PCI: epf-mhi: Add eDMA support

Add support for Embedded DMA (eDMA) available in the DesignWare PCIe IP
to transfer the MHI buffers between the host and the endpoint. The eDMA
use helps achieve greater throughput as the transfers are offloaded from
CPUs.

For differentiating the iATU and eDMA APIs, the pci_epf_mhi_{read/write}
APIs are renamed to pci_epf_mhi_iatu_{read/write} and separate eDMA
specific APIs pci_epf_mhi_edma_{read/write} are introduced.

Platforms that require eDMA support can pass the MHI_EPF_USE_DMA flag
through pci_epf_mhi_ep_info.

[kwilczynski: commit log]
Link: https://lore.kernel.org/linux-pci/20230717065459.14138-5-manivannan.sadhasivam@linaro.org
Signed-off-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Signed-off-by: Krzysztof Wilczyński <kwilczynski@kernel.org>
This commit is contained in:
Manivannan Sadhasivam 2023-07-17 12:24:56 +05:30 committed by Krzysztof Wilczyński
parent ff8d92038c
commit 7b99aaadda
No known key found for this signature in database
GPG Key ID: 7C64768D3DE334E7

View File

@ -6,8 +6,10 @@
* Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
*/ */
#include <linux/dmaengine.h>
#include <linux/mhi_ep.h> #include <linux/mhi_ep.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/pci-epc.h> #include <linux/pci-epc.h>
#include <linux/pci-epf.h> #include <linux/pci-epf.h>
@ -16,6 +18,9 @@
#define to_epf_mhi(cntrl) container_of(cntrl, struct pci_epf_mhi, cntrl) #define to_epf_mhi(cntrl) container_of(cntrl, struct pci_epf_mhi, cntrl)
/* Platform specific flags */
#define MHI_EPF_USE_DMA BIT(0)
struct pci_epf_mhi_ep_info { struct pci_epf_mhi_ep_info {
const struct mhi_ep_cntrl_config *config; const struct mhi_ep_cntrl_config *config;
struct pci_epf_header *epf_header; struct pci_epf_header *epf_header;
@ -23,6 +28,7 @@ struct pci_epf_mhi_ep_info {
u32 epf_flags; u32 epf_flags;
u32 msi_count; u32 msi_count;
u32 mru; u32 mru;
u32 flags;
}; };
#define MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, direction) \ #define MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, direction) \
@ -99,6 +105,8 @@ struct pci_epf_mhi {
struct mutex lock; struct mutex lock;
void __iomem *mmio; void __iomem *mmio;
resource_size_t mmio_phys; resource_size_t mmio_phys;
struct dma_chan *dma_chan_tx;
struct dma_chan *dma_chan_rx;
u32 mmio_size; u32 mmio_size;
int irq; int irq;
}; };
@ -184,8 +192,8 @@ static void pci_epf_mhi_raise_irq(struct mhi_ep_cntrl *mhi_cntrl, u32 vector)
vector + 1); vector + 1);
} }
static int pci_epf_mhi_read_from_host(struct mhi_ep_cntrl *mhi_cntrl, u64 from, static int pci_epf_mhi_iatu_read(struct mhi_ep_cntrl *mhi_cntrl, u64 from,
void *to, size_t size) void *to, size_t size)
{ {
struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
size_t offset = get_align_offset(epf_mhi, from); size_t offset = get_align_offset(epf_mhi, from);
@ -212,8 +220,8 @@ static int pci_epf_mhi_read_from_host(struct mhi_ep_cntrl *mhi_cntrl, u64 from,
return 0; return 0;
} }
static int pci_epf_mhi_write_to_host(struct mhi_ep_cntrl *mhi_cntrl, static int pci_epf_mhi_iatu_write(struct mhi_ep_cntrl *mhi_cntrl,
void *from, u64 to, size_t size) void *from, u64 to, size_t size)
{ {
struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl); struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
size_t offset = get_align_offset(epf_mhi, to); size_t offset = get_align_offset(epf_mhi, to);
@ -240,6 +248,200 @@ static int pci_epf_mhi_write_to_host(struct mhi_ep_cntrl *mhi_cntrl,
return 0; return 0;
} }
static void pci_epf_mhi_dma_callback(void *param)
{
complete(param);
}
static int pci_epf_mhi_edma_read(struct mhi_ep_cntrl *mhi_cntrl, u64 from,
void *to, size_t size)
{
struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
struct dma_chan *chan = epf_mhi->dma_chan_rx;
struct device *dev = &epf_mhi->epf->dev;
DECLARE_COMPLETION_ONSTACK(complete);
struct dma_async_tx_descriptor *desc;
struct dma_slave_config config = {};
