sched/fair: Commit to EEVDF
EEVDF is a better defined scheduling policy, as a result it has less heuristics/tunables. There is no compelling reason to keep CFS around. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Link: https://lore.kernel.org/r/20230531124604.137187212@infradead.org
This commit is contained in:
parent
e8f331bcc2
commit
5e963f2bd4
@ -347,10 +347,7 @@ static __init int sched_init_debug(void)
|
||||
debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops);
|
||||
#endif
|
||||
|
||||
debugfs_create_u32("latency_ns", 0644, debugfs_sched, &sysctl_sched_latency);
|
||||
debugfs_create_u32("min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_min_granularity);
|
||||
debugfs_create_u32("idle_min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_idle_min_granularity);
|
||||
debugfs_create_u32("wakeup_granularity_ns", 0644, debugfs_sched, &sysctl_sched_wakeup_granularity);
|
||||
|
||||
debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms);
|
||||
debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once);
|
||||
@ -866,10 +863,7 @@ static void sched_debug_header(struct seq_file *m)
|
||||
SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
|
||||
#define PN(x) \
|
||||
SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
|
||||
PN(sysctl_sched_latency);
|
||||
PN(sysctl_sched_min_granularity);
|
||||
PN(sysctl_sched_idle_min_granularity);
|
||||
PN(sysctl_sched_wakeup_granularity);
|
||||
P(sysctl_sched_child_runs_first);
|
||||
P(sysctl_sched_features);
|
||||
#undef PN
|
||||
|
@ -57,22 +57,6 @@
|
||||
#include "stats.h"
|
||||
#include "autogroup.h"
|
||||
|
||||
/*
|
||||
* Targeted preemption latency for CPU-bound tasks:
|
||||
*
|
||||
* NOTE: this latency value is not the same as the concept of
|
||||
* 'timeslice length' - timeslices in CFS are of variable length
|
||||
* and have no persistent notion like in traditional, time-slice
|
||||
* based scheduling concepts.
|
||||
*
|
||||
* (to see the precise effective timeslice length of your workload,
|
||||
* run vmstat and monitor the context-switches (cs) field)
|
||||
*
|
||||
* (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
|
||||
*/
|
||||
unsigned int sysctl_sched_latency = 6000000ULL;
|
||||
static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
|
||||
|
||||
/*
|
||||
* The initial- and re-scaling of tunables is configurable
|
||||
*
|
||||
@ -94,37 +78,12 @@ unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
|
||||
unsigned int sysctl_sched_min_granularity = 750000ULL;
|
||||
static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
|
||||
|
||||
/*
|
||||
* Minimal preemption granularity for CPU-bound SCHED_IDLE tasks.
|
||||
* Applies only when SCHED_IDLE tasks compete with normal tasks.
|
||||
*
|
||||
* (default: 0.75 msec)
|
||||
*/
|
||||
unsigned int sysctl_sched_idle_min_granularity = 750000ULL;
|
||||
|
||||
/*
|
||||
* This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
|
||||
*/
|
||||
static unsigned int sched_nr_latency = 8;
|
||||
|
||||
/*
|
||||
* After fork, child runs first. If set to 0 (default) then
|
||||
* parent will (try to) run first.
|
||||
*/
|
||||
unsigned int sysctl_sched_child_runs_first __read_mostly;
|
||||
|
||||
/*
|
||||
* SCHED_OTHER wake-up granularity.
|
||||
*
|
||||
* This option delays the preemption effects of decoupled workloads
|
||||
* and reduces their over-scheduling. Synchronous workloads will still
|
||||
* have immediate wakeup/sleep latencies.
