mt76: add driver code for MT76x2e

MT76x2e is a 2x2 PCIe 802.11ac chipset by MediaTek. This driver has full
support for AP, station, ad-hoc, mesh and monitor mode.

Signed-off-by: Felix Fietkau <nbd@nbd.name>
Signed-off-by: Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
Signed-off-by: Kalle Valo <kvalo@codeaurora.org>
This commit is contained in:
Felix Fietkau 2017-11-21 10:50:53 +01:00 committed by Kalle Valo
parent 17f1de56df
commit 7bc04215a6
25 changed files with 6943 additions and 0 deletions

View File

@ -11,4 +11,5 @@ config WLAN_VENDOR_MEDIATEK
if WLAN_VENDOR_MEDIATEK
source "drivers/net/wireless/mediatek/mt7601u/Kconfig"
source "drivers/net/wireless/mediatek/mt76/Kconfig"
endif # WLAN_VENDOR_MEDIATEK

View File

@ -1 +1,2 @@
obj-$(CONFIG_MT7601U) += mt7601u/
obj-$(CONFIG_MT76_CORE) += mt76/

View File

@ -0,0 +1,10 @@
config MT76_CORE
tristate
config MT76x2E
tristate "MediaTek MT76x2E (PCIe) support"
select MT76_CORE
depends on MAC80211
depends on PCI
---help---
This adds support for MT7612/MT7602/MT7662-based wireless PCIe devices.

View File

@ -0,0 +1,15 @@
obj-$(CONFIG_MT76_CORE) += mt76.o
obj-$(CONFIG_MT76x2E) += mt76x2e.o
mt76-y := \
mmio.o util.o trace.o dma.o mac80211.o debugfs.o eeprom.o tx.o
CFLAGS_trace.o := -I$(src)
mt76x2e-y := \
mt76x2_pci.o mt76x2_dma.o \
mt76x2_main.o mt76x2_init.o mt76x2_debugfs.o mt76x2_tx.o \
mt76x2_core.o mt76x2_mac.o mt76x2_eeprom.o mt76x2_mcu.o mt76x2_phy.o \
mt76x2_dfs.o mt76x2_trace.o
CFLAGS_mt76x2_trace.o := -I$(src)

View File

@ -0,0 +1,227 @@
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef __MT76x2_H
#define __MT76x2_H
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/spinlock.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <linux/bitops.h>
#include <linux/kfifo.h>
#define MT7662_FIRMWARE "mt7662.bin"
#define MT7662_ROM_PATCH "mt7662_rom_patch.bin"
#define MT7662_EEPROM_SIZE 512
#define MT76x2_RX_RING_SIZE 256
#define MT_RX_HEADROOM 32
#define MT_MAX_CHAINS 2
#define MT_CALIBRATE_INTERVAL HZ
#include "mt76.h"
#include "mt76x2_regs.h"
#include "mt76x2_mac.h"
#include "mt76x2_dfs.h"
struct mt76x2_mcu {
struct mutex mutex;
wait_queue_head_t wait;
struct sk_buff_head res_q;
u32 msg_seq;
};
struct mt76x2_rx_freq_cal {
s8 high_gain[MT_MAX_CHAINS];
s8 rssi_offset[MT_MAX_CHAINS];
s8 lna_gain;
u32 mcu_gain;
};
struct mt76x2_calibration {
struct mt76x2_rx_freq_cal rx;
u8 agc_gain_init[MT_MAX_CHAINS];
u8 agc_gain_cur[MT_MAX_CHAINS];
int avg_rssi[MT_MAX_CHAINS];
int avg_rssi_all;
s8 agc_gain_adjust;
s8 low_gain;
u8 temp;
bool init_cal_done;
bool tssi_cal_done;
bool tssi_comp_pending;
bool dpd_cal_done;
bool channel_cal_done;
};
struct mt76x2_dev {
struct mt76_dev mt76; /* must be first */
struct mac_address macaddr_list[8];
struct mutex mutex;
const u16 *beacon_offsets;
unsigned long wcid_mask[128 / BITS_PER_LONG];
int txpower_conf;
int txpower_cur;
u8 txdone_seq;
DECLARE_KFIFO_PTR(txstatus_fifo, struct mt76x2_tx_status);
struct mt76x2_mcu mcu;
struct sk_buff *rx_head;
struct tasklet_struct tx_tasklet;
struct tasklet_struct pre_tbtt_tasklet;
struct delayed_work cal_work;
struct delayed_work mac_work;
u32 aggr_stats[32];
struct mt76_wcid global_wcid;
struct mt76_wcid __rcu *wcid[128];
spinlock_t irq_lock;
u32 irqmask;
struct sk_buff *beacons[8];
u8 beacon_mask;
u8 beacon_data_mask;
u32 rev;
u32 rxfilter;
u16 chainmask;
struct mt76x2_calibration cal;
s8 target_power;
s8 target_power_delta[2];
struct mt76_rate_power rate_power;
bool enable_tpc;
u8 coverage_class;
u8 slottime;
struct mt76x2_dfs_pattern_detector dfs_pd;
};
struct mt76x2_vif {
u8 idx;
struct mt76_wcid group_wcid;
};
struct mt76x2_sta {
struct mt76_wcid wcid; /* must be first */
struct mt76x2_tx_status status;
int n_frames;
};
static inline bool is_mt7612(struct mt76x2_dev *dev)
{
return (dev->rev >> 16) == 0x7612;
}
void mt76x2_set_irq_mask(struct mt76x2_dev *dev, u32 clear, u32 set);
static inline void mt76x2_irq_enable(struct mt76x2_dev *dev, u32 mask)
{
mt76x2_set_irq_mask(dev, 0, mask);
}
static inline void mt76x2_irq_disable(struct mt76x2_dev *dev, u32 mask)
{
mt76x2_set_irq_mask(dev, mask, 0);
}
extern const struct ieee80211_ops mt76x2_ops;
struct mt76x2_dev *mt76x2_alloc_device(struct device *pdev);
int mt76x2_register_device(struct mt76x2_dev *dev);
void mt76x2_init_debugfs(struct mt76x2_dev *dev);
irqreturn_t mt76x2_irq_handler(int irq, void *dev_instance);
void mt76x2_phy_power_on(struct mt76x2_dev *dev);
int mt76x2_init_hardware(struct mt76x2_dev *dev);
void mt76x2_stop_hardware(struct mt76x2_dev *dev);
int mt76x2_eeprom_init(struct mt76x2_dev *dev);
int mt76x2_apply_calibration_data(struct mt76x2_dev *dev, int channel);
void mt76x2_set_tx_ackto(struct mt76x2_dev *dev);
int mt76x2_phy_start(struct mt76x2_dev *dev);
int mt76x2_phy_set_channel(struct mt76x2_dev *dev,
struct cfg80211_chan_def *chandef);
int mt76x2_phy_get_rssi(struct mt76x2_dev *dev, s8 rssi, int chain);
void mt76x2_phy_calibrate(struct work_struct *work);
void mt76x2_phy_set_txpower(struct mt76x2_dev *dev);
int mt76x2_mcu_init(struct mt76x2_dev *dev);
int mt76x2_mcu_set_channel(struct mt76x2_dev *dev, u8 channel, u8 bw,
u8 bw_index, bool scan);
int mt76x2_mcu_set_radio_state(struct mt76x2_dev *dev, bool on);
int mt76x2_mcu_load_cr(struct mt76x2_dev *dev, u8 type, u8 temp_level,
u8 channel);
int mt76x2_mcu_cleanup(struct mt76x2_dev *dev);
int mt76x2_dma_init(struct mt76x2_dev *dev);
void mt76x2_dma_cleanup(struct mt76x2_dev *dev);
void mt76x2_cleanup(struct mt76x2_dev *dev);
int mt76x2_tx_queue_mcu(struct mt76x2_dev *dev, enum mt76_txq_id qid,
struct sk_buff *skb, int cmd, int seq);
void mt76x2_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control,
struct sk_buff *skb);
void mt76x2_tx_complete(struct mt76x2_dev *dev, struct sk_buff *skb);
int mt76x2_tx_prepare_skb(struct mt76_dev *mdev, void *txwi,
struct sk_buff *skb, struct mt76_queue *q,
struct mt76_wcid *wcid, struct ieee80211_sta *sta,
u32 *tx_info);
void mt76x2_tx_complete_skb(struct mt76_dev *mdev, struct mt76_queue *q,
struct mt76_queue_entry *e, bool flush);
void mt76x2_pre_tbtt_tasklet(unsigned long arg);
void mt76x2_rx_poll_complete(struct mt76_dev *mdev, enum mt76_rxq_id q);
void mt76x2_queue_rx_skb(struct mt76_dev *mdev, enum mt76_rxq_id q,
struct sk_buff *skb);
void mt76x2_update_channel(struct mt76_dev *mdev);
s8 mt76x2_tx_get_max_txpwr_adj(struct mt76x2_dev *dev,
const struct ieee80211_tx_rate *rate);
s8 mt76x2_tx_get_txpwr_adj(struct mt76x2_dev *dev, s8 txpwr, s8 max_txpwr_adj);
void mt76x2_tx_set_txpwr_auto(struct mt76x2_dev *dev, s8 txpwr);
#endif

View File

@ -0,0 +1,88 @@
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/delay.h>
#include "mt76x2.h"
#include "mt76x2_trace.h"
void mt76x2_set_irq_mask(struct mt76x2_dev *dev, u32 clear, u32 set)
{
unsigned long flags;
spin_lock_irqsave(&dev->irq_lock, flags);
dev->irqmask &= ~clear;
dev->irqmask |= set;
mt76_wr(dev, MT_INT_MASK_CSR, dev->irqmask);
spin_unlock_irqrestore(&dev->irq_lock, flags);
}
void mt76x2_rx_poll_complete(struct mt76_dev *mdev, enum mt76_rxq_id q)
{
struct mt76x2_dev *dev = container_of(mdev, struct mt76x2_dev, mt76);
mt76x2_irq_enable(dev, MT_INT_RX_DONE(q));
}
irqreturn_t mt76x2_irq_handler(int irq, void *dev_instance)
{
struct mt76x2_dev *dev = dev_instance;
u32 intr;
intr = mt76_rr(dev, MT_INT_SOURCE_CSR);
mt76_wr(dev, MT_INT_SOURCE_CSR, intr);
if (!test_bit(MT76_STATE_INITIALIZED, &dev->mt76.state))
return IRQ_NONE;
trace_dev_irq(dev, intr, dev->irqmask);
intr &= dev->irqmask;
if (intr & MT_INT_TX_DONE_ALL) {
mt76x2_irq_disable(dev, MT_INT_TX_DONE_ALL);
tasklet_schedule(&dev->tx_tasklet);
}
if (intr & MT_INT_RX_DONE(0)) {
mt76x2_irq_disable(dev, MT_INT_RX_DONE(0));
napi_schedule(&dev->mt76.napi[0]);
}
if (intr & MT_INT_RX_DONE(1)) {
mt76x2_irq_disable(dev, MT_INT_RX_DONE(1));
napi_schedule(&dev->mt76.napi[1]);
}
if (intr & MT_INT_PRE_TBTT)
tasklet_schedule(&dev->pre_tbtt_tasklet);
/* send buffered multicast frames now */
if (intr & MT_INT_TBTT)
mt76_queue_kick(dev, &dev->mt76.q_tx[MT_TXQ_PSD]);
if (intr & MT_INT_TX_STAT) {
mt76x2_mac_poll_tx_status(dev, true);
tasklet_schedule(&dev->tx_tasklet);
}
if (intr & MT_INT_GPTIMER) {
mt76x2_irq_disable(dev, MT_INT_GPTIMER);
tasklet_schedule(&dev->dfs_pd.dfs_tasklet);
}
return IRQ_HANDLED;
}

View File

@ -0,0 +1,133 @@
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/debugfs.h>
#include "mt76x2.h"
static int
mt76x2_ampdu_stat_read(struct seq_file *file, void *data)
{
struct mt76x2_dev *dev = file->private;
int i, j;
for (i = 0; i < 4; i++) {
seq_puts(file, "Length: ");
for (j = 0; j < 8; j++)
seq_printf(file, "%8d | ", i * 8 + j + 1);
seq_puts(file, "\n");
seq_puts(file, "Count: ");
for (j = 0; j < 8; j++)
seq_printf(file, "%8d | ", dev->aggr_stats[i * 8 + j]);
seq_puts(file, "\n");
seq_puts(file, "--------");
for (j = 0; j < 8; j++)
seq_puts(file, "-----------");
seq_puts(file, "\n");
}
return 0;
}
static int
mt76x2_ampdu_stat_open(struct inode *inode, struct file *f)
{
return single_open(f, mt76x2_ampdu_stat_read, inode->i_private);
}
static void
seq_puts_array(struct seq_file *file, const char *str, s8 *val, int len)
{
int i;
seq_printf(file, "%10s:", str);
for (i = 0; i < len; i++)
seq_printf(file, " %2d", val[i]);
seq_puts(file, "\n");
}
static int read_txpower(struct seq_file *file, void *data)
{
struct mt76x2_dev *dev = dev_get_drvdata(file->private);
seq_printf(file, "Target power: %d\n", dev->target_power);
seq_puts_array(file, "Delta", dev->target_power_delta,
ARRAY_SIZE(dev->target_power_delta));
seq_puts_array(file, "CCK", dev->rate_power.cck,
ARRAY_SIZE(dev->rate_power.cck));
seq_puts_array(file, "OFDM", dev->rate_power.ofdm,
ARRAY_SIZE(dev->rate_power.ofdm));
seq_puts_array(file, "HT", dev->rate_power.ht,
ARRAY_SIZE(dev->rate_power.ht));
seq_puts_array(file, "VHT", dev->rate_power.vht,
ARRAY_SIZE(dev->rate_power.vht));
return 0;
}
static const struct file_operations fops_ampdu_stat = {
.open = mt76x2_ampdu_stat_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int
mt76x2_dfs_stat_read(struct seq_file *file, void *data)
{
int i;
struct mt76x2_dev *dev = file->private;
struct mt76x2_dfs_pattern_detector *dfs_pd = &dev->dfs_pd;
for (i = 0; i < MT_DFS_NUM_ENGINES; i++) {
seq_printf(file, "engine: %d\n", i);
seq_printf(file, " hw pattern detected:\t%d\n",
dfs_pd->stats[i].hw_pattern);
seq_printf(file, " hw pulse discarded:\t%d\n",
dfs_pd->stats[i].hw_pulse_discarded);
}
return 0;
}
static int
mt76x2_dfs_stat_open(struct inode *inode, struct file *f)
{
return single_open(f, mt76x2_dfs_stat_read, inode->i_private);
}
static const struct file_operations fops_dfs_stat = {
.open = mt76x2_dfs_stat_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
void mt76x2_init_debugfs(struct mt76x2_dev *dev)
{
struct dentry *dir;
dir = mt76_register_debugfs(&dev->mt76);
if (!dir)
return;
debugfs_create_u8("temperature", S_IRUSR, dir, &dev->cal.temp);
debugfs_create_bool("tpc", S_IRUSR | S_IWUSR, dir, &dev->enable_tpc);
debugfs_create_file("ampdu_stat", S_IRUSR, dir, dev, &fops_ampdu_stat);
debugfs_create_file("dfs_stats", S_IRUSR, dir, dev, &fops_dfs_stat);
debugfs_create_devm_seqfile(dev->mt76.dev, "txpower", dir,
read_txpower);
}

