gve: Add support for raw addressing in the tx path
During TX, skbs' data addresses are dma_map'ed and passed to the NIC. This means that the device can perform DMA directly from these addresses and the driver does not have to copy the buffer content into pre-allocated buffers/qpls (as in qpl mode). Reviewed-by: Yangchun Fu <yangchun@google.com> Signed-off-by: Catherine Sullivan <csully@google.com> Signed-off-by: David Awogbemila <awogbemila@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
parent
02b0e0c18b
commit
6f007c6486
@ -112,12 +112,20 @@ struct gve_tx_iovec {
|
||||
u32 iov_padding; /* padding associated with this segment */
|
||||
};
|
||||
|
||||
struct gve_tx_dma_buf {
|
||||
DEFINE_DMA_UNMAP_ADDR(dma);
|
||||
DEFINE_DMA_UNMAP_LEN(len);
|
||||
};
|
||||
|
||||
/* Tracks the memory in the fifo occupied by the skb. Mapped 1:1 to a desc
|
||||
* ring entry but only used for a pkt_desc not a seg_desc
|
||||
*/
|
||||
struct gve_tx_buffer_state {
|
||||
struct sk_buff *skb; /* skb for this pkt */
|
||||
struct gve_tx_iovec iov[GVE_TX_MAX_IOVEC]; /* segments of this pkt */
|
||||
union {
|
||||
struct gve_tx_iovec iov[GVE_TX_MAX_IOVEC]; /* segments of this pkt */
|
||||
struct gve_tx_dma_buf buf;
|
||||
};
|
||||
};
|
||||
|
||||
/* A TX buffer - each queue has one */
|
||||
@ -140,13 +148,17 @@ struct gve_tx_ring {
|
||||
__be32 last_nic_done ____cacheline_aligned; /* NIC tail pointer */
|
||||
u64 pkt_done; /* free-running - total packets completed */
|
||||
u64 bytes_done; /* free-running - total bytes completed */
|
||||
u64 dropped_pkt; /* free-running - total packets dropped */
|
||||
u64 dma_mapping_error; /* count of dma mapping errors */
|
||||
|
||||
/* Cacheline 2 -- Read-mostly fields */
|
||||
union gve_tx_desc *desc ____cacheline_aligned;
|
||||
struct gve_tx_buffer_state *info; /* Maps 1:1 to a desc */
|
||||
struct netdev_queue *netdev_txq;
|
||||
struct gve_queue_resources *q_resources; /* head and tail pointer idx */
|
||||
struct device *dev;
|
||||
u32 mask; /* masks req and done down to queue size */
|
||||
u8 raw_addressing; /* use raw_addressing? */
|
||||
|
||||
/* Slow-path fields */
|
||||
u32 q_num ____cacheline_aligned; /* queue idx */
|
||||
@ -442,7 +454,7 @@ static inline u32 gve_rx_idx_to_ntfy(struct gve_priv *priv, u32 queue_idx)
|
||||
*/
|
||||
static inline u32 gve_num_tx_qpls(struct gve_priv *priv)
|
||||
{
|
||||
return priv->tx_cfg.num_queues;
|
||||
return priv->raw_addressing ? 0 : priv->tx_cfg.num_queues;
|
||||
}
|
||||
|
||||
/* Returns the number of rx queue page lists
|
||||
|
@ -369,8 +369,10 @@ static int gve_adminq_create_tx_queue(struct gve_priv *priv, u32 queue_index)
|
||||
{
|
||||
struct gve_tx_ring *tx = &priv->tx[queue_index];
|
||||
union gve_adminq_command cmd;
|
||||
u32 qpl_id;
|
||||
int err;
|
||||
|
||||
qpl_id = priv->raw_addressing ? GVE_RAW_ADDRESSING_QPL_ID : tx->tx_fifo.qpl->id;
|
||||
memset(&cmd, 0, sizeof(cmd));
|
||||
cmd.opcode = cpu_to_be32(GVE_ADMINQ_CREATE_TX_QUEUE);
|
||||
cmd.create_tx_queue = (struct gve_adminq_create_tx_queue) {
|
||||
@ -379,7 +381,7 @@ static int gve_adminq_create_tx_queue(struct gve_priv *priv, u32 queue_index)
|
||||
.queue_resources_addr =
|
||||
cpu_to_be64(tx->q_resources_bus),
|
||||
.tx_ring_addr = cpu_to_be64(tx->bus),
|
||||
.queue_page_list_id = cpu_to_be32(tx->tx_fifo.qpl->id),
|
||||
.queue_page_list_id = cpu_to_be32(qpl_id),
|
||||
.ntfy_id = cpu_to_be32(tx->ntfy_id),
|
||||
};
|
||||
|
||||
|
@ -16,9 +16,11 @@
|
||||
* Base addresses encoded in seg_addr are not assumed to be physical
|
||||
* addresses. The ring format assumes these come from some linear address
|
||||
* space. This could be physical memory, kernel virtual memory, user virtual
|
||||
* memory. gVNIC uses lists of registered pages. Each queue is assumed
|
||||
* to be associated with a single such linear address space to ensure a
|
||||
* consistent meaning for seg_addrs posted to its rings.