|
||||
*
|
||||
* (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
|
||||
*/
|
||||
unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
|
||||
static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
|
||||
|
||||
const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
|
||||
|
||||
int sched_thermal_decay_shift;
|
||||
@ -279,8 +238,6 @@ static void update_sysctl(void)
|
||||
#define SET_SYSCTL(name) \
|
||||
(sysctl_##name = (factor) * normalized_sysctl_##name)
|
||||
SET_SYSCTL(sched_min_granularity);
|
||||
SET_SYSCTL(sched_latency);
|
||||
SET_SYSCTL(sched_wakeup_granularity);
|
||||
#undef SET_SYSCTL
|
||||
}
|
||||
|
||||
@ -888,30 +845,6 @@ struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
|
||||
return __node_2_se(left);
|
||||
}
|
||||
|
||||
static struct sched_entity *__pick_next_entity(struct sched_entity *se)
|
||||
{
|
||||
struct rb_node *next = rb_next(&se->run_node);
|
||||
|
||||
if (!next)
|
||||
return NULL;
|
||||
|
||||
return __node_2_se(next);
|
||||
}
|
||||
|
||||
static struct sched_entity *pick_cfs(struct cfs_rq *cfs_rq, struct sched_entity *curr)
|
||||
{
|
||||
struct sched_entity *left = __pick_first_entity(cfs_rq);
|
||||
|
||||
/*
|
||||
* If curr is set we have to see if its left of the leftmost entity
|
||||
* still in the tree, provided there was anything in the tree at all.
|
||||
*/
|
||||
if (!left || (curr && entity_before(curr, left)))
|
||||
left = curr;
|
||||
|
||||
return left;
|
||||
}
|
||||
|
||||
/*
|
||||
* Earliest Eligible Virtual Deadline First
|
||||
*
|
||||
@ -1008,85 +941,15 @@ int sched_update_scaling(void)
|
||||
{
|
||||
unsigned int factor = get_update_sysctl_factor();
|
||||
|
||||
sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
|
||||
sysctl_sched_min_granularity);
|
||||
|
||||
#define WRT_SYSCTL(name) \
|
||||
(normalized_sysctl_##name = sysctl_##name / (factor))
|
||||
WRT_SYSCTL(sched_min_granularity);
|
||||
WRT_SYSCTL(sched_latency);
|
||||
WRT_SYSCTL(sched_wakeup_granularity);
|
||||
#undef WRT_SYSCTL
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* The idea is to set a period in which each task runs once.
|
||||
*
|
||||
* When there are too many tasks (sched_nr_latency) we have to stretch
|
||||
* this period because otherwise the slices get too small.
|
||||
*
|
||||
* p = (nr <= nl) ? l : l*nr/nl
|
||||
*/
|
||||
static u64 __sched_period(unsigned long nr_running)
|
||||
{
|
||||
if (unlikely(nr_running > sched_nr_latency))
|
||||
return nr_running * sysctl_sched_min_granularity;
|
||||
else
|
||||
return sysctl_sched_latency;
|
||||
}
|
||||
|
||||
static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq);
|
||||
|
||||
/*
|
||||
* We calculate the wall-time slice from the period by taking a part
|
||||
* proportional to the weight.
|
||||
*
|
||||
* s = p*P[w/rw]
|
||||
*/
|
||||
static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
{
|
||||
unsigned int nr_running = cfs_rq->nr_running;
|
||||
struct sched_entity *init_se = se;
|
||||
unsigned int min_gran;
|
||||
u64 slice;
|
||||
|
||||
if (sched_feat(ALT_PERIOD))
|
||||
nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
|
||||
|
||||
slice = __sched_period(nr_running + !se->on_rq);
|
||||
|
||||
for_each_sched_entity(se) {
|
||||
struct load_weight *load;
|
||||
struct load_weight lw;
|
||||
struct cfs_rq *qcfs_rq;
|
||||
|
||||
qcfs_rq = cfs_rq_of(se);
|
||||
load = &qcfs_rq->load;
|
||||
|
||||
if (unlikely(!se->on_rq)) {
|
||||
lw = qcfs_rq->load;
|
||||
|
||||
update_load_add(&lw, se->load.weight);
|
||||
load = &lw;
|
||||
}
|
||||
slice = __calc_delta(slice, se->load.weight, load);
|
||||
}
|
||||
|
||||
if (sched_feat(BASE_SLICE)) {
|
||||
if (se_is_idle(init_se) && !sched_idle_cfs_rq(cfs_rq))
|
||||
min_gran = sysctl_sched_idle_min_granularity;
|
||||
else
|
||||
min_gran = sysctl_sched_min_granularity;
|
||||
|
||||
slice = max_t(u64, slice, min_gran);
|
||||
}
|
||||
|
||||
return slice;
|
||||
}
|
||||
|
||||
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
|
||||
|
||||
/*
|
||||
@ -1098,35 +961,25 @@ static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
if ((s64)(se->vruntime - se->deadline) < 0)
|
||||
return;
|
||||
|
||||
if (sched_feat(EEVDF)) {
|
||||
/*
|
||||
* For EEVDF the virtual time slope is determined by w_i (iow.
