE_PAUSE_CAP;
|
||||
if (advertise_map & ADVERTISED_ASYM_PAUSE)
|
||||
val |= ADVERTISE_PAUSE_ASYM;
|
||||
return simple_mdio_write(phy, MII_ADVERTISE, val);
|
||||
}
|
||||
|
||||
static int vsc8244_get_link_status(struct cphy *cphy, int *link_ok,
|
||||
int *speed, int *duplex, int *fc)
|
||||
{
|
||||
unsigned int bmcr, status, lpa, adv;
|
||||
int err, sp = -1, dplx = -1, pause = 0;
|
||||
|
||||
err = simple_mdio_read(cphy, MII_BMCR, &bmcr);
|
||||
if (!err)
|
||||
err = simple_mdio_read(cphy, MII_BMSR, &status);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
if (link_ok) {
|
||||
/*
|
||||
* BMSR_LSTATUS is latch-low, so if it is 0 we need to read it
|
||||
* once more to get the current link state.
|
||||
*/
|
||||
if (!(status & BMSR_LSTATUS))
|
||||
err = simple_mdio_read(cphy, MII_BMSR, &status);
|
||||
if (err)
|
||||
return err;
|
||||
*link_ok = (status & BMSR_LSTATUS) != 0;
|
||||
}
|
||||
if (!(bmcr & BMCR_ANENABLE)) {
|
||||
dplx = (bmcr & BMCR_FULLDPLX) ? DUPLEX_FULL : DUPLEX_HALF;
|
||||
if (bmcr & BMCR_SPEED1000)
|
||||
sp = SPEED_1000;
|
||||
else if (bmcr & BMCR_SPEED100)
|
||||
sp = SPEED_100;
|
||||
else
|
||||
sp = SPEED_10;
|
||||
} else if (status & BMSR_ANEGCOMPLETE) {
|
||||
err = simple_mdio_read(cphy, VSC8244_AUX_CTRL_STAT, &status);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
dplx = (status & F_ACSR_DUPLEX) ? DUPLEX_FULL : DUPLEX_HALF;
|
||||
sp = G_ACSR_SPEED(status);
|
||||
if (sp == 0)
|
||||
sp = SPEED_10;
|
||||
else if (sp == 1)
|
||||
sp = SPEED_100;
|
||||
else
|
||||
sp = SPEED_1000;
|
||||
|
||||
if (fc && dplx == DUPLEX_FULL) {
|
||||
err = simple_mdio_read(cphy, MII_LPA, &lpa);
|
||||
if (!err)
|
||||
err = simple_mdio_read(cphy, MII_ADVERTISE,
|
||||
&adv);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
if (lpa & adv & ADVERTISE_PAUSE_CAP)
|
||||
pause = PAUSE_RX | PAUSE_TX;
|
||||
else if ((lpa & ADVERTISE_PAUSE_CAP) &&
|
||||
(lpa & ADVERTISE_PAUSE_ASYM) &&
|
||||
(adv & ADVERTISE_PAUSE_ASYM))
|
||||
pause = PAUSE_TX;
|
||||
else if ((lpa & ADVERTISE_PAUSE_ASYM) &&
|
||||
(adv & ADVERTISE_PAUSE_CAP))
|
||||
pause = PAUSE_RX;
|
||||
}
|
||||
}
|
||||
if (speed)
|
||||
*speed = sp;
|
||||
if (duplex)
|
||||
*duplex = dplx;
|
||||
if (fc)
|
||||
*fc = pause;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int vsc8244_intr_handler(struct cphy *cphy)
|
||||
{
|
||||
unsigned int cause;
|
||||
int err, cphy_cause = 0;
|
||||
|
||||
err = simple_mdio_read(cphy, VSC8244_INTR_STATUS, &cause);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
cause &= INTR_MASK;
|
||||
if (cause & CFG_CHG_INTR_MASK)
|
||||
cphy_cause |= cphy_cause_link_change;
|
||||
if (cause & (VSC_INTR_RX_FIFO | VSC_INTR_TX_FIFO))
|
||||