|
||||
* memory.
|
||||
* If raw dma addressing is not supported then gVNIC uses lists of registered
|
||||
* pages. Each queue is assumed to be associated with a single such linear
|
||||
* address space to ensure a consistent meaning for seg_addrs posted to its
|
||||
* rings.
|
||||
*/
|
||||
|
||||
struct gve_tx_pkt_desc {
|
||||
|
@ -51,6 +51,7 @@ static const char gve_gstrings_rx_stats[][ETH_GSTRING_LEN] = {
|
||||
static const char gve_gstrings_tx_stats[][ETH_GSTRING_LEN] = {
|
||||
"tx_posted_desc[%u]", "tx_completed_desc[%u]", "tx_bytes[%u]",
|
||||
"tx_wake[%u]", "tx_stop[%u]", "tx_event_counter[%u]",
|
||||
"tx_dma_mapping_error[%u]",
|
||||
};
|
||||
|
||||
static const char gve_gstrings_adminq_stats[][ETH_GSTRING_LEN] = {
|
||||
@ -323,6 +324,7 @@ gve_get_ethtool_stats(struct net_device *netdev,
|
||||
data[i++] = tx->stop_queue;
|
||||
data[i++] = be32_to_cpu(gve_tx_load_event_counter(priv,
|
||||
tx));
|
||||
data[i++] = tx->dma_mapping_error;
|
||||
/* stats from NIC */
|
||||
if (skip_nic_stats) {
|
||||
/* skip NIC tx stats */
|
||||
|
@ -158,9 +158,11 @@ static void gve_tx_free_ring(struct gve_priv *priv, int idx)
|
||||
tx->q_resources, tx->q_resources_bus);
|
||||
tx->q_resources = NULL;
|
||||
|
||||
gve_tx_fifo_release(priv, &tx->tx_fifo);
|
||||
gve_unassign_qpl(priv, tx->tx_fifo.qpl->id);
|
||||
tx->tx_fifo.qpl = NULL;
|
||||
if (!tx->raw_addressing) {
|
||||
gve_tx_fifo_release(priv, &tx->tx_fifo);
|
||||
gve_unassign_qpl(priv, tx->tx_fifo.qpl->id);
|
||||
tx->tx_fifo.qpl = NULL;
|
||||
}
|
||||
|
||||
bytes = sizeof(*tx->desc) * slots;
|
||||
dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
|
||||
@ -206,11 +208,15 @@ static int gve_tx_alloc_ring(struct gve_priv *priv, int idx)
|
||||
if (!tx->desc)
|
||||
goto abort_with_info;
|
||||
|
||||
tx->tx_fifo.qpl = gve_assign_tx_qpl(priv);
|
||||
tx->raw_addressing = priv->raw_addressing;
|
||||
tx->dev = &priv->pdev->dev;
|
||||
if (!tx->raw_addressing) {
|
||||
tx->tx_fifo.qpl = gve_assign_tx_qpl(priv);
|
||||
|
||||
/* map Tx FIFO */
|
||||
if (gve_tx_fifo_init(priv, &tx->tx_fifo))
|
||||
goto abort_with_desc;
|
||||
/* map Tx FIFO */
|
||||
if (gve_tx_fifo_init(priv, &tx->tx_fifo))
|
||||
goto abort_with_desc;
|
||||
}
|
||||
|
||||
tx->q_resources =
|
||||
dma_alloc_coherent(hdev,
|
||||
@ -228,7 +234,8 @@ static int gve_tx_alloc_ring(struct gve_priv *priv, int idx)
|
||||
return 0;
|
||||
|
||||
abort_with_fifo:
|
||||
gve_tx_fifo_release(priv, &tx->tx_fifo);
|
||||
if (!tx->raw_addressing)
|
||||
gve_tx_fifo_release(priv, &tx->tx_fifo);
|
||||
abort_with_desc:
|
||||
dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
|
||||
tx->desc = NULL;
|
||||
@ -301,27 +308,47 @@ static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx,
|
||||
return bytes;
|
||||
}
|
||||
|
||||
/* The most descriptors we could need are 3 - 1 for the headers, 1 for
|
||||
* the beginning of the payload at the end of the FIFO, and 1 if the
|
||||
* payload wraps to the beginning of the FIFO.