|
||||
* nice) while the request time r_i is determined by
|
||||
* sysctl_sched_min_granularity.
|
||||
*/
|
||||
se->slice = sysctl_sched_min_granularity;
|
||||
|
||||
/*
|
||||
* The task has consumed its request, reschedule.
|
||||
*/
|
||||
if (cfs_rq->nr_running > 1) {
|
||||
resched_curr(rq_of(cfs_rq));
|
||||
clear_buddies(cfs_rq, se);
|
||||
}
|
||||
} else {
|
||||
/*
|
||||
* When many tasks blow up the sched_period; it is possible
|
||||
* that sched_slice() reports unusually large results (when
|
||||
* many tasks are very light for example). Therefore impose a
|
||||
* maximum.
|
||||
*/
|
||||
se->slice = min_t(u64, sched_slice(cfs_rq, se), sysctl_sched_latency);
|
||||
}
|
||||
/*
|
||||
* For EEVDF the virtual time slope is determined by w_i (iow.
|
||||
* nice) while the request time r_i is determined by
|
||||
* sysctl_sched_min_granularity.
|
||||
*/
|
||||
se->slice = sysctl_sched_min_granularity;
|
||||
|
||||
/*
|
||||
* EEVDF: vd_i = ve_i + r_i / w_i
|
||||
*/
|
||||
se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
|
||||
|
||||
/*
|
||||
* The task has consumed its request, reschedule.
|
||||
*/
|
||||
if (cfs_rq->nr_running > 1) {
|
||||
resched_curr(rq_of(cfs_rq));
|
||||
clear_buddies(cfs_rq, se);
|
||||
}
|
||||
}
|
||||
|
||||
#include "pelt.h"
|
||||
@ -5055,19 +4908,6 @@ static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
|
||||
|
||||
#endif /* CONFIG_SMP */
|
||||
|
||||
static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
{
|
||||
#ifdef CONFIG_SCHED_DEBUG
|
||||
s64 d = se->vruntime - cfs_rq->min_vruntime;
|
||||
|
||||
if (d < 0)
|
||||
d = -d;
|
||||
|
||||
if (d > 3*sysctl_sched_latency)
|
||||
schedstat_inc(cfs_rq->nr_spread_over);
|
||||
#endif
|
||||
}
|
||||
|
||||
static void
|
||||
place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
|
||||
{
|
||||
@ -5219,7 +5059,6 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
|
||||
|
||||
check_schedstat_required();
|
||||
update_stats_enqueue_fair(cfs_rq, se, flags);
|
||||
check_spread(cfs_rq, se);
|
||||
if (!curr)
|
||||
__enqueue_entity(cfs_rq, se);
|
||||
se->on_rq = 1;
|
||||
@ -5241,17 +5080,6 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
|
||||
}
|
||||
}
|
||||
|
||||
static void __clear_buddies_last(struct sched_entity *se)
|
||||
{
|
||||
for_each_sched_entity(se) {
|
||||
struct cfs_rq *cfs_rq = cfs_rq_of(se);
|
||||
if (cfs_rq->last != se)
|
||||
break;
|
||||
|
||||
cfs_rq->last = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
static void __clear_buddies_next(struct sched_entity *se)
|
||||
{
|
||||
for_each_sched_entity(se) {
|
||||
@ -5263,27 +5091,10 @@ static void __clear_buddies_next(struct sched_entity *se)
|
||||
}
|
||||
}
|
||||
|
||||
static void __clear_buddies_skip(struct sched_entity *se)
|
||||
{
|
||||
for_each_sched_entity(se) {
|
||||
struct cfs_rq *cfs_rq = cfs_rq_of(se);
|
||||
if (cfs_rq->skip != se)
|
||||
break;
|
||||
|
||||
cfs_rq->skip = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
{
|
||||
if (cfs_rq->last == se)
|
||||
__clear_buddies_last(se);
|
||||
|
||||
if (cfs_rq->next == se)
|
||||
__clear_buddies_next(se);
|
||||
|
||||
if (cfs_rq->skip == se)
|
||||
__clear_buddies_skip(se);
|
||||
}
|
||||
|
||||