View File

@ -0,0 +1,493 @@
/*
* Copyright (C) 2016 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "mt76x2.h"
#define RADAR_SPEC(m, len, el, eh, wl, wh, \
w_tolerance, tl, th, t_tolerance, \
bl, bh, event_exp, power_jmp) \
{ \
.mode = m, \
.avg_len = len, \
.e_low = el, \
.e_high = eh, \
.w_low = wl, \
.w_high = wh, \
.w_margin = w_tolerance, \
.t_low = tl, \
.t_high = th, \
.t_margin = t_tolerance, \
.b_low = bl, \
.b_high = bh, \
.event_expiration = event_exp, \
.pwr_jmp = power_jmp \
}
static const struct mt76x2_radar_specs etsi_radar_specs[] = {
/* 20MHz */
RADAR_SPEC(0, 8, 2, 15, 106, 150, 10, 4900, 100096, 10, 0,
0x7fffffff, 0x155cc0, 0x19cc),
RADAR_SPEC(0, 40, 4, 59, 96, 380, 150, 4900, 100096, 40, 0,
0x7fffffff, 0x155cc0, 0x19cc),
RADAR_SPEC(3, 60, 20, 46, 300, 640, 80, 4900, 10100, 80, 0,
0x7fffffff, 0x155cc0, 0x19dd),
RADAR_SPEC(8, 8, 2, 9, 106, 150, 32, 4900, 296704, 32, 0,
0x7fffffff, 0x2191c0, 0x15cc),
/* 40MHz */
RADAR_SPEC(0, 8, 2, 15, 106, 150, 10, 4900, 100096, 10, 0,
0x7fffffff, 0x155cc0, 0x19cc),
RADAR_SPEC(0, 40, 4, 59, 96, 380, 150, 4900, 100096, 40, 0,
0x7fffffff, 0x155cc0, 0x19cc),
RADAR_SPEC(3, 60, 20, 46, 300, 640, 80, 4900, 10100, 80, 0,
0x7fffffff, 0x155cc0, 0x19dd),
RADAR_SPEC(8, 8, 2, 9, 106, 150, 32, 4900, 296704, 32, 0,
0x7fffffff, 0x2191c0, 0x15cc),
/* 80MHz */
RADAR_SPEC(0, 8, 2, 15, 106, 150, 10, 4900, 100096, 10, 0,
0x7fffffff, 0x155cc0, 0x19cc),
RADAR_SPEC(0, 40, 4, 59, 96, 380, 150, 4900, 100096, 40, 0,
0x7fffffff, 0x155cc0, 0x19cc),
RADAR_SPEC(3, 60, 20, 46, 300, 640, 80, 4900, 10100, 80, 0,
0x7fffffff, 0x155cc0, 0x19dd),
RADAR_SPEC(8, 8, 2, 9, 106, 150, 32, 4900, 296704, 32, 0,
0x7fffffff, 0x2191c0, 0x15cc)
};
static const struct mt76x2_radar_specs fcc_radar_specs[] = {
/* 20MHz */
RADAR_SPEC(0, 8, 2, 12, 106, 150, 5, 2900, 80100, 5, 0,
0x7fffffff, 0xfe808, 0x13dc),
RADAR_SPEC(0, 8, 2, 7, 106, 140, 5, 27600, 27900, 5, 0,
0x7fffffff, 0xfe808, 0x19dd),
RADAR_SPEC(0, 40, 4, 54, 96, 480, 150, 2900, 80100, 40, 0,
0x7fffffff, 0xfe808, 0x12cc),
RADAR_SPEC(2, 60, 15, 63, 640, 2080, 32, 19600, 40200, 32, 0,
0x3938700, 0x57bcf00, 0x1289),
/* 40MHz */
RADAR_SPEC(0, 8, 2, 12, 106, 150, 5, 2900, 80100, 5, 0,
0x7fffffff, 0xfe808, 0x13dc),
RADAR_SPEC(0, 8, 2, 7, 106, 140, 5, 27600, 27900, 5, 0,
0x7fffffff, 0xfe808, 0x19dd),
RADAR_SPEC(0, 40, 4, 54, 96, 480, 150, 2900, 80100, 40, 0,
0x7fffffff, 0xfe808, 0x12cc),
RADAR_SPEC(2, 60, 15, 63, 640, 2080, 32, 19600, 40200, 32, 0,
0x3938700, 0x57bcf00, 0x1289),
/* 80MHz */
RADAR_SPEC(0, 8, 2, 14, 106, 150, 15, 2900, 80100, 15, 0,
0x7fffffff, 0xfe808, 0x16cc),
RADAR_SPEC(0, 8, 2, 7, 106, 140, 5, 27600, 27900, 5, 0,
0x7fffffff, 0xfe808, 0x19dd),
RADAR_SPEC(0, 40, 4, 54, 96, 480, 150, 2900, 80100, 40, 0,
0x7fffffff, 0xfe808, 0x12cc),
RADAR_SPEC(2, 60, 15, 63, 640, 2080, 32, 19600, 40200, 32, 0,
0x3938700, 0x57bcf00, 0x1289)
};
static const struct mt76x2_radar_specs jp_w56_radar_specs[] = {
/* 20MHz */
RADAR_SPEC(0, 8, 2, 7, 106, 150, 5, 2900, 80100, 5, 0,
0x7fffffff, 0x14c080, 0x13dc),
RADAR_SPEC(0, 8, 2, 7, 106, 140, 5, 27600, 27900, 5, 0,
0x7fffffff, 0x14c080, 0x19dd),
RADAR_SPEC(0, 40, 4, 44, 96, 480, 150, 2900, 80100, 40, 0,
0x7fffffff, 0x14c080, 0x12cc),
RADAR_SPEC(2, 60, 15, 48, 940, 2080, 32, 19600, 40200, 32, 0,
0x3938700, 0X57bcf00, 0x1289),
/* 40MHz */
RADAR_SPEC(0, 8, 2, 7, 106, 150, 5, 2900, 80100, 5, 0,
0x7fffffff, 0x14c080, 0x13dc),
RADAR_SPEC(0, 8, 2, 7, 106, 140, 5, 27600, 27900, 5, 0,
0x7fffffff, 0x14c080, 0x19dd),
RADAR_SPEC(0, 40, 4, 44, 96, 480, 150, 2900, 80100, 40, 0,
0x7fffffff, 0x14c080, 0x12cc),
RADAR_SPEC(2, 60, 15, 48, 940, 2080, 32, 19600, 40200, 32, 0,
0x3938700, 0X57bcf00, 0x1289),
/* 80MHz */
RADAR_SPEC(0, 8, 2, 9, 106, 150, 15, 2900, 80100, 15, 0,
0x7fffffff, 0x14c080, 0x16cc),
RADAR_SPEC(0, 8, 2, 7, 106, 140, 5, 27600, 27900, 5, 0,
0x7fffffff, 0x14c080, 0x19dd),
RADAR_SPEC(0, 40, 4, 44, 96, 480, 150, 2900, 80100, 40, 0,
0x7fffffff, 0x14c080, 0x12cc),
RADAR_SPEC(2, 60, 15, 48, 940, 2080, 32, 19600, 40200, 32, 0,
0x3938700, 0X57bcf00, 0x1289)
};
static const struct mt76x2_radar_specs jp_w53_radar_specs[] = {
/* 20MHz */
RADAR_SPEC(0, 8, 2, 9, 106, 150, 20, 28400, 77000, 20, 0,
0x7fffffff, 0x14c080, 0x16cc),
{ 0 },
RADAR_SPEC(0, 40, 4, 44, 96, 200, 150, 28400, 77000, 60, 0,
0x7fffffff, 0x14c080, 0x16cc),
{ 0 },
/* 40MHz */
RADAR_SPEC(0, 8, 2, 9, 106, 150, 20, 28400, 77000, 20, 0,
0x7fffffff, 0x14c080, 0x16cc),
{ 0 },
RADAR_SPEC(0, 40, 4, 44, 96, 200, 150, 28400, 77000, 60, 0,
0x7fffffff, 0x14c080, 0x16cc),
{ 0 },
/* 80MHz */
RADAR_SPEC(0, 8, 2, 9, 106, 150, 20, 28400, 77000, 20, 0,
0x7fffffff, 0x14c080, 0x16cc),
{ 0 },
RADAR_SPEC(0, 40, 4, 44, 96, 200, 150, 28400, 77000, 60, 0,
0x7fffffff, 0x14c080, 0x16cc),
{ 0 }
};
static void mt76x2_dfs_set_capture_mode_ctrl(struct mt76x2_dev *dev,
u8 enable)
{
u32 data;
data = (1 << 1) | enable;
mt76_wr(dev, MT_BBP(DFS, 36), data);
}
static bool mt76x2_dfs_check_chirp(struct mt76x2_dev *dev)
{
bool ret = false;
u32 current_ts, delta_ts;
struct mt76x2_dfs_pattern_detector *dfs_pd = &dev->dfs_pd;
current_ts = mt76_rr(dev, MT_PBF_LIFE_TIMER);
delta_ts = current_ts - dfs_pd->chirp_pulse_ts;
dfs_pd->chirp_pulse_ts = current_ts;
/* 12 sec */
if (delta_ts <= (12 * (1 << 20))) {
if (++dfs_pd->chirp_pulse_cnt > 8)
ret = true;
} else {
dfs_pd->chirp_pulse_cnt = 1;
}
return ret;
}
static void mt76x2_dfs_get_hw_pulse(struct mt76x2_dev *dev,
struct mt76x2_dfs_hw_pulse *pulse)
{
u32 data;
/* select channel */
data = (MT_DFS_CH_EN << 16) | pulse->engine;
mt76_wr(dev, MT_BBP(DFS, 0), data);
/* reported period */
pulse->period = mt76_rr(dev, MT_BBP(DFS, 19));
/* reported width */
pulse->w1 = mt76_rr(dev, MT_BBP(DFS, 20));
pulse->w2 = mt76_rr(dev, MT_BBP(DFS, 23));
/* reported burst number */
pulse->burst = mt76_rr(dev, MT_BBP(DFS, 22));
}
static bool mt76x2_dfs_check_hw_pulse(struct mt76x2_dev *dev,
struct mt76x2_dfs_hw_pulse *pulse)
{
bool ret = false;
if (!pulse->period || !pulse->w1)
return false;
switch (dev->dfs_pd.region) {
case NL80211_DFS_FCC:
if (pulse->engine > 3)
break;
if (pulse->engine == 3) {
ret = mt76x2_dfs_check_chirp(dev);
break;
}
/* check short pulse*/
if (pulse->w1 < 120)
ret = (pulse->period >= 2900 &&
(pulse->period <= 4700 ||
pulse->period >= 6400) &&
(pulse->period <= 6800 ||
pulse->period >= 10200) &&
pulse->period <= 61600);
else if (pulse->w1 < 130) /* 120 - 130 */
ret = (pulse->period >= 2900 &&
pulse->period <= 61600);
else
ret = (pulse->period >= 3500 &&
pulse->period <= 10100);
break;
case NL80211_DFS_ETSI:
if (pulse->engine >= 3)
break;
ret = (pulse->period >= 4900 &&
(pulse->period <= 10200 ||
pulse->period >= 12400) &&
pulse->period <= 100100);
break;
case NL80211_DFS_JP:
if (dev->mt76.chandef.chan->center_freq >= 5250 &&
dev->mt76.chandef.chan->center_freq <= 5350) {
/* JPW53 */
if (pulse->w1 <= 130)
ret = (pulse->period >= 28360 &&
(pulse->period <= 28700 ||
pulse->period >= 76900) &&
pulse->period <= 76940);
break;
}
if (pulse->engine > 3)
break;
if (pulse->engine == 3) {
ret = mt76x2_dfs_check_chirp(dev);
break;
}
/* check short pulse*/
if (pulse->w1 < 120)
ret = (pulse->period >= 2900 &&
(pulse->period <= 4700 ||
pulse->period >= 6400) &&
(pulse->period <= 6800 ||
pulse->period >= 27560) &&
(pulse->period <= 27960 ||
pulse->period >= 28360) &&
(pulse->period <= 28700 ||
pulse->period >= 79900) &&
pulse->period <= 80100);
else if (pulse->w1 < 130) /* 120 - 130 */
ret = (pulse->period >= 2900 &&
(pulse->period <= 10100 ||
pulse->period >= 27560) &&
(pulse->period <= 27960 ||
pulse->period >= 28360) &&
(pulse->period <= 28700 ||
pulse->period >= 79900) &&
pulse->period <= 80100);
else
ret = (pulse->period >= 3900 &&
pulse->period <= 10100);
break;
case NL80211_DFS_UNSET:
default:
return false;
}
return ret;
}
static void mt76x2_dfs_tasklet(unsigned long arg)
{
struct mt76x2_dev *dev = (struct mt76x2_dev *)arg;
struct mt76x2_dfs_pattern_detector *dfs_pd = &dev->dfs_pd;
u32 engine_mask;
int i;
if (test_bit(MT76_SCANNING, &dev->mt76.state))
goto out;
engine_mask = mt76_rr(dev, MT_BBP(DFS, 1));
if (!(engine_mask & 0xf))
goto out;
for (i = 0; i < MT_DFS_NUM_ENGINES; i++) {
struct mt76x2_dfs_hw_pulse pulse;
if (!(engine_mask & (1 << i)))
continue;
pulse.engine = i;
mt76x2_dfs_get_hw_pulse(dev, &pulse);
if (!mt76x2_dfs_check_hw_pulse(dev, &pulse)) {
dfs_pd->stats[i].hw_pulse_discarded++;
continue;
}
/* hw detector rx radar pattern */
dfs_pd->stats[i].hw_pattern++;
ieee80211_radar_detected(dev->mt76.hw);
/* reset hw detector */
mt76_wr(dev, MT_BBP(DFS, 1), 0xf);
return;
}
/* reset hw detector */
mt76_wr(dev, MT_BBP(DFS, 1), 0xf);
out:
mt76x2_irq_enable(dev, MT_INT_GPTIMER);
}
static void mt76x2_dfs_set_bbp_params(struct mt76x2_dev *dev)
{
u32 data;
u8 i, shift;
const struct mt76x2_radar_specs *radar_specs;
switch (dev->mt76.chandef.width) {
case NL80211_CHAN_WIDTH_40:
shift = MT_DFS_NUM_ENGINES;
break;
case NL80211_CHAN_WIDTH_80:
shift = 2 * MT_DFS_NUM_ENGINES;
break;
default:
shift = 0;
break;
}
switch (dev->dfs_pd.region) {
case NL80211_DFS_FCC:
radar_specs = &fcc_radar_specs[shift];
break;
case NL80211_DFS_ETSI:
radar_specs = &etsi_radar_specs[shift];
break;
case NL80211_DFS_JP:
if (dev->mt76.chandef.chan->center_freq >= 5250 &&
dev->mt76.chandef.chan->center_freq <= 5350)
radar_specs = &jp_w53_radar_specs[shift];
else
radar_specs = &jp_w56_radar_specs[shift];
break;
case NL80211_DFS_UNSET:
default:
return;
}
data = (MT_DFS_VGA_MASK << 16) |
(MT_DFS_PWR_GAIN_OFFSET << 12) |
(MT_DFS_PWR_DOWN_TIME << 8) |
(MT_DFS_SYM_ROUND << 4) |
(MT_DFS_DELTA_DELAY & 0xf);
mt76_wr(dev, MT_BBP(DFS, 2), data);
data = (MT_DFS_RX_PE_MASK << 16) | MT_DFS_PKT_END_MASK;
mt76_wr(dev, MT_BBP(DFS, 3), data);
for (i = 0; i < MT_DFS_NUM_ENGINES; i++) {
/* configure engine */
mt76_wr(dev, MT_BBP(DFS, 0), i);
/* detection mode + avg_len */
data = ((radar_specs[i].avg_len & 0x1ff) << 16) |
(radar_specs[i].mode & 0xf);
mt76_wr(dev, MT_BBP(DFS, 4), data);
/* dfs energy */
data = ((radar_specs[i].e_high & 0x0fff) << 16) |
(radar_specs[i].e_low & 0x0fff);
mt76_wr(dev, MT_BBP(DFS, 5), data);
/* dfs period */
mt76_wr(dev, MT_BBP(DFS, 7), radar_specs[i].t_low);
mt76_wr(dev, MT_BBP(DFS, 9), radar_specs[i].t_high);
/* dfs burst */
mt76_wr(dev, MT_BBP(DFS, 11), radar_specs[i].b_low);
mt76_wr(dev, MT_BBP(DFS, 13), radar_specs[i].b_high);
/* dfs width */
data = ((radar_specs[i].w_high & 0x0fff) << 16) |
(radar_specs[i].w_low & 0x0fff);
mt76_wr(dev, MT_BBP(DFS, 14), data);
/* dfs margins */
data = (radar_specs[i].w_margin << 16) |
radar_specs[i].t_margin;
mt76_wr(dev, MT_BBP(DFS, 15), data);
/* dfs event expiration */
mt76_wr(dev, MT_BBP(DFS, 17), radar_specs[i].event_expiration);
/* dfs pwr adj */
mt76_wr(dev, MT_BBP(DFS, 30), radar_specs[i].pwr_jmp);
}
/* reset status */
mt76_wr(dev, MT_BBP(DFS, 1), 0xf);
mt76_wr(dev, MT_BBP(DFS, 36), 0x3);
/* enable detection*/
mt76_wr(dev, MT_BBP(DFS, 0), MT_DFS_CH_EN << 16);
mt76_wr(dev, 0x212c, 0x0c350001);
}
void mt76x2_dfs_adjust_agc(struct mt76x2_dev *dev)
{
u32 agc_r8, agc_r4, val_r8, val_r4, dfs_r31;
agc_r8 = mt76_rr(dev, MT_BBP(AGC, 8));
agc_r4 = mt76_rr(dev, MT_BBP(AGC, 4));
val_r8 = (agc_r8 & 0x00007e00) >> 9;
val_r4 = agc_r4 & ~0x1f000000;
val_r4 += (((val_r8 + 1) >> 1) << 24);
mt76_wr(dev, MT_BBP(AGC, 4), val_r4);
dfs_r31 = FIELD_GET(MT_BBP_AGC_LNA_HIGH_GAIN, val_r4);
dfs_r31 += val_r8;
dfs_r31 -= (agc_r8 & 0x00000038) >> 3;
dfs_r31 = (dfs_r31 << 16) | 0x00000307;
mt76_wr(dev, MT_BBP(DFS, 31), dfs_r31);
mt76_wr(dev, MT_BBP(DFS, 32), 0x00040071);
}
void mt76x2_dfs_init_params(struct mt76x2_dev *dev)
{
struct cfg80211_chan_def *chandef = &dev->mt76.chandef;
tasklet_kill(&dev->dfs_pd.dfs_tasklet);
if (chandef->chan->flags & IEEE80211_CHAN_RADAR) {
mt76x2_dfs_set_bbp_params(dev);
/* enable debug mode */
mt76x2_dfs_set_capture_mode_ctrl(dev, true);
mt76x2_irq_enable(dev, MT_INT_GPTIMER);
mt76_rmw_field(dev, MT_INT_TIMER_EN,
MT_INT_TIMER_EN_GP_TIMER_EN, 1);
} else {
/* disable hw detector */
mt76_wr(dev, MT_BBP(DFS, 0), 0);
/* clear detector status */
mt76_wr(dev, MT_BBP(DFS, 1), 0xf);
mt76_wr(dev, 0x212c, 0);
mt76x2_irq_disable(dev, MT_INT_GPTIMER);
mt76_rmw_field(dev, MT_INT_TIMER_EN,
MT_INT_TIMER_EN_GP_TIMER_EN, 0);
}
}
void mt76x2_dfs_init_detector(struct mt76x2_dev *dev)
{
struct mt76x2_dfs_pattern_detector *dfs_pd = &dev->dfs_pd;
dfs_pd->region = NL80211_DFS_UNSET;
tasklet_init(&dfs_pd->dfs_tasklet, mt76x2_dfs_tasklet,
(unsigned long)dev);
}