cphy_cause |= cphy_cause_fifo_error;
|
||||
return cphy_cause;
|
||||
}
|
||||
|
||||
static void vsc8244_destroy(struct cphy *cphy)
|
||||
{
|
||||
kfree(cphy);
|
||||
}
|
||||
|
||||
static struct cphy_ops vsc8244_ops = {
|
||||
.destroy = vsc8244_destroy,
|
||||
.reset = vsc8244_reset,
|
||||
.interrupt_enable = vsc8244_intr_enable,
|
||||
.interrupt_disable = vsc8244_intr_disable,
|
||||
.interrupt_clear = vsc8244_intr_clear,
|
||||
.interrupt_handler = vsc8244_intr_handler,
|
||||
.autoneg_enable = vsc8244_autoneg_enable,
|
||||
.autoneg_restart = vsc8244_autoneg_restart,
|
||||
.advertise = vsc8244_advertise,
|
||||
.set_speed_duplex = vsc8244_set_speed_duplex,
|
||||
.get_link_status = vsc8244_get_link_status
|
||||
};
|
||||
|
||||
static struct cphy* vsc8244_phy_create(adapter_t *adapter, int phy_addr,
|
||||
struct mdio_ops *mdio_ops)
|
||||
{
|
||||
struct cphy *cphy = kzalloc(sizeof(*cphy), GFP_KERNEL);
|
||||
|
||||
if (!cphy)
|
||||
return NULL;
|
||||
|
||||
cphy_init(cphy, adapter, phy_addr, &vsc8244_ops, mdio_ops);
|
||||
|
||||
return cphy;
|
||||
}
|
||||
|
||||
|
||||
static int vsc8244_phy_reset(adapter_t* adapter)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
struct gphy t1_vsc8244_ops = {
|
||||
vsc8244_phy_create,
|
||||
vsc8244_phy_reset
|
||||
};
|
||||
|
||||
|
@ -1,172 +0,0 @@
|
||||
/* $Date: 2005/11/23 16:28:53 $ $RCSfile: vsc8244_reg.h,v $ $Revision: 1.1 $ */
|
||||
#ifndef CHELSIO_MV8E1XXX_H
|
||||
#define CHELSIO_MV8E1XXX_H
|
||||
|
||||
#ifndef BMCR_SPEED1000
|
||||
# define BMCR_SPEED1000 0x40
|
||||
#endif
|
||||
|
||||
#ifndef ADVERTISE_PAUSE
|
||||
# define ADVERTISE_PAUSE 0x400
|
||||
#endif
|
||||
#ifndef ADVERTISE_PAUSE_ASYM
|
||||
# define ADVERTISE_PAUSE_ASYM 0x800
|
||||
#endif
|
||||
|
||||
/* Gigabit MII registers */
|
||||
#define MII_GBMR 1 /* 1000Base-T mode register */
|
||||
#define MII_GBCR 9 /* 1000Base-T control register */
|
||||
#define MII_GBSR 10 /* 1000Base-T status register */
|
||||
|
||||
/* 1000Base-T control register fields */
|
||||
#define GBCR_ADV_1000HALF 0x100
|
||||
#define GBCR_ADV_1000FULL 0x200
|
||||
#define GBCR_PREFER_MASTER 0x400
|
||||
#define GBCR_MANUAL_AS_MASTER 0x800
|
||||
#define GBCR_MANUAL_CONFIG_ENABLE 0x1000
|
||||
|
||||
/* 1000Base-T status register fields */
|
||||
#define GBSR_LP_1000HALF 0x400
|
||||
#define GBSR_LP_1000FULL 0x800
|
||||
#define GBSR_REMOTE_OK 0x1000
|
||||
#define GBSR_LOCAL_OK 0x2000
|
||||
#define GBSR_LOCAL_MASTER 0x4000
|
||||
#define GBSR_MASTER_FAULT 0x8000
|
||||
|
||||
/* Vitesse PHY interrupt status bits. */
|
||||
#if 0
|
||||
#define VSC8244_INTR_JABBER 0x0001
|
||||
#define VSC8244_INTR_POLARITY_CHNG 0x0002
|
||||
#define VSC8244_INTR_ENG_DETECT_CHNG 0x0010
|
||||