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
|
||||
@ -5341,45 +5152,6 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
|
||||
update_idle_cfs_rq_clock_pelt(cfs_rq);
|
||||
}
|
||||
|
||||
/*
|
||||
* Preempt the current task with a newly woken task if needed:
|
||||
*/
|
||||
static void
|
||||
check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
|
||||
{
|
||||
unsigned long delta_exec;
|
||||
struct sched_entity *se;
|
||||
s64 delta;
|
||||
|
||||
delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
|
||||
if (delta_exec > curr->slice) {
|
||||
resched_curr(rq_of(cfs_rq));
|
||||
/*
|
||||
* The current task ran long enough, ensure it doesn't get
|
||||
* re-elected due to buddy favours.
|
||||
*/
|
||||
clear_buddies(cfs_rq, curr);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* Ensure that a task that missed wakeup preemption by a
|
||||
* narrow margin doesn't have to wait for a full slice.
|
||||
* This also mitigates buddy induced latencies under load.
|
||||
*/
|
||||
if (delta_exec < sysctl_sched_min_granularity)
|
||||
return;
|
||||
|
||||
se = __pick_first_entity(cfs_rq);
|
||||
delta = curr->vruntime - se->vruntime;
|
||||
|
||||
if (delta < 0)
|
||||
return;
|
||||
|
||||
if (delta > curr->slice)
|
||||
resched_curr(rq_of(cfs_rq));
|
||||
}
|
||||
|
||||
static void
|
||||
set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
{
|
||||
@ -5418,9 +5190,6 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
|
||||
se->prev_sum_exec_runtime = se->sum_exec_runtime;
|
||||
}
|
||||
|
||||
static int
|
||||
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
|
||||
|
||||
/*
|
||||
* Pick the next process, keeping these things in mind, in this order:
|
||||
* 1) keep things fair between processes/task groups
|
||||
@ -5431,53 +5200,14 @@ wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
|
||||
static struct sched_entity *
|
||||
pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
|
||||
{
|
||||
struct sched_entity *left, *se;
|
||||
|
||||
if (sched_feat(EEVDF)) {
|
||||
/*
|
||||
* Enabling NEXT_BUDDY will affect latency but not fairness.
|
||||
*/
|
||||
if (sched_feat(NEXT_BUDDY) &&
|
||||
cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
|
||||
return cfs_rq->next;
|
||||
|
||||
return pick_eevdf(cfs_rq);
|
||||
}
|
||||
|
||||
se = left = pick_cfs(cfs_rq, curr);
|
||||
|
||||
/*
|
||||
* Avoid running the skip buddy, if running something else can
|
||||
* be done without getting too unfair.
|
||||
* Enabling NEXT_BUDDY will affect latency but not fairness.
|
||||
*/
|
||||
if (cfs_rq->skip && cfs_rq->skip == se) {
|
||||
struct sched_entity *second;
|
||||
if (sched_feat(NEXT_BUDDY) &&
|
||||
cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
|
||||
return cfs_rq->next;
|
||||
|
||||
if (se == curr) {
|
||||
second = __pick_first_entity(cfs_rq);
|
||||
} else {
|
||||
second = __pick_next_entity(se);
|
||||
if (!second || (curr && entity_before(curr, second)))
|
||||
second = curr;
|
||||
}
|
||||
|
||||
if (second && wakeup_preempt_entity(second, left) < 1)
|
||||
se = second;
|
||||
}
|
||||
|
||||
if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
|
||||
/*
|
||||
* Someone really wants this to run. If it's not unfair, run it.