View File

@ -0,0 +1,80 @@
/*
* Copyright (C) 2016 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef __MT76x2_DFS_H
#define __MT76x2_DFS_H
#include <linux/types.h>
#include <linux/nl80211.h>
#define MT_DFS_GP_INTERVAL (10 << 4) /* 64 us unit */
#define MT_DFS_NUM_ENGINES 4
/* bbp params */
#define MT_DFS_SYM_ROUND 0
#define MT_DFS_DELTA_DELAY 2
#define MT_DFS_VGA_MASK 0
#define MT_DFS_PWR_GAIN_OFFSET 3
#define MT_DFS_PWR_DOWN_TIME 0xf
#define MT_DFS_RX_PE_MASK 0xff
#define MT_DFS_PKT_END_MASK 0
#define MT_DFS_CH_EN 0xf
struct mt76x2_radar_specs {
u8 mode;
u16 avg_len;
u16 e_low;
u16 e_high;
u16 w_low;
u16 w_high;
u16 w_margin;
u32 t_low;
u32 t_high;
u16 t_margin;
u32 b_low;
u32 b_high;
u32 event_expiration;
u16 pwr_jmp;
};
struct mt76x2_dfs_hw_pulse {
u8 engine;
u32 period;
u32 w1;
u32 w2;
u32 burst;
};
struct mt76x2_dfs_engine_stats {
u32 hw_pattern;
u32 hw_pulse_discarded;
};
struct mt76x2_dfs_pattern_detector {
enum nl80211_dfs_regions region;
u8 chirp_pulse_cnt;
u32 chirp_pulse_ts;
struct mt76x2_dfs_engine_stats stats[MT_DFS_NUM_ENGINES];
struct tasklet_struct dfs_tasklet;
};
void mt76x2_dfs_init_params(struct mt76x2_dev *dev);
void mt76x2_dfs_init_detector(struct mt76x2_dev *dev);
void mt76x2_dfs_adjust_agc(struct mt76x2_dev *dev);
#endif /* __MT76x2_DFS_H */

View File

@ -0,0 +1,183 @@
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "mt76x2.h"
#include "mt76x2_dma.h"
int
mt76x2_tx_queue_mcu(struct mt76x2_dev *dev, enum mt76_txq_id qid,
struct sk_buff *skb, int cmd, int seq)
{
struct mt76_queue *q = &dev->mt76.q_tx[qid];
struct mt76_queue_buf buf;
dma_addr_t addr;
u32 tx_info;
tx_info = MT_MCU_MSG_TYPE_CMD |
FIELD_PREP(MT_MCU_MSG_CMD_TYPE, cmd) |
FIELD_PREP(MT_MCU_MSG_CMD_SEQ, seq) |
FIELD_PREP(MT_MCU_MSG_PORT, CPU_TX_PORT) |
FIELD_PREP(MT_MCU_MSG_LEN, skb->len);
addr = dma_map_single(dev->mt76.dev, skb->data, skb->len,
DMA_TO_DEVICE);
if (dma_mapping_error(dev->mt76.dev, addr))
return -ENOMEM;
buf.addr = addr;
buf.len = skb->len;
spin_lock_bh(&q->lock);
mt76_queue_add_buf(dev, q, &buf, 1, tx_info, skb, NULL);
mt76_queue_kick(dev, q);
spin_unlock_bh(&q->lock);
return 0;
}
static int
mt76x2_init_tx_queue(struct mt76x2_dev *dev, struct mt76_queue *q,
int idx, int n_desc)
{
int ret;
q->regs = dev->mt76.regs + MT_TX_RING_BASE + idx * MT_RING_SIZE;
q->ndesc = n_desc;
ret = mt76_queue_alloc(dev, q);
if (ret)
return ret;
mt76x2_irq_enable(dev, MT_INT_TX_DONE(idx));
return 0;
}
void mt76x2_queue_rx_skb(struct mt76_dev *mdev, enum mt76_rxq_id q,
struct sk_buff *skb)
{
struct mt76x2_dev *dev = container_of(mdev, struct mt76x2_dev, mt76);
void *rxwi = skb->data;
if (q == MT_RXQ_MCU) {
skb_queue_tail(&dev->mcu.res_q, skb);
wake_up(&dev->mcu.wait);
return;
}
skb_pull(skb, sizeof(struct mt76x2_rxwi));
if (mt76x2_mac_process_rx(dev, skb, rxwi)) {
dev_kfree_skb(skb);
return;
}
mt76_rx(&dev->mt76, q, skb);
}
static int
mt76x2_init_rx_queue(struct mt76x2_dev *dev, struct mt76_queue *q,
int idx, int n_desc, int bufsize)
{
int ret;
q->regs = dev->mt76.regs + MT_RX_RING_BASE + idx * MT_RING_SIZE;
q->ndesc = n_desc;
q->buf_size = bufsize;
ret = mt76_queue_alloc(dev, q);
if (ret)
return ret;
mt76x2_irq_enable(dev, MT_INT_RX_DONE(idx));
return 0;
}
static void
mt76x2_tx_tasklet(unsigned long data)
{
struct mt76x2_dev *dev = (struct mt76x2_dev *) data;
int i;
mt76x2_mac_process_tx_status_fifo(dev);
for (i = MT_TXQ_MCU; i >= 0; i--)
mt76_queue_tx_cleanup(dev, i, false);
mt76x2_mac_poll_tx_status(dev, false);
mt76x2_irq_enable(dev, MT_INT_TX_DONE_ALL);
}
int mt76x2_dma_init(struct mt76x2_dev *dev)
{
static const u8 wmm_queue_map[] = {
[IEEE80211_AC_BE] = 0,
[IEEE80211_AC_BK] = 1,
[IEEE80211_AC_VI] = 2,
[IEEE80211_AC_VO] = 3,
};
int ret;
int i;
struct mt76_txwi_cache __maybe_unused *t;
struct mt76_queue *q;
BUILD_BUG_ON(sizeof(t->txwi) < sizeof(struct mt76x2_txwi));
BUILD_BUG_ON(sizeof(struct mt76x2_rxwi) > MT_RX_HEADROOM);
mt76_dma_attach(&dev->mt76);
init_waitqueue_head(&dev->mcu.wait);
skb_queue_head_init(&dev->mcu.res_q);
tasklet_init(&dev->tx_tasklet, mt76x2_tx_tasklet, (unsigned long) dev);
mt76_wr(dev, MT_WPDMA_RST_IDX, ~0);
for (i = 0; i < ARRAY_SIZE(wmm_queue_map); i++) {
ret = mt76x2_init_tx_queue(dev, &dev->mt76.q_tx[i],
wmm_queue_map[i], MT_TX_RING_SIZE);
if (ret)
return ret;
}
ret = mt76x2_init_tx_queue(dev, &dev->mt76.q_tx[MT_TXQ_PSD],
MT_TX_HW_QUEUE_MGMT, MT_TX_RING_SIZE);
if (ret)
return ret;
ret = mt76x2_init_tx_queue(dev, &dev->mt76.q_tx[MT_TXQ_MCU],
MT_TX_HW_QUEUE_MCU, MT_MCU_RING_SIZE);
if (ret)
return ret;
ret = mt76x2_init_rx_queue(dev, &dev->mt76.q_rx[MT_RXQ_MCU], 1,
MT_MCU_RING_SIZE, MT_RX_BUF_SIZE);
if (ret)
return ret;
q = &dev->mt76.q_rx[MT_RXQ_MAIN];
q->buf_offset = MT_RX_HEADROOM - sizeof(struct mt76x2_rxwi);
ret = mt76x2_init_rx_queue(dev, q, 0, MT76x2_RX_RING_SIZE, MT_RX_BUF_SIZE);
if (ret)
return ret;
return mt76_init_queues(dev);
}
void mt76x2_dma_cleanup(struct mt76x2_dev *dev)
{
tasklet_kill(&dev->tx_tasklet);
mt76_dma_cleanup(&dev->mt76);
}

View File

@ -0,0 +1,68 @@
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef __MT76x2_DMA_H
#define __MT76x2_DMA_H
#include "dma.h"
#define MT_TXD_INFO_LEN GENMASK(13, 0)
#define MT_TXD_INFO_NEXT_VLD BIT(16)
#define MT_TXD_INFO_TX_BURST BIT(17)
#define MT_TXD_INFO_80211 BIT(19)
#define MT_TXD_INFO_TSO BIT(20)
#define MT_TXD_INFO_CSO BIT(21)
#define MT_TXD_INFO_WIV BIT(24)
#define MT_TXD_INFO_QSEL GENMASK(26, 25)
#define MT_TXD_INFO_TCO BIT(29)
#define MT_TXD_INFO_UCO BIT(30)
#define MT_TXD_INFO_ICO BIT(31)
#define MT_RX_FCE_INFO_LEN GENMASK(13, 0)
#define MT_RX_FCE_INFO_SELF_GEN BIT(15)
#define MT_RX_FCE_INFO_CMD_SEQ GENMASK(19, 16)
#define MT_RX_FCE_INFO_EVT_TYPE GENMASK(23, 20)
#define MT_RX_FCE_INFO_PCIE_INTR BIT(24)
#define MT_RX_FCE_INFO_QSEL GENMASK(26, 25)
#define MT_RX_FCE_INFO_D_PORT GENMASK(29, 27)
#define MT_RX_FCE_INFO_TYPE GENMASK(31, 30)
/* MCU request message header */
#define MT_MCU_MSG_LEN GENMASK(15, 0)
#define MT_MCU_MSG_CMD_SEQ GENMASK(19, 16)
#define MT_MCU_MSG_CMD_TYPE GENMASK(26, 20)
#define MT_MCU_MSG_PORT GENMASK(29, 27)
#define MT_MCU_MSG_TYPE GENMASK(31, 30)
#define MT_MCU_MSG_TYPE_CMD BIT(30)
enum mt76x2_qsel {
MT_QSEL_MGMT,
MT_QSEL_HCCA,
MT_QSEL_EDCA,
MT_QSEL_EDCA_2,
};
enum dma_msg_port {
WLAN_PORT,
CPU_RX_PORT,
CPU_TX_PORT,
HOST_PORT,
VIRTUAL_CPU_RX_PORT,
VIRTUAL_CPU_TX_PORT,
DISCARD,
};
#endif