#define VSC8244_INTR_DOWNSHIFT 0x0020
|
||||
#define VSC8244_INTR_MDI_XOVER_CHNG 0x0040
|
||||
#define VSC8244_INTR_FIFO_OVER_UNDER 0x0080
|
||||
#define VSC8244_INTR_FALSE_CARRIER 0x0100
|
||||
#define VSC8244_INTR_SYMBOL_ERROR 0x0200
|
||||
#define VSC8244_INTR_LINK_CHNG 0x0400
|
||||
#define VSC8244_INTR_AUTONEG_DONE 0x0800
|
||||
#define VSC8244_INTR_PAGE_RECV 0x1000
|
||||
#define VSC8244_INTR_DUPLEX_CHNG 0x2000
|
||||
#define VSC8244_INTR_SPEED_CHNG 0x4000
|
||||
#define VSC8244_INTR_AUTONEG_ERR 0x8000
|
||||
#else
|
||||
//#define VSC8244_INTR_JABBER 0x0001
|
||||
//#define VSC8244_INTR_POLARITY_CHNG 0x0002
|
||||
//#define VSC8244_INTR_BIT2 0x0004
|
||||
//#define VSC8244_INTR_BIT3 0x0008
|
||||
#define VSC8244_INTR_RX_ERR 0x0001
|
||||
#define VSC8244_INTR_MASTER_SLAVE 0x0002
|
||||
#define VSC8244_INTR_CABLE_IMPAIRED 0x0004
|
||||
#define VSC8244_INTR_FALSE_CARRIER 0x0008
|
||||
//#define VSC8244_INTR_ENG_DETECT_CHNG 0x0010
|
||||
//#define VSC8244_INTR_DOWNSHIFT 0x0020
|
||||
//#define VSC8244_INTR_MDI_XOVER_CHNG 0x0040
|
||||
//#define VSC8244_INTR_FIFO_OVER_UNDER 0x0080
|
||||
#define VSC8244_INTR_BIT4 0x0010
|
||||
#define VSC8244_INTR_FIFO_RX 0x0020
|
||||
#define VSC8244_INTR_FIFO_OVER_UNDER 0x0040
|
||||
#define VSC8244_INTR_LOCK_LOST 0x0080
|
||||
//#define VSC8244_INTR_FALSE_CARRIER 0x0100
|
||||
//#define VSC8244_INTR_SYMBOL_ERROR 0x0200
|
||||
//#define VSC8244_INTR_LINK_CHNG 0x0400
|
||||
//#define VSC8244_INTR_AUTONEG_DONE 0x0800
|
||||
#define VSC8244_INTR_SYMBOL_ERROR 0x0100
|
||||
#define VSC8244_INTR_ENG_DETECT_CHNG 0x0200
|
||||
#define VSC8244_INTR_AUTONEG_DONE 0x0400
|
||||
#define VSC8244_INTR_AUTONEG_ERR 0x0800
|
||||
//#define VSC8244_INTR_PAGE_RECV 0x1000
|
||||
//#define VSC8244_INTR_DUPLEX_CHNG 0x2000
|
||||
//#define VSC8244_INTR_SPEED_CHNG 0x4000
|
||||
//#define VSC8244_INTR_AUTONEG_ERR 0x8000
|
||||
#define VSC8244_INTR_DUPLEX_CHNG 0x1000
|
||||
#define VSC8244_INTR_LINK_CHNG 0x2000
|
||||
#define VSC8244_INTR_SPEED_CHNG 0x4000
|
||||
#define VSC8244_INTR_STATUS 0x8000
|
||||
#endif
|
||||
|
||||
|
||||
/* Vitesse PHY specific registers. */
|
||||
#define VSC8244_SPECIFIC_CNTRL_REGISTER 16
|
||||
#define VSC8244_SPECIFIC_STATUS_REGISTER 0x1c
|
||||
#define VSC8244_INTERRUPT_ENABLE_REGISTER 0x19
|
||||
#define VSC8244_INTERRUPT_STATUS_REGISTER 0x1a
|
||||
#define VSC8244_EXT_PHY_SPECIFIC_CNTRL_REGISTER 20
|
||||
#define VSC8244_RECV_ERR_CNTR_REGISTER 21
|
||||
#define VSC8244_RES_REGISTER 22
|
||||
#define VSC8244_GLOBAL_STATUS_REGISTER 23
|
||||
#define VSC8244_LED_CONTROL_REGISTER 24
|
||||
#define VSC8244_MANUAL_LED_OVERRIDE_REGISTER 25
|
||||
#define VSC8244_EXT_PHY_SPECIFIC_CNTRL_2_REGISTER 26
|
||||
#define VSC8244_EXT_PHY_SPECIFIC_STATUS_REGISTER 27