|
||||
*/
|
||||
se = cfs_rq->next;
|
||||
} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
|
||||
/*
|
||||
* Prefer last buddy, try to return the CPU to a preempted task.
|
||||
*/
|
||||
se = cfs_rq->last;
|
||||
}
|
||||
|
||||
return se;
|
||||
return pick_eevdf(cfs_rq);
|
||||
}
|
||||
|
||||
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
|
||||
@ -5494,8 +5224,6 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
|
||||
/* throttle cfs_rqs exceeding runtime */
|
||||
check_cfs_rq_runtime(cfs_rq);
|
||||
|
||||
check_spread(cfs_rq, prev);
|
||||
|
||||
if (prev->on_rq) {
|
||||
update_stats_wait_start_fair(cfs_rq, prev);
|
||||
/* Put 'current' back into the tree. */
|
||||
@ -5536,9 +5264,6 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
|
||||
hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
|
||||
return;
|
||||
#endif
|
||||
|
||||
if (!sched_feat(EEVDF) && cfs_rq->nr_running > 1)
|
||||
check_preempt_tick(cfs_rq, curr);
|
||||
}
|
||||
|
||||
|
||||
@ -6610,8 +6335,7 @@ static void hrtick_update(struct rq *rq)
|
||||
if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
|
||||
return;
|
||||
|
||||
if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
|
||||
hrtick_start_fair(rq, curr);
|
||||
hrtick_start_fair(rq, curr);
|
||||
}
|
||||
#else /* !CONFIG_SCHED_HRTICK */
|
||||
static inline void
|
||||
@ -6652,17 +6376,6 @@ static int sched_idle_rq(struct rq *rq)
|
||||
rq->nr_running);
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns true if cfs_rq only has SCHED_IDLE entities enqueued. Note the use
|
||||
* of idle_nr_running, which does not consider idle descendants of normal
|
||||
* entities.
|
||||
*/
|
||||
static bool sched_idle_cfs_rq(struct cfs_rq *cfs_rq)
|
||||
{
|
||||
return cfs_rq->nr_running &&
|
||||
cfs_rq->nr_running == cfs_rq->idle_nr_running;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
static int sched_idle_cpu(int cpu)
|
||||
{
|
||||
@ -8205,66 +7918,6 @@ balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
|
||||
}
|
||||
#endif /* CONFIG_SMP */
|
||||
|
||||
static unsigned long wakeup_gran(struct sched_entity *se)
|
||||
{
|
||||
unsigned long gran = sysctl_sched_wakeup_granularity;
|
||||
|
||||
/*
|
||||
* Since its curr running now, convert the gran from real-time
|
||||
* to virtual-time in his units.
|
||||
*
|
||||
* By using 'se' instead of 'curr' we penalize light tasks, so
|
||||
* they get preempted easier. That is, if 'se' < 'curr' then
|
||||
* the resulting gran will be larger, therefore penalizing the
|
||||
* lighter, if otoh 'se' > 'curr' then the resulting gran will
|
||||
* be smaller, again penalizing the lighter task.
|
||||
*
|
||||
* This is especially important for buddies when the leftmost
|
||||
* task is higher priority than the buddy.
|
||||
*/
|
||||
return calc_delta_fair(gran, se);
|
||||
}
|
||||
|
||||
/*
|
||||
* Should 'se' preempt 'curr'.