dma_cookie_t cookie;
dma_addr_t dst_addr;
int ret;
mutex_lock(&epf_mhi->lock);
config.direction = DMA_DEV_TO_MEM;
config.src_addr = from;
ret = dmaengine_slave_config(chan, &config);
if (ret) {
dev_err(dev, "Failed to configure DMA channel\n");
goto err_unlock;
}
dst_addr = dma_map_single(dma_dev, to, size, DMA_FROM_DEVICE);
ret = dma_mapping_error(dma_dev, dst_addr);
if (ret) {
dev_err(dev, "Failed to map remote memory\n");
goto err_unlock;
}
desc = dmaengine_prep_slave_single(chan, dst_addr, size, DMA_DEV_TO_MEM,
DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
if (!desc) {
dev_err(dev, "Failed to prepare DMA\n");
ret = -EIO;
goto err_unmap;
}
desc->callback = pci_epf_mhi_dma_callback;
desc->callback_param = &complete;
cookie = dmaengine_submit(desc);
ret = dma_submit_error(cookie);
if (ret) {
dev_err(dev, "Failed to do DMA submit\n");
goto err_unmap;
}
dma_async_issue_pending(chan);
ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000));
if (!ret) {
dev_err(dev, "DMA transfer timeout\n");
dmaengine_terminate_sync(chan);
ret = -ETIMEDOUT;
}
err_unmap:
dma_unmap_single(dma_dev, dst_addr, size, DMA_FROM_DEVICE);
err_unlock:
mutex_unlock(&epf_mhi->lock);
return ret;
}
static int pci_epf_mhi_edma_write(struct mhi_ep_cntrl *mhi_cntrl, void *from,
u64 to, size_t size)
{
struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
struct dma_chan *chan = epf_mhi->dma_chan_tx;
struct device *dev = &epf_mhi->epf->dev;
DECLARE_COMPLETION_ONSTACK(complete);
struct dma_async_tx_descriptor *desc;
struct dma_slave_config config = {};
dma_cookie_t cookie;
dma_addr_t src_addr;
int ret;
mutex_lock(&epf_mhi->lock);
config.direction = DMA_MEM_TO_DEV;
config.dst_addr = to;
ret = dmaengine_slave_config(chan, &config);
if (ret) {
dev_err(dev, "Failed to configure DMA channel\n");
goto err_unlock;
}
src_addr = dma_map_single(dma_dev, from, size, DMA_TO_DEVICE);
ret = dma_mapping_error(dma_dev, src_addr);
if (ret) {
dev_err(dev, "Failed to map remote memory\n");
goto err_unlock;
}
desc = dmaengine_prep_slave_single(chan, src_addr, size, DMA_MEM_TO_DEV,
DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
if (!desc) {
dev_err(dev, "Failed to prepare DMA\n");
ret = -EIO;
goto err_unmap;
}
desc->callback = pci_epf_mhi_dma_callback;
desc->callback_param = &complete;
cookie = dmaengine_submit(desc);
ret = dma_submit_error(cookie);
if (ret) {
dev_err(dev, "Failed to do DMA submit\n");
goto err_unmap;
}
dma_async_issue_pending(chan);
ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000));
if (!ret) {
dev_err(dev, "DMA transfer timeout\n");
dmaengine_terminate_sync(chan);
ret = -ETIMEDOUT;
}
err_unmap:
dma_unmap_single(dma_dev, src_addr, size, DMA_FROM_DEVICE);
err_unlock:
mutex_unlock(&epf_mhi->lock);
return ret;
}
struct epf_dma_filter {
struct device *dev;
u32 dma_mask;
};
static bool pci_epf_mhi_filter(struct dma_chan *chan, void *node)
{
struct epf_dma_filter *filter = node;
struct dma_slave_caps caps;
memset(&caps, 0, sizeof(caps));
dma_get_slave_caps(chan, &caps);
return chan->device->dev == filter->dev && filter->dma_mask &
caps.directions;
}
static int pci_epf_mhi_dma_init(struct pci_epf_mhi *epf_mhi)
{
struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
struct device *dev = &epf_mhi->epf->dev;
struct epf_dma_filter filter;
dma_cap_mask_t mask;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
filter.dev = dma_dev;
filter.dma_mask = BIT(DMA_MEM_TO_DEV);
epf_mhi->dma_chan_tx = dma_request_channel(mask, pci_epf_mhi_filter,
&filter);
if (IS_ERR_OR_NULL(epf_mhi->dma_chan_tx)) {
dev_err(dev, "Failed to request tx channel\n");
return -ENODEV;
}
filter.dma_mask = BIT(DMA_DEV_TO_MEM);
epf_mhi->dma_chan_rx = dma_request_channel(mask, pci_epf_mhi_filter,
&filter);
if (IS_ERR_OR_NULL(epf_mhi->dma_chan_rx)) {
dev_err(dev, "Failed to request rx channel\n");
dma_release_channel(epf_mhi->dma_chan_tx);
epf_mhi->dma_chan_tx = NULL;
return -ENODEV;
}
return 0;