|
||||
#define VSC8244_VIRTUAL_CABLE_TESTER_REGISTER 28
|
||||
#define VSC8244_EXTENDED_ADDR_REGISTER 29
|
||||
#define VSC8244_EXTENDED_REGISTER 30
|
||||
|
||||
/* PHY specific control register fields */
|
||||
#define S_PSCR_MDI_XOVER_MODE 5
|
||||
#define M_PSCR_MDI_XOVER_MODE 0x3
|
||||
#define V_PSCR_MDI_XOVER_MODE(x) ((x) << S_PSCR_MDI_XOVER_MODE)
|
||||
#define G_PSCR_MDI_XOVER_MODE(x) (((x) >> S_PSCR_MDI_XOVER_MODE) & M_PSCR_MDI_XOVER_MODE)
|
||||
|
||||
/* Extended PHY specific control register fields */
|
||||
#define S_DOWNSHIFT_ENABLE 8
|
||||
#define V_DOWNSHIFT_ENABLE (1 << S_DOWNSHIFT_ENABLE)
|
||||
|
||||
#define S_DOWNSHIFT_CNT 9
|
||||
#define M_DOWNSHIFT_CNT 0x7
|
||||
#define V_DOWNSHIFT_CNT(x) ((x) << S_DOWNSHIFT_CNT)
|
||||
#define G_DOWNSHIFT_CNT(x) (((x) >> S_DOWNSHIFT_CNT) & M_DOWNSHIFT_CNT)
|
||||
|
||||
/* PHY specific status register fields */
|
||||
#define S_PSSR_JABBER 0
|
||||
#define V_PSSR_JABBER (1 << S_PSSR_JABBER)
|
||||
|
||||
#define S_PSSR_POLARITY 1
|
||||
#define V_PSSR_POLARITY (1 << S_PSSR_POLARITY)
|
||||
|
||||
#define S_PSSR_RX_PAUSE 2
|
||||
#define V_PSSR_RX_PAUSE (1 << S_PSSR_RX_PAUSE)
|
||||
|
||||
#define S_PSSR_TX_PAUSE 3
|
||||
#define V_PSSR_TX_PAUSE (1 << S_PSSR_TX_PAUSE)
|
||||
|
||||
#define S_PSSR_ENERGY_DETECT 4
|
||||
#define V_PSSR_ENERGY_DETECT (1 << S_PSSR_ENERGY_DETECT)
|
||||
|
||||
#define S_PSSR_DOWNSHIFT_STATUS 5
|
||||
#define V_PSSR_DOWNSHIFT_STATUS (1 << S_PSSR_DOWNSHIFT_STATUS)
|
||||
|
||||
#define S_PSSR_MDI 6
|
||||
#define V_PSSR_MDI (1 << S_PSSR_MDI)
|
||||
|
||||
#define S_PSSR_CABLE_LEN 7
|
||||
#define M_PSSR_CABLE_LEN 0x7
|
||||
#define V_PSSR_CABLE_LEN(x) ((x) << S_PSSR_CABLE_LEN)
|
||||
#define G_PSSR_CABLE_LEN(x) (((x) >> S_PSSR_CABLE_LEN) & M_PSSR_CABLE_LEN)
|
||||
|
||||
//#define S_PSSR_LINK 10
|
||||
//#define S_PSSR_LINK 13
|
||||
#define S_PSSR_LINK 2
|
||||
#define V_PSSR_LINK (1 << S_PSSR_LINK)
|
||||
|
||||
//#define S_PSSR_STATUS_RESOLVED 11
|
||||
//#define S_PSSR_STATUS_RESOLVED 10
|
||||
#define S_PSSR_STATUS_RESOLVED 15
|
||||
#define V_PSSR_STATUS_RESOLVED (1 << S_PSSR_STATUS_RESOLVED)
|
||||
|
||||
#define S_PSSR_PAGE_RECEIVED 12
|
||||
#define V_PSSR_PAGE_RECEIVED (1 << S_PSSR_PAGE_RECEIVED)
|
||||
|
||||
//#define S_PSSR_DUPLEX 13
|
||||
//#define S_PSSR_DUPLEX 12
|
||||
#define S_PSSR_DUPLEX 5
|
||||
#define V_PSSR_DUPLEX (1 << S_PSSR_DUPLEX)
|
||||
|
||||
//#define S_PSSR_SPEED 14
|
||||
//#define S_PSSR_SPEED 14
|
||||
#define S_PSSR_SPEED 3
|
||||
#define M_PSSR_SPEED 0x3
|
||||
#define V_PSSR_SPEED(x) ((x) << S_PSSR_SPEED)
|
||||
#define G_PSSR_SPEED(x) (((x) >> S_PSSR_SPEED) & M_PSSR_SPEED)
|
||||
|
||||
#endif
|
Loading…
x
Reference in New Issue
Block a user