View File

@ -0,0 +1,647 @@
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <asm/unaligned.h>
#include "mt76x2.h"
#include "mt76x2_eeprom.h"
#define EE_FIELD(_name, _value) [MT_EE_##_name] = (_value) | 1
static int
mt76x2_eeprom_copy(struct mt76x2_dev *dev, enum mt76x2_eeprom_field field,
void *dest, int len)
{
if (field + len > dev->mt76.eeprom.size)
return -1;
memcpy(dest, dev->mt76.eeprom.data + field, len);
return 0;
}
static int
mt76x2_eeprom_get_macaddr(struct mt76x2_dev *dev)
{
void *src = dev->mt76.eeprom.data + MT_EE_MAC_ADDR;
memcpy(dev->mt76.macaddr, src, ETH_ALEN);
return 0;
}
static void
mt76x2_eeprom_parse_hw_cap(struct mt76x2_dev *dev)
{
u16 val = mt76x2_eeprom_get(dev, MT_EE_NIC_CONF_0);
switch (FIELD_GET(MT_EE_NIC_CONF_0_BOARD_TYPE, val)) {
case BOARD_TYPE_5GHZ:
dev->mt76.cap.has_5ghz = true;
break;
case BOARD_TYPE_2GHZ:
dev->mt76.cap.has_2ghz = true;
break;
default:
dev->mt76.cap.has_2ghz = true;
dev->mt76.cap.has_5ghz = true;
break;
}
}
static int
mt76x2_efuse_read(struct mt76x2_dev *dev, u16 addr, u8 *data)
{
u32 val;
int i;
val = mt76_rr(dev, MT_EFUSE_CTRL);
val &= ~(MT_EFUSE_CTRL_AIN |
MT_EFUSE_CTRL_MODE);
val |= FIELD_PREP(MT_EFUSE_CTRL_AIN, addr & ~0xf);
val |= MT_EFUSE_CTRL_KICK;
mt76_wr(dev, MT_EFUSE_CTRL, val);
if (!mt76_poll(dev, MT_EFUSE_CTRL, MT_EFUSE_CTRL_KICK, 0, 1000))
return -ETIMEDOUT;
udelay(2);
val = mt76_rr(dev, MT_EFUSE_CTRL);
if ((val & MT_EFUSE_CTRL_AOUT) == MT_EFUSE_CTRL_AOUT) {
memset(data, 0xff, 16);
return 0;
}
for (i = 0; i < 4; i++) {
val = mt76_rr(dev, MT_EFUSE_DATA(i));
put_unaligned_le32(val, data + 4 * i);
}
return 0;
}
static int
mt76x2_get_efuse_data(struct mt76x2_dev *dev, void *buf, int len)
{
int ret, i;
for (i = 0; i + 16 <= len; i += 16) {
ret = mt76x2_efuse_read(dev, i, buf + i);
if (ret)
return ret;
}
return 0;
}
static bool
mt76x2_has_cal_free_data(struct mt76x2_dev *dev, u8 *efuse)
{
u16 *efuse_w = (u16 *) efuse;
if (efuse_w[MT_EE_NIC_CONF_0] != 0)
return false;
if (efuse_w[MT_EE_XTAL_TRIM_1] == 0xffff)
return false;
if (efuse_w[MT_EE_TX_POWER_DELTA_BW40] != 0)
return false;
if (efuse_w[MT_EE_TX_POWER_0_START_2G] == 0xffff)
return false;
if (efuse_w[MT_EE_TX_POWER_0_GRP3_TX_POWER_DELTA] != 0)
return false;
if (efuse_w[MT_EE_TX_POWER_0_GRP4_TSSI_SLOPE] == 0xffff)
return false;
return true;
}
static void
mt76x2_apply_cal_free_data(struct mt76x2_dev *dev, u8 *efuse)
{
#define GROUP_5G(_id) \
MT_EE_TX_POWER_0_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id), \
MT_EE_TX_POWER_0_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id) + 1, \
MT_EE_TX_POWER_1_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id), \
MT_EE_TX_POWER_1_START_5G + MT_TX_POWER_GROUP_SIZE_5G * (_id) + 1
static const u8 cal_free_bytes[] = {
MT_EE_XTAL_TRIM_1,
MT_EE_TX_POWER_EXT_PA_5G + 1,
MT_EE_TX_POWER_0_START_2G,
MT_EE_TX_POWER_0_START_2G + 1,
MT_EE_TX_POWER_1_START_2G,
MT_EE_TX_POWER_1_START_2G + 1,
GROUP_5G(0),
GROUP_5G(1),
GROUP_5G(2),
GROUP_5G(3),
GROUP_5G(4),
GROUP_5G(5),
MT_EE_RF_2G_TSSI_OFF_TXPOWER,
MT_EE_RF_2G_RX_HIGH_GAIN + 1,
MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN,
MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN + 1,
MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN,
MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN + 1,
MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN,
MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN + 1,
};
u8 *eeprom = dev->mt76.eeprom.data;
u8 prev_grp0[4] = {
eeprom[MT_EE_TX_POWER_0_START_5G],
eeprom[MT_EE_TX_POWER_0_START_5G + 1],
eeprom[MT_EE_TX_POWER_1_START_5G],
eeprom[MT_EE_TX_POWER_1_START_5G + 1]
};
u16 val;
int i;
if (!mt76x2_has_cal_free_data(dev, efuse))
return;
for (i = 0; i < ARRAY_SIZE(cal_free_bytes); i++) {
int offset = cal_free_bytes[i];
eeprom[offset] = efuse[offset];
}
if (!(efuse[MT_EE_TX_POWER_0_START_5G] |
efuse[MT_EE_TX_POWER_0_START_5G + 1]))
memcpy(eeprom + MT_EE_TX_POWER_0_START_5G, prev_grp0, 2);
if (!(efuse[MT_EE_TX_POWER_1_START_5G] |
efuse[MT_EE_TX_POWER_1_START_5G + 1]))
memcpy(eeprom + MT_EE_TX_POWER_1_START_5G, prev_grp0 + 2, 2);
val = get_unaligned_le16(efuse + MT_EE_BT_RCAL_RESULT);
if (val != 0xffff)
eeprom[MT_EE_BT_RCAL_RESULT] = val & 0xff;
val = get_unaligned_le16(efuse + MT_EE_BT_VCDL_CALIBRATION);
if (val != 0xffff)
eeprom[MT_EE_BT_VCDL_CALIBRATION + 1] = val >> 8;
val = get_unaligned_le16(efuse + MT_EE_BT_PMUCFG);
if (val != 0xffff)
eeprom[MT_EE_BT_PMUCFG] = val & 0xff;
}
static int mt76x2_check_eeprom(struct mt76x2_dev *dev)
{
u16 val = get_unaligned_le16(dev->mt76.eeprom.data);
if (!val)
val = get_unaligned_le16(dev->mt76.eeprom.data + MT_EE_PCI_ID);
switch (val) {
case 0x7662:
case 0x7612:
return 0;
default:
dev_err(dev->mt76.dev, "EEPROM data check failed: %04x\n", val);
return -EINVAL;
}
}
static int
mt76x2_eeprom_load(struct mt76x2_dev *dev)
{
void *efuse;
int len = MT7662_EEPROM_SIZE;
bool found;
int ret;
ret = mt76_eeprom_init(&dev->mt76, len);
if (ret < 0)
return ret;
found = ret;
if (found)
found = !mt76x2_check_eeprom(dev);
dev->mt76.otp.data = devm_kzalloc(dev->mt76.dev, len, GFP_KERNEL);
dev->mt76.otp.size = len;
if (!dev->mt76.otp.data)
return -ENOMEM;
efuse = dev->mt76.otp.data;
if (mt76x2_get_efuse_data(dev, efuse, len))
goto out;
if (found) {
mt76x2_apply_cal_free_data(dev, efuse);
} else {
/* FIXME: check if efuse data is complete */
found = true;
memcpy(dev->mt76.eeprom.data, efuse, len);
}
out:
if (!found)
return -ENOENT;
return 0;
}
static inline int
mt76x2_sign_extend(u32 val, unsigned int size)
{
bool sign = val & BIT(size - 1);
val &= BIT(size - 1) - 1;
return sign ? val : -val;
}
static inline int
mt76x2_sign_extend_optional(u32 val, unsigned int size)
{
bool enable = val & BIT(size);
return enable ? mt76x2_sign_extend(val, size) : 0;
}
static bool
field_valid(u8 val)
{
return val != 0 && val != 0xff;
}
static void
mt76x2_set_rx_gain_group(struct mt76x2_dev *dev, u8 val)
{
s8 *dest = dev->cal.rx.high_gain;
if (!field_valid(val)) {
dest[0] = 0;
dest[1] = 0;
return;
}
dest[0] = mt76x2_sign_extend(val, 4);
dest[1] = mt76x2_sign_extend(val >> 4, 4);
}
static void
mt76x2_set_rssi_offset(struct mt76x2_dev *dev, int chain, u8 val)
{
s8 *dest = dev->cal.rx.rssi_offset;
if (!field_valid(val)) {
dest[chain] = 0;
return;
}
dest[chain] = mt76x2_sign_extend_optional(val, 7);
}
static enum mt76x2_cal_channel_group
mt76x2_get_cal_channel_group(int channel)
{
if (channel >= 184 && channel <= 196)
return MT_CH_5G_JAPAN;
if (channel <= 48)
return MT_CH_5G_UNII_1;
if (channel <= 64)
return MT_CH_5G_UNII_2;
if (channel <= 114)
return MT_CH_5G_UNII_2E_1;
if (channel <= 144)
return MT_CH_5G_UNII_2E_2;
return MT_CH_5G_UNII_3;
}
static u8
mt76x2_get_5g_rx_gain(struct mt76x2_dev *dev, u8 channel)
{
enum mt76x2_cal_channel_group group;
group = mt76x2_get_cal_channel_group(channel);
switch (group) {
case MT_CH_5G_JAPAN:
return mt76x2_eeprom_get(dev, MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN);
case MT_CH_5G_UNII_1:
return mt76x2_eeprom_get(dev, MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN) >> 8;
case MT_CH_5G_UNII_2:
return mt76x2_eeprom_get(dev, MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN);
case MT_CH_5G_UNII_2E_1:
return mt76x2_eeprom_get(dev, MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN) >> 8;
case MT_CH_5G_UNII_2E_2:
return mt76x2_eeprom_get(dev, MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN);
default:
return mt76x2_eeprom_get(dev, MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN) >> 8;
}
}
void mt76x2_read_rx_gain(struct mt76x2_dev *dev)
{
struct ieee80211_channel *chan = dev->mt76.chandef.chan;
int channel = chan->hw_value;
s8 lna_5g[3], lna_2g;
u8 lna;
u16 val;
if (chan->band == NL80211_BAND_2GHZ)
val = mt76x2_eeprom_get(dev, MT_EE_RF_2G_RX_HIGH_GAIN) >> 8;
else
val = mt76x2_get_5g_rx_gain(dev, channel);
mt76x2_set_rx_gain_group(dev, val);
if (chan->band == NL80211_BAND_2GHZ) {
val = mt76x2_eeprom_get(dev, MT_EE_RSSI_OFFSET_2G_0);
mt76x2_set_rssi_offset(dev, 0, val);
mt76x2_set_rssi_offset(dev, 1, val >> 8);
} else {
val = mt76x2_eeprom_get(dev, MT_EE_RSSI_OFFSET_5G_0);
mt76x2_set_rssi_offset(dev, 0, val);
mt76x2_set_rssi_offset(dev, 1, val >> 8);
}
val = mt76x2_eeprom_get(dev, MT_EE_LNA_GAIN);
lna_2g = val & 0xff;
lna_5g[0] = val >> 8;
val = mt76x2_eeprom_get(dev, MT_EE_RSSI_OFFSET_2G_1);
lna_5g[1] = val >> 8;
val = mt76x2_eeprom_get(dev, MT_EE_RSSI_OFFSET_5G_1);
lna_5g[2] = val >> 8;
if (!field_valid(lna_5g[1]))
lna_5g[1] = lna_5g[0];
if (!field_valid(lna_5g[2]))
lna_5g[2] = lna_5g[0];
dev->cal.rx.mcu_gain = (lna_2g & 0xff);
dev->cal.rx.mcu_gain |= (lna_5g[0] & 0xff) << 8;
dev->cal.rx.mcu_gain |= (lna_5g[1] & 0xff) << 16;
dev->cal.rx.mcu_gain |= (lna_5g[2] & 0xff) << 24;
val = mt76x2_eeprom_get(dev, MT_EE_NIC_CONF_1);
if (val & MT_EE_NIC_CONF_1_LNA_EXT_2G)
lna_2g = 0;
if (val & MT_EE_NIC_CONF_1_LNA_EXT_5G)
memset(lna_5g, 0, sizeof(lna_5g));
if (chan->band == NL80211_BAND_2GHZ)
lna = lna_2g;
else if (channel <= 64)
lna = lna_5g[0];
else if (channel <= 128)
lna = lna_5g[1];
else
lna = lna_5g[2];
if (lna == 0xff)
lna = 0;
dev->cal.rx.lna_gain = mt76x2_sign_extend(lna, 8);
}
static s8
mt76x2_rate_power_val(u8 val)
{
if (!field_valid(val))
return 0;
return mt76x2_sign_extend_optional(val, 7);
}
void mt76x2_get_rate_power(struct mt76x2_dev *dev, struct mt76_rate_power *t)
{
bool is_5ghz;
u16 val;
is_5ghz = dev->mt76.chandef.chan->band == NL80211_BAND_5GHZ;
memset(t, 0, sizeof(*t));
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_CCK);
t->cck[0] = t->cck[1] = mt76x2_rate_power_val(val);
t->cck[2] = t->cck[3] = mt76x2_rate_power_val(val >> 8);
if (is_5ghz)
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_OFDM_5G_6M);
else
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_OFDM_2G_6M);
t->ofdm[0] = t->ofdm[1] = mt76x2_rate_power_val(val);
t->ofdm[2] = t->ofdm[3] = mt76x2_rate_power_val(val >> 8);
if (is_5ghz)
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_OFDM_5G_24M);
else
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_OFDM_2G_24M);
t->ofdm[4] = t->ofdm[5] = mt76x2_rate_power_val(val);
t->ofdm[6] = t->ofdm[7] = mt76x2_rate_power_val(val >> 8);
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS0);
t->ht[0] = t->ht[1] = mt76x2_rate_power_val(val);
t->ht[2] = t->ht[3] = mt76x2_rate_power_val(val >> 8);
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS4);
t->ht[4] = t->ht[5] = mt76x2_rate_power_val(val);
t->ht[6] = t->ht[7] = mt76x2_rate_power_val(val >> 8);
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS8);
t->ht[8] = t->ht[9] = mt76x2_rate_power_val(val);
t->ht[10] = t->ht[11] = mt76x2_rate_power_val(val >> 8);
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_HT_MCS12);
t->ht[12] = t->ht[13] = mt76x2_rate_power_val(val);
t->ht[14] = t->ht[15] = mt76x2_rate_power_val(val >> 8);
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_VHT_MCS0);
t->vht[0] = t->vht[1] = mt76x2_rate_power_val(val);
t->vht[2] = t->vht[3] = mt76x2_rate_power_val(val >> 8);
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_VHT_MCS4);
t->vht[4] = t->vht[5] = mt76x2_rate_power_val(val);
t->vht[6] = t->vht[7] = mt76x2_rate_power_val(val >> 8);
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_VHT_MCS8);
if (!is_5ghz)
val >>= 8;
t->vht[8] = t->vht[9] = mt76x2_rate_power_val(val >> 8);
}
static void
mt76x2_get_power_info_2g(struct mt76x2_dev *dev, struct mt76x2_tx_power_info *t,
int chain, int offset)
{
int channel = dev->mt76.chandef.chan->hw_value;
int delta_idx;
u8 data[6];
u16 val;
if (channel < 6)
delta_idx = 3;
else if (channel < 11)
delta_idx = 4;
else
delta_idx = 5;
mt76x2_eeprom_copy(dev, offset, data, sizeof(data));
t->chain[chain].tssi_slope = data[0];
t->chain[chain].tssi_offset = data[1];
t->chain[chain].target_power = data[2];
t->chain[chain].delta = mt76x2_sign_extend_optional(data[delta_idx], 7);
val = mt76x2_eeprom_get(dev, MT_EE_RF_2G_TSSI_OFF_TXPOWER);
t->target_power = val >> 8;
}
static void
mt76x2_get_power_info_5g(struct mt76x2_dev *dev, struct mt76x2_tx_power_info *t,
int chain, int offset)
{
int channel = dev->mt76.chandef.chan->hw_value;
enum mt76x2_cal_channel_group group;
int delta_idx;
u16 val;
u8 data[5];
group = mt76x2_get_cal_channel_group(channel);
offset += group * MT_TX_POWER_GROUP_SIZE_5G;
if (channel >= 192)
delta_idx = 4;
else if (channel >= 484)
delta_idx = 3;
else if (channel < 44)
delta_idx = 3;
else if (channel < 52)
delta_idx = 4;
else if (channel < 58)
delta_idx = 3;
else if (channel < 98)
delta_idx = 4;
else if (channel < 106)
delta_idx = 3;
else if (channel < 116)
delta_idx = 4;
else if (channel < 130)
delta_idx = 3;
else if (channel < 149)
delta_idx = 4;
else if (channel < 157)
delta_idx = 3;
else
delta_idx = 4;
mt76x2_eeprom_copy(dev, offset, data, sizeof(data));
t->chain[chain].tssi_slope = data[0];
t->chain[chain].tssi_offset = data[1];
t->chain[chain].target_power = data[2];
t->chain[chain].delta = mt76x2_sign_extend_optional(data[delta_idx], 7);
val = mt76x2_eeprom_get(dev, MT_EE_RF_2G_RX_HIGH_GAIN);
t->target_power = val & 0xff;
}
void mt76x2_get_power_info(struct mt76x2_dev *dev,
struct mt76x2_tx_power_info *t)
{
u16 bw40, bw80;
memset(t, 0, sizeof(*t));
bw40 = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_DELTA_BW40);
bw80 = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_DELTA_BW80);
if (dev->mt76.chandef.chan->band == NL80211_BAND_5GHZ) {
bw40 >>= 8;
mt76x2_get_power_info_5g(dev, t, 0, MT_EE_TX_POWER_0_START_5G);
mt76x2_get_power_info_5g(dev, t, 1, MT_EE_TX_POWER_1_START_5G);
} else {
mt76x2_get_power_info_2g(dev, t, 0, MT_EE_TX_POWER_0_START_2G);
mt76x2_get_power_info_2g(dev, t, 1, MT_EE_TX_POWER_1_START_2G);
}
if (mt76x2_tssi_enabled(dev) || !field_valid(t->target_power))
t->target_power = t->chain[0].target_power;
t->delta_bw40 = mt76x2_rate_power_val(bw40);
t->delta_bw80 = mt76x2_rate_power_val(bw80);
}
int mt76x2_get_temp_comp(struct mt76x2_dev *dev, struct mt76x2_temp_comp *t)
{
enum nl80211_band band = dev->mt76.chandef.chan->band;
u16 val, slope;
u8 bounds;
memset(t, 0, sizeof(*t));
val = mt76x2_eeprom_get(dev, MT_EE_NIC_CONF_1);
if (!(val & MT_EE_NIC_CONF_1_TEMP_TX_ALC))
return -EINVAL;
if (!mt76x2_ext_pa_enabled(dev, band))
return -EINVAL;
val = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_EXT_PA_5G) >> 8;
if (!(val & BIT(7)))
return -EINVAL;
t->temp_25_ref = val & 0x7f;
if (band == NL80211_BAND_5GHZ) {
slope = mt76x2_eeprom_get(dev, MT_EE_RF_TEMP_COMP_SLOPE_5G);
bounds = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_EXT_PA_5G);
} else {
slope = mt76x2_eeprom_get(dev, MT_EE_RF_TEMP_COMP_SLOPE_2G);
bounds = mt76x2_eeprom_get(dev, MT_EE_TX_POWER_DELTA_BW80) >> 8;
}
t->high_slope = slope & 0xff;
t->low_slope = slope >> 8;
t->lower_bound = 0 - (bounds & 0xf);
t->upper_bound = (bounds >> 4) & 0xf;
return 0;
}
bool mt76x2_ext_pa_enabled(struct mt76x2_dev *dev, enum nl80211_band band)
{
u16 conf0 = mt76x2_eeprom_get(dev, MT_EE_NIC_CONF_0);
if (band == NL80211_BAND_5GHZ)
return !(conf0 & MT_EE_NIC_CONF_0_PA_INT_5G);
else
return !(conf0 & MT_EE_NIC_CONF_0_PA_INT_2G);
}
int mt76x2_eeprom_init(struct mt76x2_dev *dev)
{
int ret;
ret = mt76x2_eeprom_load(dev);
if (ret)
return ret;
mt76x2_eeprom_parse_hw_cap(dev);
mt76x2_eeprom_get_macaddr(dev);
mt76_eeprom_override(&dev->mt76);
dev->mt76.macaddr[0] &= ~BIT(1);
return 0;
}