|
||||
/* The most descriptors we could need is MAX_SKB_FRAGS + 3 : 1 for each skb frag,
|
||||
* +1 for the skb linear portion, +1 for when tcp hdr needs to be in separate descriptor,
|
||||
* and +1 if the payload wraps to the beginning of the FIFO.
|
||||
*/
|
||||
#define MAX_TX_DESC_NEEDED 3
|
||||
#define MAX_TX_DESC_NEEDED (MAX_SKB_FRAGS + 3)
|
||||
static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info)
|
||||
{
|
||||
if (info->skb) {
|
||||
dma_unmap_single(dev, dma_unmap_addr(&info->buf, dma),
|
||||
dma_unmap_len(&info->buf, len),
|
||||
DMA_TO_DEVICE);
|
||||
dma_unmap_len_set(&info->buf, len, 0);
|
||||
} else {
|
||||
dma_unmap_page(dev, dma_unmap_addr(&info->buf, dma),
|
||||
dma_unmap_len(&info->buf, len),
|
||||
DMA_TO_DEVICE);
|
||||
dma_unmap_len_set(&info->buf, len, 0);
|
||||
}
|
||||
}
|
||||
|
||||
/* Check if sufficient resources (descriptor ring space, FIFO space) are
|
||||
* available to transmit the given number of bytes.
|
||||
*/
|
||||
static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required)
|
||||
{
|
||||
return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED &&
|
||||
gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required));
|
||||
bool can_alloc = true;
|
||||
|
||||
if (!tx->raw_addressing)
|
||||
can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required);
|
||||
|
||||
return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc);
|
||||
}
|
||||
|
||||
/* Stops the queue if the skb cannot be transmitted. */
|
||||
static int gve_maybe_stop_tx(struct gve_tx_ring *tx, struct sk_buff *skb)
|
||||
{
|
||||
int bytes_required;
|
||||
int bytes_required = 0;
|
||||
|
||||
if (!tx->raw_addressing)
|
||||
bytes_required = gve_skb_fifo_bytes_required(tx, skb);
|
||||
|
||||
bytes_required = gve_skb_fifo_bytes_required(tx, skb);
|
||||
if (likely(gve_can_tx(tx, bytes_required)))
|
||||
return 0;
|
||||
|
||||
@ -395,17 +422,13 @@ static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses,
|
||||
{
|
||||
u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE;
|
||||
u64 first_page = iov_offset / PAGE_SIZE;
|
||||
dma_addr_t dma;
|
||||
u64 page;
|
||||
|
||||
for (page = first_page; page <= last_page; page++) {
|
||||
dma = page_buses[page];
|
||||
dma_sync_single_for_device(dev, dma, PAGE_SIZE, DMA_TO_DEVICE);
|
||||
}
|
||||
for (page = first_page; page <= last_page; page++)
|
||||
dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE);
|
||||
}
|
||||
|
||||
static int gve_tx_add_skb(struct gve_tx_ring *tx, struct sk_buff *skb,
|
||||
struct device *dev)
|
||||
static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb)
|
||||
{
|
||||
