slub: explicit list_lock taking

The allocator fastpath rework does change the usage of the list_lock.
Remove the list_lock processing from the functions that hide them from the
critical sections and move them into those critical sections.

This in turn simplifies the support functions (no __ variant needed anymore)
and simplifies the lock handling on bootstrap.

Inline add_partial since it becomes pretty simple.

Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
This commit is contained in:
Christoph Lameter 2011-06-01 12:25:50 -05:00 committed by Pekka Enberg
parent b789ef518b
commit 5cc6eee8a8

View File

@ -916,26 +916,27 @@ static inline void slab_free_hook(struct kmem_cache *s, void *x)
/* /*
* Tracking of fully allocated slabs for debugging purposes. * Tracking of fully allocated slabs for debugging purposes.
*
* list_lock must be held.
*/ */
static void add_full(struct kmem_cache_node *n, struct page *page) static void add_full(struct kmem_cache *s,
struct kmem_cache_node *n, struct page *page)
{ {
spin_lock(&n->list_lock);
list_add(&page->lru, &n->full);
spin_unlock(&n->list_lock);
}
static void remove_full(struct kmem_cache *s, struct page *page)
{
struct kmem_cache_node *n;
if (!(s->flags & SLAB_STORE_USER)) if (!(s->flags & SLAB_STORE_USER))
return; return;
n = get_node(s, page_to_nid(page)); list_add(&page->lru, &n->full);
}
/*
* list_lock must be held.
*/
static void remove_full(struct kmem_cache *s, struct page *page)
{
if (!(s->flags & SLAB_STORE_USER))
return;
spin_lock(&n->list_lock);
list_del(&page->lru); list_del(&page->lru);
spin_unlock(&n->list_lock);
} }
/* Tracking of the number of slabs for debugging purposes */ /* Tracking of the number of slabs for debugging purposes */
@ -1060,8 +1061,13 @@ static noinline int free_debug_processing(struct kmem_cache *s,
} }
/* Special debug activities for freeing objects */ /* Special debug activities for freeing objects */
if (!page->frozen && !page->freelist) if (!page->frozen && !page->freelist) {
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
spin_lock(&n->list_lock);
remove_full(s, page); remove_full(s, page);
spin_unlock(&n->list_lock);
}
if (s->flags & SLAB_STORE_USER) if (s->flags & SLAB_STORE_USER)
set_track(s, object, TRACK_FREE, addr); set_track(s, object, TRACK_FREE, addr);
trace(s, page, object, 0); trace(s, page, object, 0);
@ -1170,7 +1176,8 @@ static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
{ return 1; } { return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page, static inline int check_object(struct kmem_cache *s, struct page *page,
void *object, u8 val) { return 1; } void *object, u8 val) { return 1; }
static inline void add_full(struct kmem_cache_node *n, struct page *page) {} static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
struct page *page) {}
static inline unsigned long kmem_cache_flags(unsigned long objsize, static inline unsigned long kmem_cache_flags(unsigned long objsize,
unsigned long flags, const char *name, unsigned long flags, const char *name,
void (*ctor)(void *)) void (*ctor)(void *))
@ -1420,38 +1427,33 @@ static __always_inline int slab_trylock(struct page *page)
} }
/* /*
* Management of partially allocated slabs * Management of partially allocated slabs.
*
* list_lock must be held.
*/ */
static void add_partial(struct kmem_cache_node *n, static inline void add_partial(struct kmem_cache_node *n,
struct page *page, int tail) struct page *page, int tail)
{ {
spin_lock(&n->list_lock);
n->nr_partial++; n->nr_partial++;
if (tail) if (tail)
list_add_tail(&page->lru, &n->partial); list_add_tail(&page->lru, &n->partial);
else else
list_add(&page->lru, &n->partial); list_add(&page->lru, &n->partial);
spin_unlock(&n->list_lock);
} }
static inline void __remove_partial(struct kmem_cache_node *n, /*
* list_lock must be held.
*/
static inline void remove_partial(struct kmem_cache_node *n,
struct page *page) struct page *page)
{ {
list_del(&page->lru); list_del(&page->lru);
n->nr_partial--; n->nr_partial--;
} }
static void remove_partial(struct kmem_cache *s, struct page *page)
{
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
spin_lock(&n->list_lock);
__remove_partial(n, page);
spin_unlock(&n->list_lock);