View File

@ -0,0 +1,182 @@
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef __MT76x2_EEPROM_H
#define __MT76x2_EEPROM_H
#include "mt76x2.h"
enum mt76x2_eeprom_field {
MT_EE_CHIP_ID = 0x000,
MT_EE_VERSION = 0x002,
MT_EE_MAC_ADDR = 0x004,
MT_EE_PCI_ID = 0x00A,
MT_EE_NIC_CONF_0 = 0x034,
MT_EE_NIC_CONF_1 = 0x036,
MT_EE_NIC_CONF_2 = 0x042,
MT_EE_XTAL_TRIM_1 = 0x03a,
MT_EE_XTAL_TRIM_2 = 0x09e,
MT_EE_LNA_GAIN = 0x044,
MT_EE_RSSI_OFFSET_2G_0 = 0x046,
MT_EE_RSSI_OFFSET_2G_1 = 0x048,
MT_EE_RSSI_OFFSET_5G_0 = 0x04a,
MT_EE_RSSI_OFFSET_5G_1 = 0x04c,
MT_EE_TX_POWER_DELTA_BW40 = 0x050,
MT_EE_TX_POWER_DELTA_BW80 = 0x052,
MT_EE_TX_POWER_EXT_PA_5G = 0x054,
MT_EE_TX_POWER_0_START_2G = 0x056,
MT_EE_TX_POWER_1_START_2G = 0x05c,
/* used as byte arrays */
#define MT_TX_POWER_GROUP_SIZE_5G 5
#define MT_TX_POWER_GROUPS_5G 6
MT_EE_TX_POWER_0_START_5G = 0x062,
MT_EE_TX_POWER_0_GRP3_TX_POWER_DELTA = 0x074,
MT_EE_TX_POWER_0_GRP4_TSSI_SLOPE = 0x076,
MT_EE_TX_POWER_1_START_5G = 0x080,
MT_EE_TX_POWER_CCK = 0x0a0,
MT_EE_TX_POWER_OFDM_2G_6M = 0x0a2,
MT_EE_TX_POWER_OFDM_2G_24M = 0x0a4,
MT_EE_TX_POWER_OFDM_5G_6M = 0x0b2,
MT_EE_TX_POWER_OFDM_5G_24M = 0x0b4,
MT_EE_TX_POWER_HT_MCS0 = 0x0a6,
MT_EE_TX_POWER_HT_MCS4 = 0x0a8,
MT_EE_TX_POWER_HT_MCS8 = 0x0aa,
MT_EE_TX_POWER_HT_MCS12 = 0x0ac,
MT_EE_TX_POWER_VHT_MCS0 = 0x0ba,
MT_EE_TX_POWER_VHT_MCS4 = 0x0bc,
MT_EE_TX_POWER_VHT_MCS8 = 0x0be,
MT_EE_RF_TEMP_COMP_SLOPE_5G = 0x0f2,
MT_EE_RF_TEMP_COMP_SLOPE_2G = 0x0f4,
MT_EE_RF_2G_TSSI_OFF_TXPOWER = 0x0f6,
MT_EE_RF_2G_RX_HIGH_GAIN = 0x0f8,
MT_EE_RF_5G_GRP0_1_RX_HIGH_GAIN = 0x0fa,
MT_EE_RF_5G_GRP2_3_RX_HIGH_GAIN = 0x0fc,
MT_EE_RF_5G_GRP4_5_RX_HIGH_GAIN = 0x0fe,
MT_EE_BT_RCAL_RESULT = 0x138,
MT_EE_BT_VCDL_CALIBRATION = 0x13c,
MT_EE_BT_PMUCFG = 0x13e,
__MT_EE_MAX
};
#define MT_EE_NIC_CONF_0_PA_INT_2G BIT(8)
#define MT_EE_NIC_CONF_0_PA_INT_5G BIT(9)
#define MT_EE_NIC_CONF_0_BOARD_TYPE GENMASK(13, 12)
#define MT_EE_NIC_CONF_1_TEMP_TX_ALC BIT(1)
#define MT_EE_NIC_CONF_1_LNA_EXT_2G BIT(2)
#define MT_EE_NIC_CONF_1_LNA_EXT_5G BIT(3)
#define MT_EE_NIC_CONF_1_TX_ALC_EN BIT(13)
#define MT_EE_NIC_CONF_2_RX_STREAM GENMASK(3, 0)
#define MT_EE_NIC_CONF_2_TX_STREAM GENMASK(7, 4)
#define MT_EE_NIC_CONF_2_HW_ANTDIV BIT(8)
#define MT_EE_NIC_CONF_2_XTAL_OPTION GENMASK(10, 9)
#define MT_EE_NIC_CONF_2_TEMP_DISABLE BIT(11)
#define MT_EE_NIC_CONF_2_COEX_METHOD GENMASK(15, 13)
enum mt76x2_board_type {
BOARD_TYPE_2GHZ = 1,
BOARD_TYPE_5GHZ = 2,
};
enum mt76x2_cal_channel_group {
MT_CH_5G_JAPAN,
MT_CH_5G_UNII_1,
MT_CH_5G_UNII_2,
MT_CH_5G_UNII_2E_1,
MT_CH_5G_UNII_2E_2,
MT_CH_5G_UNII_3,
__MT_CH_MAX
};
struct mt76x2_tx_power_info {
u8 target_power;
s8 delta_bw40;
s8 delta_bw80;
struct {
s8 tssi_slope;
s8 tssi_offset;
s8 target_power;
s8 delta;
} chain[MT_MAX_CHAINS];
};
struct mt76x2_temp_comp {
u8 temp_25_ref;
int lower_bound; /* J */
int upper_bound; /* J */
unsigned int high_slope; /* J / dB */
unsigned int low_slope; /* J / dB */
};
static inline int
mt76x2_eeprom_get(struct mt76x2_dev *dev, enum mt76x2_eeprom_field field)
{
if ((field & 1) || field >= __MT_EE_MAX)
return -1;
return get_unaligned_le16(dev->mt76.eeprom.data + field);
}
void mt76x2_get_rate_power(struct mt76x2_dev *dev, struct mt76_rate_power *t);
void mt76x2_get_power_info(struct mt76x2_dev *dev,
struct mt76x2_tx_power_info *t);
int mt76x2_get_temp_comp(struct mt76x2_dev *dev, struct mt76x2_temp_comp *t);
bool mt76x2_ext_pa_enabled(struct mt76x2_dev *dev, enum nl80211_band band);
void mt76x2_read_rx_gain(struct mt76x2_dev *dev);
static inline bool
mt76x2_temp_tx_alc_enabled(struct mt76x2_dev *dev)
{
return mt76x2_eeprom_get(dev, MT_EE_NIC_CONF_1) &
MT_EE_NIC_CONF_1_TEMP_TX_ALC;
}
static inline bool
mt76x2_tssi_enabled(struct mt76x2_dev *dev)
{
return !mt76x2_temp_tx_alc_enabled(dev) &&
(mt76x2_eeprom_get(dev, MT_EE_NIC_CONF_1) &
MT_EE_NIC_CONF_1_TX_ALC_EN);
}
static inline bool
mt76x2_has_ext_lna(struct mt76x2_dev *dev)
{
u32 val = mt76x2_eeprom_get(dev, MT_EE_NIC_CONF_1);
if (dev->mt76.chandef.chan->band == NL80211_BAND_2GHZ)
return val & MT_EE_NIC_CONF_1_LNA_EXT_2G;
else
return val & MT_EE_NIC_CONF_1_LNA_EXT_5G;
}
#endif