int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset;
|
||||
union gve_tx_desc *pkt_desc, *seg_desc;
|
||||
@ -447,7 +470,7 @@ static int gve_tx_add_skb(struct gve_tx_ring *tx, struct sk_buff *skb,
|
||||
skb_copy_bits(skb, 0,
|
||||
tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset,
|
||||
hlen);
|
||||
gve_dma_sync_for_device(dev, tx->tx_fifo.qpl->page_buses,
|
||||
gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
|
||||
info->iov[hdr_nfrags - 1].iov_offset,
|
||||
info->iov[hdr_nfrags - 1].iov_len);
|
||||
copy_offset = hlen;
|
||||
@ -463,7 +486,7 @@ static int gve_tx_add_skb(struct gve_tx_ring *tx, struct sk_buff *skb,
|
||||
skb_copy_bits(skb, copy_offset,
|
||||
tx->tx_fifo.base + info->iov[i].iov_offset,
|
||||
info->iov[i].iov_len);
|
||||
gve_dma_sync_for_device(dev, tx->tx_fifo.qpl->page_buses,
|
||||
gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
|
||||
info->iov[i].iov_offset,
|
||||
info->iov[i].iov_len);
|
||||
copy_offset += info->iov[i].iov_len;
|
||||
@ -472,6 +495,94 @@ static int gve_tx_add_skb(struct gve_tx_ring *tx, struct sk_buff *skb,
|
||||
return 1 + payload_nfrags;
|
||||
}
|
||||
|
||||
static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx,
|
||||
struct sk_buff *skb)
|
||||
{
|
||||
const struct skb_shared_info *shinfo = skb_shinfo(skb);
|
||||
int hlen, payload_nfrags, l4_hdr_offset;
|
||||
union gve_tx_desc *pkt_desc, *seg_desc;
|
||||
struct gve_tx_buffer_state *info;
|
||||
bool is_gso = skb_is_gso(skb);
|
||||
u32 idx = tx->req & tx->mask;
|
||||
struct gve_tx_dma_buf *buf;
|
||||
u64 addr;
|
||||
u32 len;
|
||||
int i;
|
||||
|
||||
info = &tx->info[idx];
|
||||
pkt_desc = &tx->desc[idx];
|
||||
|
||||
l4_hdr_offset = skb_checksum_start_offset(skb);
|
||||
/* If the skb is gso, then we want only up to the tcp header in the first segment
|
||||
* to efficiently replicate on each segment otherwise we want the linear portion
|
||||
* of the skb (which will contain the checksum because skb->csum_start and
|
||||
* skb->csum_offset are given relative to skb->head) in the first segment.
|
||||
*/
|
||||
hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb);
|
||||
len = skb_headlen(skb);
|
||||
|
||||
info->skb = skb;
|
||||
|
||||
addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE);
|
||||
if (unlikely(dma_mapping_error(tx->dev, addr))) {
|
||||
tx->dma_mapping_error++;
|
||||
goto drop;
|
||||
}
|
||||
buf = &info->buf;
|
||||
dma_unmap_len_set(buf, len, len);
|
||||
dma_unmap_addr_set(buf, dma, addr);
|
||||
|
||||
payload_nfrags = shinfo->nr_frags;
|
||||
if (hlen < len) {
|
||||
/* For gso the rest of the linear portion of the skb needs to
|
||||
* be in its own descriptor.