|
||||
*
|
||||
* |s1
|
||||
* |s2
|
||||
* |s3
|
||||
* g
|
||||
* |<--->|c
|
||||
*
|
||||
* w(c, s1) = -1
|
||||
* w(c, s2) = 0
|
||||
* w(c, s3) = 1
|
||||
*
|
||||
*/
|
||||
static int
|
||||
wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
|
||||
{
|
||||
s64 gran, vdiff = curr->vruntime - se->vruntime;
|
||||
|
||||
if (vdiff <= 0)
|
||||
return -1;
|
||||
|
||||
gran = wakeup_gran(se);
|
||||
if (vdiff > gran)
|
||||
return 1;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void set_last_buddy(struct sched_entity *se)
|
||||
{
|
||||
for_each_sched_entity(se) {
|
||||
if (SCHED_WARN_ON(!se->on_rq))
|
||||
return;
|
||||
if (se_is_idle(se))
|
||||
return;
|
||||
cfs_rq_of(se)->last = se;
|
||||
}
|
||||
}
|
||||
|
||||
static void set_next_buddy(struct sched_entity *se)
|
||||
{
|
||||
for_each_sched_entity(se) {
|
||||
@ -8276,12 +7929,6 @@ static void set_next_buddy(struct sched_entity *se)
|
||||
}
|
||||
}
|
||||
|
||||
static void set_skip_buddy(struct sched_entity *se)
|
||||
{
|
||||
for_each_sched_entity(se)
|
||||
cfs_rq_of(se)->skip = se;
|
||||
}
|
||||
|
||||
/*
|
||||
* Preempt the current task with a newly woken task if needed:
|
||||
*/
|
||||
@ -8290,7 +7937,6 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_
|
||||
struct task_struct *curr = rq->curr;
|
||||
struct sched_entity *se = &curr->se, *pse = &p->se;
|
||||
struct cfs_rq *cfs_rq = task_cfs_rq(curr);
|
||||
int scale = cfs_rq->nr_running >= sched_nr_latency;
|
||||
int next_buddy_marked = 0;
|
||||
int cse_is_idle, pse_is_idle;
|
||||
|
||||
@ -8306,7 +7952,7 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_
|
||||
if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
|
||||
return;
|
||||
|
||||
if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
|
||||
if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
|
||||
set_next_buddy(pse);
|
||||
next_buddy_marked = 1;
|
||||
}
|
||||
@ -8354,44 +8000,16 @@ static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_
|
||||
cfs_rq = cfs_rq_of(se);
|
||||
update_curr(cfs_rq);
|
||||
|
||||
if (sched_feat(EEVDF)) {
|
||||
/*
|
||||
* XXX pick_eevdf(cfs_rq) != se ?
|
||||
*/
|
||||
if (pick_eevdf(cfs_rq) == pse)
|
||||
goto preempt;
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
if (wakeup_preempt_entity(se, pse) == 1) {
|
||||
/*
|
||||
* Bias pick_next to pick the sched entity that is
|
||||
* triggering this preemption.
|
||||
*/
|
||||
if (!next_buddy_marked)
|
||||
set_next_buddy(pse);
|
||||
/*
|
||||
* XXX pick_eevdf(cfs_rq) != se ?
|
||||
*/
|
||||
if (pick_eevdf(cfs_rq) == pse)
|
||||
goto preempt;
|
||||
}
|
||||
|
||||
return;
|
||||
|
||||
preempt:
|
||||
resched_curr(rq);
|
||||
/*
|
||||
* Only set the backward buddy when the current task is still
|
||||
* on the rq. This can happen when a wakeup gets interleaved
|
||||
* with schedule on the ->pre_schedule() or idle_balance()
|
||||
* point, either of which can * drop the rq lock.
|
||||
*
|
||||
* Also, during early boot the idle thread is in the fair class,
|
||||
* for obvious reasons its a bad idea to schedule back to it.
|
||||
*/
|
||||
if (unlikely(!se->on_rq || curr == rq->idle))
|
||||
return;
|
||||
|
||||
if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
|
||||
set_last_buddy(se);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
@ -8592,8 +8210,6 @@ static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
|
||||
|
||||
/*
|
||||
* sched_yield() is very simple
|
||||
*
|
||||
* The magic of dealing with the ->skip buddy is in pick_next_entity.