View File

@ -0,0 +1,839 @@
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/delay.h>
#include "mt76x2.h"
#include "mt76x2_eeprom.h"
#include "mt76x2_mcu.h"
struct mt76x2_reg_pair {
u32 reg;
u32 value;
};
static bool
mt76x2_wait_for_mac(struct mt76x2_dev *dev)
{
int i;
for (i = 0; i < 500; i++) {
switch (mt76_rr(dev, MT_MAC_CSR0)) {
case 0:
case ~0:
break;
default:
return true;
}
usleep_range(5000, 10000);
}
return false;
}
static bool
wait_for_wpdma(struct mt76x2_dev *dev)
{
return mt76_poll(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
MT_WPDMA_GLO_CFG_RX_DMA_BUSY,
0, 1000);
}
static void
mt76x2_mac_pbf_init(struct mt76x2_dev *dev)
{
u32 val;
val = MT_PBF_SYS_CTRL_MCU_RESET |
MT_PBF_SYS_CTRL_DMA_RESET |
MT_PBF_SYS_CTRL_MAC_RESET |
MT_PBF_SYS_CTRL_PBF_RESET |
MT_PBF_SYS_CTRL_ASY_RESET;
mt76_set(dev, MT_PBF_SYS_CTRL, val);
mt76_clear(dev, MT_PBF_SYS_CTRL, val);
mt76_wr(dev, MT_PBF_TX_MAX_PCNT, 0xefef3f1f);
mt76_wr(dev, MT_PBF_RX_MAX_PCNT, 0xfebf);
}
static void
mt76x2_write_reg_pairs(struct mt76x2_dev *dev,
const struct mt76x2_reg_pair *data, int len)
{
while (len > 0) {
mt76_wr(dev, data->reg, data->value);
len--;
data++;
}
}
static void
mt76_write_mac_initvals(struct mt76x2_dev *dev)
{
#define DEFAULT_PROT_CFG \
(FIELD_PREP(MT_PROT_CFG_RATE, 0x2004) | \
FIELD_PREP(MT_PROT_CFG_NAV, 1) | \
FIELD_PREP(MT_PROT_CFG_TXOP_ALLOW, 0x3f) | \
MT_PROT_CFG_RTS_THRESH)
#define DEFAULT_PROT_CFG_20 \
(FIELD_PREP(MT_PROT_CFG_RATE, 0x2004) | \
FIELD_PREP(MT_PROT_CFG_CTRL, 1) | \
FIELD_PREP(MT_PROT_CFG_NAV, 1) | \
FIELD_PREP(MT_PROT_CFG_TXOP_ALLOW, 0x17))
#define DEFAULT_PROT_CFG_40 \
(FIELD_PREP(MT_PROT_CFG_RATE, 0x2084) | \
FIELD_PREP(MT_PROT_CFG_CTRL, 1) | \
FIELD_PREP(MT_PROT_CFG_NAV, 1) | \
FIELD_PREP(MT_PROT_CFG_TXOP_ALLOW, 0x3f))
static const struct mt76x2_reg_pair vals[] = {
/* Copied from MediaTek reference source */
{ MT_PBF_SYS_CTRL, 0x00080c00 },
{ MT_PBF_CFG, 0x1efebcff },
{ MT_FCE_PSE_CTRL, 0x00000001 },
{ MT_MAC_SYS_CTRL, 0x0000000c },
{ MT_MAX_LEN_CFG, 0x003e3f00 },
{ MT_AMPDU_MAX_LEN_20M1S, 0xaaa99887 },
{ MT_AMPDU_MAX_LEN_20M2S, 0x000000aa },
{ MT_XIFS_TIME_CFG, 0x33a40d0a },
{ MT_BKOFF_SLOT_CFG, 0x00000209 },
{ MT_TBTT_SYNC_CFG, 0x00422010 },
{ MT_PWR_PIN_CFG, 0x00000000 },
{ 0x1238, 0x001700c8 },
{ MT_TX_SW_CFG0, 0x00101001 },
{ MT_TX_SW_CFG1, 0x00010000 },
{ MT_TX_SW_CFG2, 0x00000000 },
{ MT_TXOP_CTRL_CFG, 0x0400583f },
{ MT_TX_RTS_CFG, 0x00100020 },
{ MT_TX_TIMEOUT_CFG, 0x000a2290 },
{ MT_TX_RETRY_CFG, 0x47f01f0f },
{ MT_EXP_ACK_TIME, 0x002c00dc },
{ MT_TX_PROT_CFG6, 0xe3f42004 },
{ MT_TX_PROT_CFG7, 0xe3f42084 },
{ MT_TX_PROT_CFG8, 0xe3f42104 },
{ MT_PIFS_TX_CFG, 0x00060fff },
{ MT_RX_FILTR_CFG, 0x00015f97 },
{ MT_LEGACY_BASIC_RATE, 0x0000017f },
{ MT_HT_BASIC_RATE, 0x00004003 },
{ MT_PN_PAD_MODE, 0x00000002 },
{ MT_TXOP_HLDR_ET, 0x00000002 },
{ 0xa44, 0x00000000 },
{ MT_HEADER_TRANS_CTRL_REG, 0x00000000 },
{ MT_TSO_CTRL, 0x00000000 },
{ MT_AUX_CLK_CFG, 0x00000000 },
{ MT_DACCLK_EN_DLY_CFG, 0x00000000 },
{ MT_TX_ALC_CFG_4, 0x00000000 },
{ MT_TX_ALC_VGA3, 0x00000000 },
{ MT_TX_PWR_CFG_0, 0x3a3a3a3a },
{ MT_TX_PWR_CFG_1, 0x3a3a3a3a },
{ MT_TX_PWR_CFG_2, 0x3a3a3a3a },
{ MT_TX_PWR_CFG_3, 0x3a3a3a3a },
{ MT_TX_PWR_CFG_4, 0x3a3a3a3a },
{ MT_TX_PWR_CFG_7, 0x3a3a3a3a },
{ MT_TX_PWR_CFG_8, 0x0000003a },
{ MT_TX_PWR_CFG_9, 0x0000003a },
{ MT_EFUSE_CTRL, 0x0000d000 },
{ MT_PAUSE_ENABLE_CONTROL1, 0x0000000a },
{ MT_FCE_WLAN_FLOW_CONTROL1, 0x60401c18 },
{ MT_WPDMA_DELAY_INT_CFG, 0x94ff0000 },
{ MT_TX_SW_CFG3, 0x00000004 },
{ MT_HT_FBK_TO_LEGACY, 0x00001818 },
{ MT_VHT_HT_FBK_CFG1, 0xedcba980 },
{ MT_PROT_AUTO_TX_CFG, 0x00830083 },
{ MT_HT_CTRL_CFG, 0x000001ff },
};
struct mt76x2_reg_pair prot_vals[] = {
{ MT_CCK_PROT_CFG, DEFAULT_PROT_CFG },
{ MT_OFDM_PROT_CFG, DEFAULT_PROT_CFG },
{ MT_MM20_PROT_CFG, DEFAULT_PROT_CFG_20 },
{ MT_MM40_PROT_CFG, DEFAULT_PROT_CFG_40 },
{ MT_GF20_PROT_CFG, DEFAULT_PROT_CFG_20 },
{ MT_GF40_PROT_CFG, DEFAULT_PROT_CFG_40 },
};
mt76x2_write_reg_pairs(dev, vals, ARRAY_SIZE(vals));
mt76x2_write_reg_pairs(dev, prot_vals, ARRAY_SIZE(prot_vals));
}
static void
mt76x2_fixup_xtal(struct mt76x2_dev *dev)
{
u16 eep_val;
s8 offset = 0;
eep_val = mt76x2_eeprom_get(dev, MT_EE_XTAL_TRIM_2);
offset = eep_val & 0x7f;
if ((eep_val & 0xff) == 0xff)
offset = 0;
else if (eep_val & 0x80)
offset = 0 - offset;
eep_val >>= 8;
if (eep_val == 0x00 || eep_val == 0xff) {
eep_val = mt76x2_eeprom_get(dev, MT_EE_XTAL_TRIM_1);
eep_val &= 0xff;
if (eep_val == 0x00 || eep_val == 0xff)
eep_val = 0x14;
}
eep_val &= 0x7f;
mt76_rmw_field(dev, MT_XO_CTRL5, MT_XO_CTRL5_C2_VAL, eep_val + offset);
mt76_set(dev, MT_XO_CTRL6, MT_XO_CTRL6_C2_CTRL);
eep_val = mt76x2_eeprom_get(dev, MT_EE_NIC_CONF_2);
switch (FIELD_GET(MT_EE_NIC_CONF_2_XTAL_OPTION, eep_val)) {
case 0:
mt76_wr(dev, MT_XO_CTRL7, 0x5c1fee80);
break;
case 1:
mt76_wr(dev, MT_XO_CTRL7, 0x5c1feed0);
break;
default:
break;
}
}
static void
mt76x2_init_beacon_offsets(struct mt76x2_dev *dev)
{
u16 base = MT_BEACON_BASE;
u32 regs[4] = {};
int i;
for (i = 0; i < 16; i++) {
u16 addr = dev->beacon_offsets[i];
regs[i / 4] |= ((addr - base) / 64) << (8 * (i % 4));
}
for (i = 0; i < 4; i++)
mt76_wr(dev, MT_BCN_OFFSET(i), regs[i]);
}
int mt76x2_mac_reset(struct mt76x2_dev *dev, bool hard)
{
static const u8 null_addr[ETH_ALEN] = {};
const u8 *macaddr = dev->mt76.macaddr;
u32 val;
int i, k;
if (!mt76x2_wait_for_mac(dev))
return -ETIMEDOUT;
val = mt76_rr(dev, MT_WPDMA_GLO_CFG);
val &= ~(MT_WPDMA_GLO_CFG_TX_DMA_EN |
MT_WPDMA_GLO_CFG_TX_DMA_BUSY |
MT_WPDMA_GLO_CFG_RX_DMA_EN |
MT_WPDMA_GLO_CFG_RX_DMA_BUSY |
MT_WPDMA_GLO_CFG_DMA_BURST_SIZE);
val |= FIELD_PREP(MT_WPDMA_GLO_CFG_DMA_BURST_SIZE, 3);
mt76_wr(dev, MT_WPDMA_GLO_CFG, val);
mt76x2_mac_pbf_init(dev);
mt76_write_mac_initvals(dev);
mt76x2_fixup_xtal(dev);
mt76_clear(dev, MT_MAC_SYS_CTRL,
MT_MAC_SYS_CTRL_RESET_CSR |
MT_MAC_SYS_CTRL_RESET_BBP);
if (is_mt7612(dev))
mt76_clear(dev, MT_COEXCFG0, MT_COEXCFG0_COEX_EN);
mt76_set(dev, MT_EXT_CCA_CFG, 0x0000f000);
mt76_clear(dev, MT_TX_ALC_CFG_4, BIT(31));
mt76_wr(dev, MT_RF_BYPASS_0, 0x06000000);
mt76_wr(dev, MT_RF_SETTING_0, 0x08800000);
usleep_range(5000, 10000);
mt76_wr(dev, MT_RF_BYPASS_0, 0x00000000);
mt76_wr(dev, MT_MCU_CLOCK_CTL, 0x1401);
mt76_clear(dev, MT_FCE_L2_STUFF, MT_FCE_L2_STUFF_WR_MPDU_LEN_EN);
mt76_wr(dev, MT_MAC_ADDR_DW0, get_unaligned_le32(macaddr));
mt76_wr(dev, MT_MAC_ADDR_DW1, get_unaligned_le16(macaddr + 4));
mt76_wr(dev, MT_MAC_BSSID_DW0, get_unaligned_le32(macaddr));
mt76_wr(dev, MT_MAC_BSSID_DW1, get_unaligned_le16(macaddr + 4) |
FIELD_PREP(MT_MAC_BSSID_DW1_MBSS_MODE, 3) | /* 8 beacons */
MT_MAC_BSSID_DW1_MBSS_LOCAL_BIT);
/* Fire a pre-TBTT interrupt 8 ms before TBTT */
mt76_rmw_field(dev, MT_INT_TIMER_CFG, MT_INT_TIMER_CFG_PRE_TBTT,
8 << 4);
mt76_rmw_field(dev, MT_INT_TIMER_CFG, MT_INT_TIMER_CFG_GP_TIMER,
MT_DFS_GP_INTERVAL);
mt76_wr(dev, MT_INT_TIMER_EN, 0);
mt76_wr(dev, MT_BCN_BYPASS_MASK, 0xffff);
if (!hard)
return 0;
for (i = 0; i < 256 / 32; i++)
mt76_wr(dev, MT_WCID_DROP_BASE + i * 4, 0);
for (i = 0; i < 256; i++)
mt76x2_mac_wcid_setup(dev, i, 0, NULL);
for (i = 0; i < 16; i++)
for (k = 0; k < 4; k++)
mt76x2_mac_shared_key_setup(dev, i, k, NULL);
for (i = 0; i < 8; i++) {
mt76x2_mac_set_bssid(dev, i, null_addr);
mt76x2_mac_set_beacon(dev, i, NULL);
}
for (i = 0; i < 16; i++)
mt76_rr(dev, MT_TX_STAT_FIFO);
mt76_set(dev, MT_MAC_APC_BSSID_H(0), MT_MAC_APC_BSSID0_H_EN);
mt76_wr(dev, MT_CH_TIME_CFG,
MT_CH_TIME_CFG_TIMER_EN |
MT_CH_TIME_CFG_TX_AS_BUSY |
MT_CH_TIME_CFG_RX_AS_BUSY |
MT_CH_TIME_CFG_NAV_AS_BUSY |
MT_CH_TIME_CFG_EIFS_AS_BUSY |
FIELD_PREP(MT_CH_TIME_CFG_CH_TIMER_CLR, 1));
mt76x2_init_beacon_offsets(dev);
mt76x2_set_tx_ackto(dev);
return 0;
}
int mt76x2_mac_start(struct mt76x2_dev *dev)
{
int i;
for (i = 0; i < 16; i++)
mt76_rr(dev, MT_TX_AGG_CNT(i));
for (i = 0; i < 16; i++)
mt76_rr(dev, MT_TX_STAT_FIFO);
memset(dev->aggr_stats, 0, sizeof(dev->aggr_stats));
mt76_wr(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_ENABLE_TX);
wait_for_wpdma(dev);
usleep_range(50, 100);
mt76_set(dev, MT_WPDMA_GLO_CFG,
MT_WPDMA_GLO_CFG_TX_DMA_EN |
MT_WPDMA_GLO_CFG_RX_DMA_EN);
mt76_clear(dev, MT_WPDMA_GLO_CFG, MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE);
mt76_wr(dev, MT_RX_FILTR_CFG, dev->rxfilter);
mt76_wr(dev, MT_MAC_SYS_CTRL,
MT_MAC_SYS_CTRL_ENABLE_TX |
MT_MAC_SYS_CTRL_ENABLE_RX);
mt76x2_irq_enable(dev, MT_INT_RX_DONE_ALL | MT_INT_TX_DONE_ALL |
MT_INT_TX_STAT);
return 0;
}
void mt76x2_mac_stop(struct mt76x2_dev *dev, bool force)
{
bool stopped = false;
u32 rts_cfg;
int i;
mt76_wr(dev, MT_MAC_SYS_CTRL, 0);
rts_cfg = mt76_rr(dev, MT_TX_RTS_CFG);
mt76_wr(dev, MT_TX_RTS_CFG, rts_cfg & ~MT_TX_RTS_CFG_RETRY_LIMIT);
/* Wait for MAC to become idle */
for (i = 0; i < 300; i++) {
if (mt76_rr(dev, MT_MAC_STATUS) &
(MT_MAC_STATUS_RX | MT_MAC_STATUS_TX))
continue;
if (mt76_rr(dev, MT_BBP(IBI, 12)))
continue;
stopped = true;
break;
}
if (force && !stopped) {
mt76_set(dev, MT_BBP(CORE, 4), BIT(1));
mt76_clear(dev, MT_BBP(CORE, 4), BIT(1));
mt76_set(dev, MT_BBP(CORE, 4), BIT(0));
mt76_clear(dev, MT_BBP(CORE, 4), BIT(0));
}
mt76_wr(dev, MT_TX_RTS_CFG, rts_cfg);
}
void mt76x2_mac_resume(struct mt76x2_dev *dev)
{
mt76_wr(dev, MT_MAC_SYS_CTRL,
MT_MAC_SYS_CTRL_ENABLE_TX |