|
||||
*/
|
||||
payload_nfrags++;
|
||||
gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset,
|
||||
1 + payload_nfrags, hlen, addr);
|
||||
|
||||
len -= hlen;
|
||||
addr += hlen;
|
||||
idx = (tx->req + 1) & tx->mask;
|
||||
seg_desc = &tx->desc[idx];
|
||||
gve_tx_fill_seg_desc(seg_desc, skb, is_gso, len, addr);
|
||||
} else {
|
||||
gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset,
|
||||
1 + payload_nfrags, hlen, addr);
|
||||
}
|
||||
|
||||
for (i = 0; i < shinfo->nr_frags; i++) {
|
||||
const skb_frag_t *frag = &shinfo->frags[i];
|
||||
|
||||
idx = (idx + 1) & tx->mask;
|
||||
seg_desc = &tx->desc[idx];
|
||||
len = skb_frag_size(frag);
|
||||
addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE);
|
||||
if (unlikely(dma_mapping_error(tx->dev, addr))) {
|
||||
tx->dma_mapping_error++;
|
||||
goto unmap_drop;
|
||||
}
|
||||
buf = &tx->info[idx].buf;
|
||||
tx->info[idx].skb = NULL;
|
||||
dma_unmap_len_set(buf, len, len);
|
||||
dma_unmap_addr_set(buf, dma, addr);
|
||||
|
||||
gve_tx_fill_seg_desc(seg_desc, skb, is_gso, len, addr);
|
||||
}
|
||||
|
||||
return 1 + payload_nfrags;
|
||||
|
||||
unmap_drop:
|
||||
i += (payload_nfrags == shinfo->nr_frags ? 1 : 2);
|
||||
while (i--) {
|
||||
idx--;
|
||||
gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]);
|
||||
}
|
||||
drop:
|
||||
tx->dropped_pkt++;
|
||||
return 0;
|
||||
}
|
||||
|
||||
netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev)
|
||||
{
|
||||
struct gve_priv *priv = netdev_priv(dev);
|
||||
@ -490,17 +601,26 @@ netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev)
|
||||
gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
|
||||
return NETDEV_TX_BUSY;
|
||||
}
|
||||
nsegs = gve_tx_add_skb(tx, skb, &priv->pdev->dev);
|
||||
if (tx->raw_addressing)
|
||||
nsegs = gve_tx_add_skb_no_copy(priv, tx, skb);
|
||||
else
|
||||
nsegs = gve_tx_add_skb_copy(priv, tx, skb);
|
||||
|
||||
netdev_tx_sent_queue(tx->netdev_txq, skb->len);
|
||||
skb_tx_timestamp(skb);
|
||||
|
||||
/* give packets to NIC */
|
||||
tx->req += nsegs;
|
||||
/* If the packet is getting sent, we need to update the skb */
|
||||
if (nsegs) {
|
||||
netdev_tx_sent_queue(tx->netdev_txq, skb->len);
|
||||
skb_tx_timestamp(skb);
|
||||
tx->req += nsegs;
|
||||
} else {
|
||||
dev_kfree_skb_any(skb);
|
||||
}
|
||||
|
||||
if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
|
||||
return NETDEV_TX_OK;
|
||||
|
||||
/* Give packets to NIC. Even if this packet failed to send the doorbell
|
||||
* might need to be rung because of xmit_more.
|
||||
*/
|
||||
gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
|
||||
return NETDEV_TX_OK;
|
||||
}
|
||||
@ -525,24 +645,29 @@ static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
|
||||
info = &tx->info[idx];
|
||||
skb = info->skb;
|
||||
|
||||
/* Unmap the buffer */
|
||||
if (tx->raw_addressing)
|
||||
gve_tx_unmap_buf(tx->dev, info);
|
||||
tx->done++;
|
||||
/* Mark as free */
|
||||
if (skb) {
|
||||
info->skb = NULL;
|
||||
bytes += skb->len;
|
||||
pkts++;
|
||||
dev_consume_skb_any(skb);
|
||||
if (tx->raw_addressing)
|
||||
continue;
|
||||
/* FIFO free */
|
||||
for (i = 0; i < ARRAY_SIZE(info->iov); i++) {
|
||||
space_freed += info->iov[i].iov_len +
|
||||
info->iov[i].iov_padding;
|
||||
space_freed += info->iov[i].iov_len + info->iov[i].iov_padding;
|
||||
info->iov[i].iov_len = 0;
|
||||
info->iov[i].iov_padding = 0;
|
||||
}
|
||||
}
|
||||
tx->done++;
|
||||
}
|
||||
|
||||
gve_tx_free_fifo(&tx->tx_fifo, space_freed);
|
||||
if (!tx->raw_addressing)
|
||||
gve_tx_free_fifo(&tx->tx_fifo, space_freed);
|
||||
u64_stats_update_begin(&tx->statss);
|
||||
tx->bytes_done += bytes;
|
||||
tx->pkt_done += pkts;
|
||||
|
Loading…
x
Reference in New Issue
Block a user