|
||||
*/
|
||||
static void yield_task_fair(struct rq *rq)
|
||||
{
|
||||
@ -8609,23 +8225,19 @@ static void yield_task_fair(struct rq *rq)
|
||||
|
||||
clear_buddies(cfs_rq, se);
|
||||
|
||||
if (sched_feat(EEVDF) || curr->policy != SCHED_BATCH) {
|
||||
update_rq_clock(rq);
|
||||
/*
|
||||
* Update run-time statistics of the 'current'.
|
||||
*/
|
||||
update_curr(cfs_rq);
|
||||
/*
|
||||
* Tell update_rq_clock() that we've just updated,
|
||||
* so we don't do microscopic update in schedule()
|
||||
* and double the fastpath cost.
|
||||
*/
|
||||
rq_clock_skip_update(rq);
|
||||
}
|
||||
if (sched_feat(EEVDF))
|
||||
se->deadline += calc_delta_fair(se->slice, se);
|
||||
update_rq_clock(rq);
|
||||
/*
|
||||
* Update run-time statistics of the 'current'.
|
||||
*/
|
||||
update_curr(cfs_rq);
|
||||
/*
|
||||
* Tell update_rq_clock() that we've just updated,
|
||||
* so we don't do microscopic update in schedule()
|
||||
* and double the fastpath cost.
|
||||
*/
|
||||
rq_clock_skip_update(rq);
|
||||
|
||||
set_skip_buddy(se);
|
||||
se->deadline += calc_delta_fair(se->slice, se);
|
||||
}
|
||||
|
||||
static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
|
||||
@ -8873,8 +8485,7 @@ static int task_hot(struct task_struct *p, struct lb_env *env)
|
||||
* Buddy candidates are cache hot:
|
||||
*/
|
||||
if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
|
||||
(&p->se == cfs_rq_of(&p->se)->next ||
|
||||
&p->se == cfs_rq_of(&p->se)->last))
|
||||
(&p->se == cfs_rq_of(&p->se)->next))
|
||||
return 1;
|
||||
|
||||
if (sysctl_sched_migration_cost == -1)
|
||||
|
@ -14,13 +14,6 @@ SCHED_FEAT(PLACE_DEADLINE_INITIAL, true)
|
||||
*/
|
||||
SCHED_FEAT(NEXT_BUDDY, false)
|
||||
|
||||
/*
|
||||
* Prefer to schedule the task that ran last (when we did
|
||||
* wake-preempt) as that likely will touch the same data, increases
|
||||
* cache locality.
|
||||
*/
|
||||
SCHED_FEAT(LAST_BUDDY, true)
|
||||
|
||||
/*
|
||||
* Consider buddies to be cache hot, decreases the likeliness of a
|
||||
* cache buddy being migrated away, increases cache locality.
|
||||
@ -93,8 +86,3 @@ SCHED_FEAT(UTIL_EST, true)
|
||||
SCHED_FEAT(UTIL_EST_FASTUP, true)
|
||||
|
||||
SCHED_FEAT(LATENCY_WARN, false)
|
||||
|
||||
SCHED_FEAT(ALT_PERIOD, true)
|
||||
SCHED_FEAT(BASE_SLICE, true)
|
||||
|
||||
SCHED_FEAT(EEVDF, true)
|
||||
|
@ -570,8 +570,6 @@ struct cfs_rq {
|
||||
*/
|
||||
struct sched_entity *curr;
|
||||
struct sched_entity *next;
|
||||
struct sched_entity *last;
|
||||
struct sched_entity *skip;
|
||||
|
||||
#ifdef CONFIG_SCHED_DEBUG
|
||||
unsigned int nr_spread_over;
|
||||
@ -2508,9 +2506,6 @@ extern const_debug unsigned int sysctl_sched_migration_cost;
|
||||
extern unsigned int sysctl_sched_min_granularity;
|
||||
|
||||
#ifdef CONFIG_SCHED_DEBUG
|
||||
extern unsigned int sysctl_sched_latency;
|
||||
extern unsigned int sysctl_sched_idle_min_granularity;
|
||||
extern unsigned int sysctl_sched_wakeup_granularity;
|
||||
extern int sysctl_resched_latency_warn_ms;
|
||||
extern int sysctl_resched_latency_warn_once;
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user