MT_MAC_SYS_CTRL_ENABLE_RX);
}
static void
mt76x2_power_on_rf_patch(struct mt76x2_dev *dev)
{
mt76_set(dev, 0x10130, BIT(0) | BIT(16));
udelay(1);
mt76_clear(dev, 0x1001c, 0xff);
mt76_set(dev, 0x1001c, 0x30);
mt76_wr(dev, 0x10014, 0x484f);
udelay(1);
mt76_set(dev, 0x10130, BIT(17));
udelay(125);
mt76_clear(dev, 0x10130, BIT(16));
udelay(50);
mt76_set(dev, 0x1014c, BIT(19) | BIT(20));
}
static void
mt76x2_power_on_rf(struct mt76x2_dev *dev, int unit)
{
int shift = unit ? 8 : 0;
/* Enable RF BG */
mt76_set(dev, 0x10130, BIT(0) << shift);
udelay(10);
/* Enable RFDIG LDO/AFE/ABB/ADDA */
mt76_set(dev, 0x10130, (BIT(1) | BIT(3) | BIT(4) | BIT(5)) << shift);
udelay(10);
/* Switch RFDIG power to internal LDO */
mt76_clear(dev, 0x10130, BIT(2) << shift);
udelay(10);
mt76x2_power_on_rf_patch(dev);
mt76_set(dev, 0x530, 0xf);
}
static void
mt76x2_power_on(struct mt76x2_dev *dev)
{
u32 val;
/* Turn on WL MTCMOS */
mt76_set(dev, MT_WLAN_MTC_CTRL, MT_WLAN_MTC_CTRL_MTCMOS_PWR_UP);
val = MT_WLAN_MTC_CTRL_STATE_UP |
MT_WLAN_MTC_CTRL_PWR_ACK |
MT_WLAN_MTC_CTRL_PWR_ACK_S;
mt76_poll(dev, MT_WLAN_MTC_CTRL, val, val, 1000);
mt76_clear(dev, MT_WLAN_MTC_CTRL, 0x7f << 16);
udelay(10);
mt76_clear(dev, MT_WLAN_MTC_CTRL, 0xf << 24);
udelay(10);
mt76_set(dev, MT_WLAN_MTC_CTRL, 0xf << 24);
mt76_clear(dev, MT_WLAN_MTC_CTRL, 0xfff);
/* Turn on AD/DA power down */
mt76_clear(dev, 0x11204, BIT(3));
/* WLAN function enable */
mt76_set(dev, 0x10080, BIT(0));
/* Release BBP software reset */
mt76_clear(dev, 0x10064, BIT(18));
mt76x2_power_on_rf(dev, 0);
mt76x2_power_on_rf(dev, 1);
}
void mt76x2_set_tx_ackto(struct mt76x2_dev *dev)
{
u8 ackto, sifs, slottime = dev->slottime;
slottime += 3 * dev->coverage_class;
sifs = mt76_get_field(dev, MT_XIFS_TIME_CFG,
MT_XIFS_TIME_CFG_OFDM_SIFS);
ackto = slottime + sifs;
mt76_rmw_field(dev, MT_TX_TIMEOUT_CFG,
MT_TX_TIMEOUT_CFG_ACKTO, ackto);
}
static void
mt76x2_set_wlan_state(struct mt76x2_dev *dev, bool enable)
{
u32 val = mt76_rr(dev, MT_WLAN_FUN_CTRL);
if (enable)
val |= (MT_WLAN_FUN_CTRL_WLAN_EN |
MT_WLAN_FUN_CTRL_WLAN_CLK_EN);
else
val &= ~(MT_WLAN_FUN_CTRL_WLAN_EN |
MT_WLAN_FUN_CTRL_WLAN_CLK_EN);
mt76_wr(dev, MT_WLAN_FUN_CTRL, val);
udelay(20);
}
static void
mt76x2_reset_wlan(struct mt76x2_dev *dev, bool enable)
{
u32 val;
val = mt76_rr(dev, MT_WLAN_FUN_CTRL);
val &= ~MT_WLAN_FUN_CTRL_FRC_WL_ANT_SEL;
if (val & MT_WLAN_FUN_CTRL_WLAN_EN) {
val |= MT_WLAN_FUN_CTRL_WLAN_RESET_RF;
mt76_wr(dev, MT_WLAN_FUN_CTRL, val);
udelay(20);
val &= ~MT_WLAN_FUN_CTRL_WLAN_RESET_RF;
}
mt76_wr(dev, MT_WLAN_FUN_CTRL, val);
udelay(20);
mt76x2_set_wlan_state(dev, enable);
}
int mt76x2_init_hardware(struct mt76x2_dev *dev)
{
static const u16 beacon_offsets[16] = {
/* 1024 byte per beacon */
0xc000,
0xc400,
0xc800,
0xcc00,
0xd000,
0xd400,
0xd800,
0xdc00,
/* BSS idx 8-15 not used for beacons */
0xc000,
0xc000,
0xc000,
0xc000,
0xc000,
0xc000,
0xc000,
0xc000,
};
u32 val;
int ret;
dev->beacon_offsets = beacon_offsets;
tasklet_init(&dev->pre_tbtt_tasklet, mt76x2_pre_tbtt_tasklet,
(unsigned long) dev);
dev->chainmask = 0x202;
dev->global_wcid.idx = 255;
dev->global_wcid.hw_key_idx = -1;
dev->slottime = 9;
val = mt76_rr(dev, MT_WPDMA_GLO_CFG);
val &= MT_WPDMA_GLO_CFG_DMA_BURST_SIZE |
MT_WPDMA_GLO_CFG_BIG_ENDIAN |
MT_WPDMA_GLO_CFG_HDR_SEG_LEN;
val |= MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE;
mt76_wr(dev, MT_WPDMA_GLO_CFG, val);
mt76x2_reset_wlan(dev, true);
mt76x2_power_on(dev);
ret = mt76x2_eeprom_init(dev);
if (ret)
return ret;
ret = mt76x2_mac_reset(dev, true);
if (ret)
return ret;
ret = mt76x2_dma_init(dev);
if (ret)
return ret;
set_bit(MT76_STATE_INITIALIZED, &dev->mt76.state);
ret = mt76x2_mac_start(dev);
if (ret)
return ret;
ret = mt76x2_mcu_init(dev);
if (ret)
return ret;
mt76x2_mac_stop(dev, false);
dev->rxfilter = mt76_rr(dev, MT_RX_FILTR_CFG);
return 0;
}
void mt76x2_stop_hardware(struct mt76x2_dev *dev)
{
cancel_delayed_work_sync(&dev->cal_work);
cancel_delayed_work_sync(&dev->mac_work);
mt76x2_mcu_set_radio_state(dev, false);
mt76x2_mac_stop(dev, false);
}
void mt76x2_cleanup(struct mt76x2_dev *dev)
{
mt76x2_stop_hardware(dev);
mt76x2_dma_cleanup(dev);
mt76x2_mcu_cleanup(dev);
}
struct mt76x2_dev *mt76x2_alloc_device(struct device *pdev)
{
static const struct mt76_driver_ops drv_ops = {
.txwi_size = sizeof(struct mt76x2_txwi),
.update_survey = mt76x2_update_channel,
.tx_prepare_skb = mt76x2_tx_prepare_skb,
.tx_complete_skb = mt76x2_tx_complete_skb,
.rx_skb = mt76x2_queue_rx_skb,
.rx_poll_complete = mt76x2_rx_poll_complete,
};
struct ieee80211_hw *hw;
struct mt76x2_dev *dev;
hw = ieee80211_alloc_hw(sizeof(*dev), &mt76x2_ops);
if (!hw)
return NULL;
dev = hw->priv;
dev->mt76.dev = pdev;
dev->mt76.hw = hw;
dev->mt76.drv = &drv_ops;
mutex_init(&dev->mutex);
spin_lock_init(&dev->irq_lock);
return dev;
}
static void mt76x2_regd_notifier(struct wiphy *wiphy,
struct regulatory_request *request)
{
struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
struct mt76x2_dev *dev = hw->priv;
dev->dfs_pd.region = request->dfs_region;
}
#define CCK_RATE(_idx, _rate) { \
.bitrate = _rate, \
.flags = IEEE80211_RATE_SHORT_PREAMBLE, \
.hw_value = (MT_PHY_TYPE_CCK << 8) | _idx, \
.hw_value_short = (MT_PHY_TYPE_CCK << 8) | (8 + _idx), \
}
#define OFDM_RATE(_idx, _rate) { \
.bitrate = _rate, \
.hw_value = (MT_PHY_TYPE_OFDM << 8) | _idx, \
.hw_value_short = (MT_PHY_TYPE_OFDM << 8) | _idx, \
}
static struct ieee80211_rate mt76x2_rates[] = {
CCK_RATE(0, 10),
CCK_RATE(1, 20),
CCK_RATE(2, 55),
CCK_RATE(3, 110),
OFDM_RATE(0, 60),
OFDM_RATE(1, 90),
OFDM_RATE(2, 120),
OFDM_RATE(3, 180),
OFDM_RATE(4, 240),
OFDM_RATE(5, 360),
OFDM_RATE(6, 480),
OFDM_RATE(7, 540),
};
static const struct ieee80211_iface_limit if_limits[] = {
{
.max = 1,
.types = BIT(NL80211_IFTYPE_ADHOC)
}, {
.max = 8,
.types = BIT(NL80211_IFTYPE_STATION) |
#ifdef CONFIG_MAC80211_MESH
BIT(NL80211_IFTYPE_MESH_POINT) |
#endif
BIT(NL80211_IFTYPE_AP)
},
};
static const struct ieee80211_iface_combination if_comb[] = {
{
.limits = if_limits,
.n_limits = ARRAY_SIZE(if_limits),
.max_interfaces = 8,
.num_different_channels = 1,
.beacon_int_infra_match = true,
.radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
BIT(NL80211_CHAN_WIDTH_20) |
BIT(NL80211_CHAN_WIDTH_40) |
BIT(NL80211_CHAN_WIDTH_80),
}
};
static void mt76x2_led_set_config(struct mt76_dev *mt76, u8 delay_on,
u8 delay_off)
{
struct mt76x2_dev *dev = container_of(mt76, struct mt76x2_dev,
mt76);
u32 val;
val = MT_LED_STATUS_DURATION(0xff) |
MT_LED_STATUS_OFF(delay_off) |
MT_LED_STATUS_ON(delay_on);
mt76_wr(dev, MT_LED_S0(mt76->led_pin), val);
mt76_wr(dev, MT_LED_S1(mt76->led_pin), val);
val = MT_LED_CTRL_REPLAY(mt76->led_pin) |
MT_LED_CTRL_KICK(mt76->led_pin);
if (mt76->led_al)
val |= MT_LED_CTRL_POLARITY(mt76->led_pin);
mt76_wr(dev, MT_LED_CTRL, val);
}
static int mt76x2_led_set_blink(struct led_classdev *led_cdev,
unsigned long *delay_on,
unsigned long *delay_off)
{
struct mt76_dev *mt76 = container_of(led_cdev, struct mt76_dev,
led_cdev);
u8 delta_on, delta_off;
delta_off = max_t(u8, *delay_off / 10, 1);
delta_on = max_t(u8, *delay_on / 10, 1);
mt76x2_led_set_config(mt76, delta_on, delta_off);
return 0;
}
static void mt76x2_led_set_brightness(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct mt76_dev *mt76 = container_of(led_cdev, struct mt76_dev,
led_cdev);
if (!brightness)
mt76x2_led_set_config(mt76, 0, 0xff);
else
mt76x2_led_set_config(mt76, 0xff, 0);
}
int mt76x2_register_device(struct mt76x2_dev *dev)
{
struct ieee80211_hw *hw = mt76_hw(dev);
struct wiphy *wiphy = hw->wiphy;
void *status_fifo;
int fifo_size;
int i, ret;
fifo_size = roundup_pow_of_two(32 * sizeof(struct mt76x2_tx_status));
status_fifo = devm_kzalloc(dev->mt76.dev, fifo_size, GFP_KERNEL);
if (!status_fifo)
return -ENOMEM;
kfifo_init(&dev->txstatus_fifo, status_fifo, fifo_size);
ret = mt76x2_init_hardware(dev);
if (ret)
return ret;
hw->queues = 4;
hw->max_rates = 1;
hw->max_report_rates = 7;
hw->max_rate_tries = 1;
hw->extra_tx_headroom = 2;
hw->sta_data_size = sizeof(struct mt76x2_sta);
hw->vif_data_size = sizeof(struct mt76x2_vif);
for (i = 0; i < ARRAY_SIZE(dev->macaddr_list); i++) {
u8 *addr = dev->macaddr_list[i].addr;
memcpy(addr, dev->mt76.macaddr, ETH_ALEN);
if (!i)
continue;
addr[0] |= BIT(1);
addr[0] ^= ((i - 1) << 2);
}
wiphy->addresses = dev->macaddr_list;
wiphy->n_addresses = ARRAY_SIZE(dev->macaddr_list);
wiphy->iface_combinations = if_comb;
wiphy->n_iface_combinations = ARRAY_SIZE(if_comb);
wiphy->reg_notifier = mt76x2_regd_notifier;
wiphy_ext_feature_set(wiphy, NL80211_EXT_FEATURE_VHT_IBSS);
ieee80211_hw_set(hw, SUPPORTS_HT_CCK_RATES);
INIT_DELAYED_WORK(&dev->cal_work, mt76x2_phy_calibrate);
INIT_DELAYED_WORK(&dev->mac_work, mt76x2_mac_work);
dev->mt76.sband_2g.sband.ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING;
dev->mt76.sband_5g.sband.ht_cap.cap |= IEEE80211_HT_CAP_LDPC_CODING;
mt76x2_dfs_init_detector(dev);
/* init led callbacks */
dev->mt76.led_cdev.brightness_set = mt76x2_led_set_brightness;
dev->mt76.led_cdev.blink_set = mt76x2_led_set_blink;
ret = mt76_register_device(&dev->mt76, true, mt76x2_rates,
ARRAY_SIZE(mt76x2_rates));
if (ret)
goto fail;
mt76x2_init_debugfs(dev);
return 0;
fail:
mt76x2_stop_hardware(dev);
return ret;
}

