DOCUMENTATION: Update overview.txt in Doc/driver-model.

A few grammatical fixes, clarifications and corrections in just the
overview file for the driver model documentation.

Signed-off-by: Robert P. J. Day <rpjday@crashcourse.ca>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This commit is contained in:
Robert P. J. Day 2011-05-28 09:31:39 -04:00 committed by Greg Kroah-Hartman
parent e556b8131a
commit 5464e9c721

View File

@ -30,7 +30,7 @@ management, and hot plug. In particular, the model dictated by Intel and
Microsoft (namely ACPI) ensures that almost every device on almost any bus Microsoft (namely ACPI) ensures that almost every device on almost any bus
on an x86-compatible system can work within this paradigm. Of course, on an x86-compatible system can work within this paradigm. Of course,
not every bus is able to support all such operations, although most not every bus is able to support all such operations, although most
buses support a most of those operations. buses support most of those operations.
Downstream Access Downstream Access
@ -46,25 +46,29 @@ struct pci_dev now looks like this:
struct pci_dev { struct pci_dev {
... ...
struct device dev; struct device dev; /* Generic device interface */
...
}; };
Note first that it is statically allocated. This means only one allocation on Note first that the struct device dev within the struct pci_dev is
device discovery. Note also that it is at the _end_ of struct pci_dev. This is statically allocated. This means only one allocation on device discovery.
to make people think about what they're doing when switching between the bus
driver and the global driver; and to prevent against mindless casts between Note also that that struct device dev is not necessarily defined at the
the two. front of the pci_dev structure. This is to make people think about what
they're doing when switching between the bus driver and the global driver,
and to discourage meaningless and incorrect casts between the two.
The PCI bus layer freely accesses the fields of struct device. It knows about The PCI bus layer freely accesses the fields of struct device. It knows about
the structure of struct pci_dev, and it should know the structure of struct the structure of struct pci_dev, and it should know the structure of struct
device. Individual PCI device drivers that have been converted to the current device. Individual PCI device drivers that have been converted to the current
driver model generally do not and should not touch the fields of struct device, driver model generally do not and should not touch the fields of struct device,
unless there is a strong compelling reason to do so. unless there is a compelling reason to do so.
This abstraction is prevention of unnecessary pain during transitional phases. The above abstraction prevents unnecessary pain during transitional phases.
If the name of the field changes or is removed, then every downstream driver If it were not done this way, then when a field was renamed or removed, every
will break. On the other hand, if only the bus layer (and not the device downstream driver would break. On the other hand, if only the bus layer
layer) accesses struct device, it is only that layer that needs to change. (and not the device layer) accesses the struct device, it is only the bus
layer that needs to change.
User Interface User Interface
@ -73,15 +77,27 @@ User Interface
By virtue of having a complete hierarchical view of all the devices in the By virtue of having a complete hierarchical view of all the devices in the
system, exporting a complete hierarchical view to userspace becomes relatively system, exporting a complete hierarchical view to userspace becomes relatively
easy. This has been accomplished by implementing a special purpose virtual easy. This has been accomplished by implementing a special purpose virtual
file system named sysfs. It is hence possible for the user to mount the file system named sysfs.
whole sysfs filesystem anywhere in userspace.
This can be done permanently by providing the following entry into the Almost all mainstream Linux distros mount this filesystem automatically; you
/etc/fstab (under the provision that the mount point does exist, of course): can see some variation of the following in the output of the "mount" command:
none /sys sysfs defaults 0 0 $ mount
...
none on /sys type sysfs (rw,noexec,nosuid,nodev)
...
$
Or by hand on the command line: The auto-mounting of sysfs is typically accomplished by an entry similar to
the following in the /etc/fstab file:
none /sys sysfs defaults 0 0
or something similar in the /lib/init/fstab file on Debian-based systems:
none /sys sysfs nodev,noexec,nosuid 0 0
If sysfs is not automatically mounted, you can always do it manually with:
# mount -t sysfs sysfs /sys # mount -t sysfs sysfs /sys