}
static void pci_epf_mhi_dma_deinit(struct pci_epf_mhi *epf_mhi)
{
dma_release_channel(epf_mhi->dma_chan_tx);
dma_release_channel(epf_mhi->dma_chan_rx);
epf_mhi->dma_chan_tx = NULL;
epf_mhi->dma_chan_rx = NULL;
}
static int pci_epf_mhi_core_init(struct pci_epf *epf) static int pci_epf_mhi_core_init(struct pci_epf *epf)
{ {
struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf); struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
@ -289,6 +491,14 @@ static int pci_epf_mhi_link_up(struct pci_epf *epf)
struct device *dev = &epf->dev; struct device *dev = &epf->dev;
int ret; int ret;
if (info->flags & MHI_EPF_USE_DMA) {
ret = pci_epf_mhi_dma_init(epf_mhi);
if (ret) {
dev_err(dev, "Failed to initialize DMA: %d\n", ret);
return ret;
}
}
mhi_cntrl->mmio = epf_mhi->mmio; mhi_cntrl->mmio = epf_mhi->mmio;
mhi_cntrl->irq = epf_mhi->irq; mhi_cntrl->irq = epf_mhi->irq;
mhi_cntrl->mru = info->mru; mhi_cntrl->mru = info->mru;
@ -298,13 +508,20 @@ static int pci_epf_mhi_link_up(struct pci_epf *epf)
mhi_cntrl->raise_irq = pci_epf_mhi_raise_irq; mhi_cntrl->raise_irq = pci_epf_mhi_raise_irq;
mhi_cntrl->alloc_map = pci_epf_mhi_alloc_map; mhi_cntrl->alloc_map = pci_epf_mhi_alloc_map;
mhi_cntrl->unmap_free = pci_epf_mhi_unmap_free; mhi_cntrl->unmap_free = pci_epf_mhi_unmap_free;
mhi_cntrl->read_from_host = pci_epf_mhi_read_from_host; if (info->flags & MHI_EPF_USE_DMA) {
mhi_cntrl->write_to_host = pci_epf_mhi_write_to_host; mhi_cntrl->read_from_host = pci_epf_mhi_edma_read;
mhi_cntrl->write_to_host = pci_epf_mhi_edma_write;
} else {
mhi_cntrl->read_from_host = pci_epf_mhi_iatu_read;
mhi_cntrl->write_to_host = pci_epf_mhi_iatu_write;
}
/* Register the MHI EP controller */ /* Register the MHI EP controller */
ret = mhi_ep_register_controller(mhi_cntrl, info->config); ret = mhi_ep_register_controller(mhi_cntrl, info->config);
if (ret) { if (ret) {
dev_err(dev, "Failed to register MHI EP controller: %d\n", ret); dev_err(dev, "Failed to register MHI EP controller: %d\n", ret);
if (info->flags & MHI_EPF_USE_DMA)
pci_epf_mhi_dma_deinit(epf_mhi);
return ret; return ret;
} }
@ -314,10 +531,13 @@ static int pci_epf_mhi_link_up(struct pci_epf *epf)
static int pci_epf_mhi_link_down(struct pci_epf *epf) static int pci_epf_mhi_link_down(struct pci_epf *epf)
{ {
struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf); struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl; struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
if (mhi_cntrl->mhi_dev) { if (mhi_cntrl->mhi_dev) {
mhi_ep_power_down(mhi_cntrl); mhi_ep_power_down(mhi_cntrl);
if (info->flags & MHI_EPF_USE_DMA)
pci_epf_mhi_dma_deinit(epf_mhi);
mhi_ep_unregister_controller(mhi_cntrl); mhi_ep_unregister_controller(mhi_cntrl);
} }
@ -327,6 +547,7 @@ static int pci_epf_mhi_link_down(struct pci_epf *epf)
static int pci_epf_mhi_bme(struct pci_epf *epf) static int pci_epf_mhi_bme(struct pci_epf *epf)
{ {
struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf); struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl; struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
struct device *dev = &epf->dev; struct device *dev = &epf->dev;
int ret; int ret;
@ -339,6 +560,8 @@ static int pci_epf_mhi_bme(struct pci_epf *epf)
ret = mhi_ep_power_up(mhi_cntrl); ret = mhi_ep_power_up(mhi_cntrl);
if (ret) { if (ret) {
dev_err(dev, "Failed to power up MHI EP: %d\n", ret); dev_err(dev, "Failed to power up MHI EP: %d\n", ret);
if (info->flags & MHI_EPF_USE_DMA)
pci_epf_mhi_dma_deinit(epf_mhi);
mhi_ep_unregister_controller(mhi_cntrl); mhi_ep_unregister_controller(mhi_cntrl);
} }
} }
@ -389,6 +612,8 @@ static void pci_epf_mhi_unbind(struct pci_epf *epf)
*/ */
if (mhi_cntrl->mhi_dev) { if (mhi_cntrl->mhi_dev) {
mhi_ep_power_down(mhi_cntrl); mhi_ep_power_down(mhi_cntrl);
if (info->flags & MHI_EPF_USE_DMA)
pci_epf_mhi_dma_deinit(epf_mhi);
mhi_ep_unregister_controller(mhi_cntrl); mhi_ep_unregister_controller(mhi_cntrl);
} }