KVM: arm64: Convert unmap_stage2_range() to generic page-table API
Convert unmap_stage2_range() to use kvm_pgtable_stage2_unmap() instead of walking the page-table directly. Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Gavin Shan <gshan@redhat.com> Cc: Marc Zyngier <maz@kernel.org> Cc: Quentin Perret <qperret@google.com> Link: https://lore.kernel.org/r/20200911132529.19844-10-will@kernel.org
This commit is contained in:
parent
e9edb17ae0
commit
52bae936f0
@ -39,6 +39,38 @@ static bool is_iomap(unsigned long flags)
|
||||
return flags & KVM_S2PTE_FLAG_IS_IOMAP;
|
||||
}
|
||||
|
||||
/*
|
||||
* Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
|
||||
* we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
|
||||
* CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
|
||||
* long will also starve other vCPUs. We have to also make sure that the page
|
||||
* tables are not freed while we released the lock.
|
||||
*/
|
||||
static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
|
||||
phys_addr_t end,
|
||||
int (*fn)(struct kvm_pgtable *, u64, u64),
|
||||
bool resched)
|
||||
{
|
||||
int ret;
|
||||
u64 next;
|
||||
|
||||
do {
|
||||
struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
|
||||
if (!pgt)
|
||||
return -EINVAL;
|
||||
|
||||
next = stage2_pgd_addr_end(kvm, addr, end);
|
||||
ret = fn(pgt, addr, next - addr);
|
||||
if (ret)
|
||||
break;
|
||||
|
||||
if (resched && next != end)
|
||||
cond_resched_lock(&kvm->mmu_lock);
|
||||
} while (addr = next, addr != end);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static bool memslot_is_logging(struct kvm_memory_slot *memslot)
|
||||
{
|
||||
return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
|
||||
@ -220,8 +252,8 @@ static inline void kvm_pgd_populate(pgd_t *pgdp, p4d_t *p4dp)
|
||||
* end up writing old data to disk.
|
||||
*
|
||||
* This is why right after unmapping a page/section and invalidating
|
||||
* the corresponding TLBs, we call kvm_flush_dcache_p*() to make sure
|
||||
* the IO subsystem will never hit in the cache.
|
||||
* the corresponding TLBs, we flush to make sure the IO subsystem will
|
||||
* never hit in the cache.
|
||||
*
|
||||
* This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
|
||||
* we then fully enforce cacheability of RAM, no matter what the guest
|
||||
@ -344,32 +376,12 @@ static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64
|
||||
bool may_block)
|
||||
{
|
||||
struct kvm *kvm = mmu->kvm;
|
||||
pgd_t *pgd;
|
||||
phys_addr_t addr = start, end = start + size;
|
||||
phys_addr_t next;
|
||||
phys_addr_t end = start + size;
|
||||
|
||||
assert_spin_locked(&kvm->mmu_lock);
|
||||
WARN_ON(size & ~PAGE_MASK);
|
||||
|
||||
pgd = mmu->pgd + stage2_pgd_index(kvm, addr);
|
||||
do {
|
||||
/*
|
||||
* Make sure the page table is still active, as another thread
|
||||
* could have possibly freed the page table, while we released
|
||||
* the lock.
|
||||
*/
|
||||
if (!READ_ONCE(mmu->pgd))
|
||||
break;
|
||||
next = stage2_pgd_addr_end(kvm, addr, end);
|
||||
if (!stage2_pgd_none(kvm, *pgd))
|
||||
unmap_stage2_p4ds(mmu, pgd, addr, next);
|
||||
/*
|
||||
* If the range is too large, release the kvm->mmu_lock
|
||||
* to prevent starvation and lockup detector warnings.
|
||||
*/
|
||||
if (may_block && next != end)
|
||||
cond_resched_lock(&kvm->mmu_lock);
|
||||
} while (pgd++, addr = next, addr != end);
|
||||
WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
|
||||
may_block));
|
||||
}
|
||||
|
||||
static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
|
||||
|
Loading…
x
Reference in New Issue
Block a user