}
/* /*
* Lock slab and remove from the partial list. * Lock slab, remove from the partial list and put the object into the
* per cpu freelist.
* *
* Must hold list_lock. * Must hold list_lock.
*/ */
@ -1459,7 +1461,7 @@ static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
struct page *page) struct page *page)
{ {
if (slab_trylock(page)) { if (slab_trylock(page)) {
__remove_partial(n, page); remove_partial(n, page);
return 1; return 1;
} }
return 0; return 0;
@ -1576,12 +1578,17 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
if (page->inuse) { if (page->inuse) {
if (page->freelist) { if (page->freelist) {
spin_lock(&n->list_lock);
add_partial(n, page, tail); add_partial(n, page, tail);
spin_unlock(&n->list_lock);
stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD); stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
} else { } else {
stat(s, DEACTIVATE_FULL); stat(s, DEACTIVATE_FULL);
if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER)) if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER)) {
add_full(n, page); spin_lock(&n->list_lock);
add_full(s, n, page);
spin_unlock(&n->list_lock);
}
} }
slab_unlock(page); slab_unlock(page);
} else { } else {
@ -1597,7 +1604,9 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
* kmem_cache_shrink can reclaim any empty slabs from * kmem_cache_shrink can reclaim any empty slabs from
* the partial list. * the partial list.
*/ */
spin_lock(&n->list_lock);
add_partial(n, page, 1); add_partial(n, page, 1);
spin_unlock(&n->list_lock);
slab_unlock(page); slab_unlock(page);
} else { } else {
slab_unlock(page); slab_unlock(page);
@ -2099,7 +2108,11 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
* then add it. * then add it.
*/ */
if (unlikely(!prior)) { if (unlikely(!prior)) {
struct kmem_cache_node *n = get_node(s, page_to_nid(page));
spin_lock(&n->list_lock);
add_partial(get_node(s, page_to_nid(page)), page, 1); add_partial(get_node(s, page_to_nid(page)), page, 1);
spin_unlock(&n->list_lock);
stat(s, FREE_ADD_PARTIAL); stat(s, FREE_ADD_PARTIAL);
} }
@ -2113,7 +2126,11 @@ slab_empty:
/* /*
* Slab still on the partial list. * Slab still on the partial list.
*/ */
remove_partial(s, page); struct kmem_cache_node *n = get_node(s, page_to_nid(page));
spin_lock(&n->list_lock);
remove_partial(n, page);
spin_unlock(&n->list_lock);
stat(s, FREE_REMOVE_PARTIAL); stat(s, FREE_REMOVE_PARTIAL);
} }
slab_unlock(page); slab_unlock(page);
@ -2391,7 +2408,6 @@ static void early_kmem_cache_node_alloc(int node)
{ {
struct page *page; struct page *page;
struct kmem_cache_node *n; struct kmem_cache_node *n;
unsigned long flags;
BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
@ -2418,14 +2434,7 @@ static void early_kmem_cache_node_alloc(int node)
init_kmem_cache_node(n, kmem_cache_node); init_kmem_cache_node(n, kmem_cache_node);
inc_slabs_node(kmem_cache_node, node, page->objects); inc_slabs_node(kmem_cache_node, node, page->objects);
/*
* lockdep requires consistent irq usage for each lock
* so even though there cannot be a race this early in
* the boot sequence, we still disable irqs.
*/
local_irq_save(flags);
add_partial(n, page, 0); add_partial(n, page, 0);
local_irq_restore(flags);
} }
static void free_kmem_cache_nodes(struct kmem_cache *s) static void free_kmem_cache_nodes(struct kmem_cache *s)
@ -2709,7 +2718,7 @@ static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
spin_lock_irqsave(&n->list_lock, flags); spin_lock_irqsave(&n->list_lock, flags);
list_for_each_entry_safe(page, h, &n->partial, lru) { list_for_each_entry_safe(page, h, &n->partial, lru) {
if (!page->inuse) { if (!page->inuse) {
__remove_partial(n, page); remove_partial(n, page);
discard_slab(s, page); discard_slab(s, page);
} else { } else {
list_slab_objects(s, page, list_slab_objects(s, page,
@ -3047,7 +3056,7 @@ int kmem_cache_shrink(struct kmem_cache *s)
* may have freed the last object and be * may have freed the last object and be
* waiting to release the slab. * waiting to release the slab.
*/ */
__remove_partial(n, page); remove_partial(n, page);
slab_unlock(page); slab_unlock(page);
discard_slab(s, page); discard_slab(s, page);
} else { } else {