View File

@ -0,0 +1,755 @@
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/delay.h>
#include "mt76x2.h"
#include "mt76x2_mcu.h"
#include "mt76x2_eeprom.h"
#include "mt76x2_trace.h"
void mt76x2_mac_set_bssid(struct mt76x2_dev *dev, u8 idx, const u8 *addr)
{
idx &= 7;
mt76_wr(dev, MT_MAC_APC_BSSID_L(idx), get_unaligned_le32(addr));
mt76_rmw_field(dev, MT_MAC_APC_BSSID_H(idx), MT_MAC_APC_BSSID_H_ADDR,
get_unaligned_le16(addr + 4));
}
static void
mt76x2_mac_process_rate(struct ieee80211_rx_status *status, u16 rate)
{
u8 idx = FIELD_GET(MT_RXWI_RATE_INDEX, rate);
switch (FIELD_GET(MT_RXWI_RATE_PHY, rate)) {
case MT_PHY_TYPE_OFDM:
if (idx >= 8)
idx = 0;
if (status->band == NL80211_BAND_2GHZ)
idx += 4;
status->rate_idx = idx;
return;
case MT_PHY_TYPE_CCK:
if (idx >= 8) {
idx -= 8;
status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
}
if (idx >= 4)
idx = 0;
status->rate_idx = idx;
return;
case MT_PHY_TYPE_HT_GF:
status->enc_flags |= RX_ENC_FLAG_HT_GF;
/* fall through */
case MT_PHY_TYPE_HT:
status->encoding = RX_ENC_HT;
status->rate_idx = idx;
break;
case MT_PHY_TYPE_VHT:
status->encoding = RX_ENC_VHT;
status->rate_idx = FIELD_GET(MT_RATE_INDEX_VHT_IDX, idx);
status->nss = FIELD_GET(MT_RATE_INDEX_VHT_NSS, idx) + 1;
break;
default:
WARN_ON(1);
return;
}
if (rate & MT_RXWI_RATE_LDPC)
status->enc_flags |= RX_ENC_FLAG_LDPC;
if (rate & MT_RXWI_RATE_SGI)
status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
if (rate & MT_RXWI_RATE_STBC)
status->enc_flags |= 1 << RX_ENC_FLAG_STBC_SHIFT;
switch (FIELD_GET(MT_RXWI_RATE_BW, rate)) {
case MT_PHY_BW_20:
break;
case MT_PHY_BW_40:
status->bw = RATE_INFO_BW_40;
break;
case MT_PHY_BW_80:
status->bw = RATE_INFO_BW_80;
break;
default:
break;
}
}
static __le16
mt76x2_mac_tx_rate_val(struct mt76x2_dev *dev,
const struct ieee80211_tx_rate *rate, u8 *nss_val)
{
u16 rateval;
u8 phy, rate_idx;
u8 nss = 1;
u8 bw = 0;
if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
rate_idx = rate->idx;
nss = 1 + (rate->idx >> 4);
phy = MT_PHY_TYPE_VHT;
if (rate->flags & IEEE80211_TX_RC_80_MHZ_WIDTH)
bw = 2;
else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
bw = 1;
} else if (rate->flags & IEEE80211_TX_RC_MCS) {
rate_idx = rate->idx;
nss = 1 + (rate->idx >> 3);
phy = MT_PHY_TYPE_HT;
if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD)
phy = MT_PHY_TYPE_HT_GF;
if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
bw = 1;
} else {
const struct ieee80211_rate *r;
int band = dev->mt76.chandef.chan->band;
u16 val;
r = &mt76_hw(dev)->wiphy->bands[band]->bitrates[rate->idx];
if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
val = r->hw_value_short;
else
val = r->hw_value;
phy = val >> 8;
rate_idx = val & 0xff;
bw = 0;
}
rateval = FIELD_PREP(MT_RXWI_RATE_INDEX, rate_idx);
rateval |= FIELD_PREP(MT_RXWI_RATE_PHY, phy);
rateval |= FIELD_PREP(MT_RXWI_RATE_BW, bw);
if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
rateval |= MT_RXWI_RATE_SGI;
*nss_val = nss;
return cpu_to_le16(rateval);
}
void mt76x2_mac_wcid_set_drop(struct mt76x2_dev *dev, u8 idx, bool drop)
{
u32 val = mt76_rr(dev, MT_WCID_DROP(idx));
u32 bit = MT_WCID_DROP_MASK(idx);
/* prevent unnecessary writes */
if ((val & bit) != (bit * drop))
mt76_wr(dev, MT_WCID_DROP(idx), (val & ~bit) | (bit * drop));
}
void mt76x2_mac_wcid_set_rate(struct mt76x2_dev *dev, struct mt76_wcid *wcid,
const struct ieee80211_tx_rate *rate)
{
spin_lock_bh(&dev->mt76.lock);
wcid->tx_rate = mt76x2_mac_tx_rate_val(dev, rate, &wcid->tx_rate_nss);
wcid->tx_rate_set = true;
spin_unlock_bh(&dev->mt76.lock);
}
void mt76x2_mac_write_txwi(struct mt76x2_dev *dev, struct mt76x2_txwi *txwi,
struct sk_buff *skb, struct mt76_wcid *wcid,
struct ieee80211_sta *sta)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_tx_rate *rate = &info->control.rates[0];
u16 rate_ht_mask = FIELD_PREP(MT_RXWI_RATE_PHY, BIT(1) | BIT(2));
u16 txwi_flags = 0;
u8 nss;
s8 txpwr_adj, max_txpwr_adj;
memset(txwi, 0, sizeof(*txwi));
if (wcid)
txwi->wcid = wcid->idx;
else
txwi->wcid = 0xff;
txwi->pktid = 1;
spin_lock_bh(&dev->mt76.lock);
if (rate->idx < 0 || !rate->count) {
txwi->rate = wcid->tx_rate;
max_txpwr_adj = wcid->max_txpwr_adj;
nss = wcid->tx_rate_nss;
} else {
txwi->rate = mt76x2_mac_tx_rate_val(dev, rate, &nss);
max_txpwr_adj = mt76x2_tx_get_max_txpwr_adj(dev, rate);
}
spin_unlock_bh(&dev->mt76.lock);
txpwr_adj = mt76x2_tx_get_txpwr_adj(dev, dev->txpower_conf,
max_txpwr_adj);
txwi->ctl2 = FIELD_PREP(MT_TX_PWR_ADJ, txpwr_adj);
if (mt76xx_rev(dev) >= MT76XX_REV_E4)
txwi->txstream = 0x13;
else if (mt76xx_rev(dev) >= MT76XX_REV_E3 &&
!(txwi->rate & cpu_to_le16(rate_ht_mask)))
txwi->txstream = 0x93;
if (info->flags & IEEE80211_TX_CTL_LDPC)
txwi->rate |= cpu_to_le16(MT_RXWI_RATE_LDPC);
if ((info->flags & IEEE80211_TX_CTL_STBC) && nss == 1)
txwi->rate |= cpu_to_le16(MT_RXWI_RATE_STBC);
if (nss > 1 && sta && sta->smps_mode == IEEE80211_SMPS_DYNAMIC)
txwi_flags |= MT_TXWI_FLAGS_MMPS;
if (!(info->flags & IEEE80211_TX_CTL_NO_ACK))
txwi->ack_ctl |= MT_TXWI_ACK_CTL_REQ;
if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)
txwi->ack_ctl |= MT_TXWI_ACK_CTL_NSEQ;
if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
txwi->pktid |= MT_TXWI_PKTID_PROBE;
if ((info->flags & IEEE80211_TX_CTL_AMPDU) && sta) {
u8 ba_size = IEEE80211_MIN_AMPDU_BUF;
ba_size <<= sta->ht_cap.ampdu_factor;
ba_size = min_t(int, 63, ba_size - 1);
if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
ba_size = 0;
txwi->ack_ctl |= FIELD_PREP(MT_TXWI_ACK_CTL_BA_WINDOW, ba_size);
txwi_flags |= MT_TXWI_FLAGS_AMPDU |
FIELD_PREP(MT_TXWI_FLAGS_MPDU_DENSITY,
sta->ht_cap.ampdu_density);
}
txwi->flags |= cpu_to_le16(txwi_flags);
txwi->len_ctl = cpu_to_le16(skb->len);
}
static void mt76x2_remove_hdr_pad(struct sk_buff *skb)
{
int len = ieee80211_get_hdrlen_from_skb(skb);
memmove(skb->data + 2, skb->data, len);
skb_pull(skb, 2);
}
int mt76x2_mac_process_rx(struct mt76x2_dev *dev, struct sk_buff *skb,
void *rxi)
{
struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
struct mt76x2_rxwi *rxwi = rxi;
u32 ctl = le32_to_cpu(rxwi->ctl);
u16 rate = le16_to_cpu(rxwi->rate);
int len;
if (rxwi->rxinfo & cpu_to_le32(MT_RXINFO_L2PAD))
mt76x2_remove_hdr_pad(skb);
if (rxwi->rxinfo & cpu_to_le32(MT_RXINFO_DECRYPT)) {
status->flag |= RX_FLAG_DECRYPTED;
status->flag |= RX_FLAG_IV_STRIPPED | RX_FLAG_MMIC_STRIPPED;
}
len = FIELD_GET(MT_RXWI_CTL_MPDU_LEN, ctl);
if (WARN_ON_ONCE(len > skb->len))
return -EINVAL;
pskb_trim(skb, len);
status->chains = BIT(0) | BIT(1);
status->chain_signal[0] = mt76x2_phy_get_rssi(dev, rxwi->rssi[0], 0);
status->chain_signal[1] = mt76x2_phy_get_rssi(dev, rxwi->rssi[1], 1);
status->signal = max(status->chain_signal[0], status->chain_signal[1]);
status->freq = dev->mt76.chandef.chan->center_freq;
status->band = dev->mt76.chandef.chan->band;
mt76x2_mac_process_rate(status, rate);
return 0;
}
static void
mt76x2_mac_process_tx_rate(struct ieee80211_tx_rate *txrate, u16 rate,
enum nl80211_band band)
{
u8 idx = FIELD_GET(MT_RXWI_RATE_INDEX, rate);
txrate->idx = 0;
txrate->flags = 0;
txrate->count = 1;
switch (FIELD_GET(MT_RXWI_RATE_PHY, rate)) {
case MT_PHY_TYPE_OFDM:
if (band == NL80211_BAND_2GHZ)
idx += 4;
txrate->idx = idx;
return;
case MT_PHY_TYPE_CCK:
if (idx >= 8)
idx -= 8;
txrate->idx = idx;
return;
case MT_PHY_TYPE_HT_GF:
txrate->flags |= IEEE80211_TX_RC_GREEN_FIELD;
/* fall through */
case MT_PHY_TYPE_HT:
txrate->flags |= IEEE80211_TX_RC_MCS;
txrate->idx = idx;
break;
case MT_PHY_TYPE_VHT:
txrate->flags |= IEEE80211_TX_RC_VHT_MCS;
txrate->idx = idx;
break;
default:
WARN_ON(1);
return;
}
switch (FIELD_GET(MT_RXWI_RATE_BW, rate)) {
case MT_PHY_BW_20:
break;
case MT_PHY_BW_40:
txrate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
break;
case MT_PHY_BW_80:
txrate->flags |= IEEE80211_TX_RC_80_MHZ_WIDTH;
break;
default:
WARN_ON(1);
break;
}
if (rate & MT_RXWI_RATE_SGI)
txrate->flags |= IEEE80211_TX_RC_SHORT_GI;
}
static void
mt76x2_mac_fill_tx_status(struct mt76x2_dev *dev,
struct ieee80211_tx_info *info,
struct mt76x2_tx_status *st, int n_frames)
{
struct ieee80211_tx_rate *rate = info->status.rates;
int cur_idx, last_rate;
int i;
if (!n_frames)
return;
last_rate = min_t(int, st->retry, IEEE80211_TX_MAX_RATES - 1);
mt76x2_mac_process_tx_rate(&rate[last_rate], st->rate,
dev->mt76.chandef.chan->band);
if (last_rate < IEEE80211_TX_MAX_RATES - 1)
rate[last_rate + 1].idx = -1;
cur_idx = rate[last_rate].idx + st->retry;
for (i = 0; i <= last_rate; i++) {
rate[i].flags = rate[last_rate].flags;
rate[i].idx = max_t(int, 0, cur_idx - i);
rate[i].count = 1;
}
if (last_rate > 0)
rate[last_rate - 1].count = st->retry + 1 - last_rate;
info->status.ampdu_len = n_frames;
info->status.ampdu_ack_len = st->success ? n_frames : 0;
if (st->pktid & MT_TXWI_PKTID_PROBE)
info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
if (st->aggr)
info->flags |= IEEE80211_TX_CTL_AMPDU |
IEEE80211_TX_STAT_AMPDU;
if (!st->ack_req)
info->flags |= IEEE80211_TX_CTL_NO_ACK;
else if (st->success)
info->flags |= IEEE80211_TX_STAT_ACK;
}
static void
mt76x2_send_tx_status(struct mt76x2_dev *dev, struct mt76x2_tx_status *stat,
u8 *update)
{
struct ieee80211_tx_info info = {};
struct ieee80211_sta *sta = NULL;
struct mt76_wcid *wcid = NULL;
struct mt76x2_sta *msta = NULL;
rcu_read_lock();
if (stat->wcid < ARRAY_SIZE(dev->wcid))
wcid = rcu_dereference(dev->wcid[stat->wcid]);
if (wcid) {
void *priv;
priv = msta = container_of(wcid, struct mt76x2_sta, wcid);
sta = container_of(priv, struct ieee80211_sta,
drv_priv);
}
if (msta && stat->aggr) {
u32 stat_val, stat_cache;
stat_val = stat->rate;
stat_val |= ((u32) stat->retry) << 16;
stat_cache = msta->status.rate;
stat_cache |= ((u32) msta->status.retry) << 16;
if (*update == 0 && stat_val == stat_cache &&
stat->wcid == msta->status.wcid && msta->n_frames < 32) {
msta->n_frames++;
goto out;
}
mt76x2_mac_fill_tx_status(dev, &info, &msta->status,
msta->n_frames);
msta->status = *stat;
msta->n_frames = 1;
*update = 0;
} else {
mt76x2_mac_fill_tx_status(dev, &info, stat, 1);
*update = 1;
}
ieee80211_tx_status_noskb(mt76_hw(dev), sta, &info);
out:
rcu_read_unlock();
}
void mt76x2_mac_poll_tx_status(struct mt76x2_dev *dev, bool irq)
{
struct mt76x2_tx_status stat = {};
unsigned long flags;
u8 update = 1;
if (!test_bit(MT76_STATE_RUNNING, &dev->mt76.state))
return;
trace_mac_txstat_poll(dev);
while (!irq || !kfifo_is_full(&dev->txstatus_fifo)) {
u32 stat1, stat2;
spin_lock_irqsave(&dev->irq_lock, flags);
stat2 = mt76_rr(dev, MT_TX_STAT_FIFO_EXT);
stat1 = mt76_rr(dev, MT_TX_STAT_FIFO);
if (!(stat1 & MT_TX_STAT_FIFO_VALID)) {
spin_unlock_irqrestore(&dev->irq_lock, flags);
break;
}
spin_unlock_irqrestore(&dev->irq_lock, flags);
stat.valid = 1;
stat.success = !!(stat1 & MT_TX_STAT_FIFO_SUCCESS);
stat.aggr = !!(stat1 & MT_TX_STAT_FIFO_AGGR);
stat.ack_req = !!(stat1 & MT_TX_STAT_FIFO_ACKREQ);
stat.wcid = FIELD_GET(MT_TX_STAT_FIFO_WCID, stat1);
stat.rate = FIELD_GET(MT_TX_STAT_FIFO_RATE, stat1);
stat.retry = FIELD_GET(MT_TX_STAT_FIFO_EXT_RETRY, stat2);
stat.pktid = FIELD_GET(MT_TX_STAT_FIFO_EXT_PKTID, stat2);
trace_mac_txstat_fetch(dev, &stat);
if (!irq) {
mt76x2_send_tx_status(dev, &stat, &update);
continue;
}
kfifo_put(&dev->txstatus_fifo, stat);
}
}
static void
mt76x2_mac_queue_txdone(struct mt76x2_dev *dev, struct sk_buff *skb,
void *txwi_ptr)
{
struct mt76x2_tx_info *txi = mt76x2_skb_tx_info(skb);
struct mt76x2_txwi *txwi = txwi_ptr;
mt76x2_mac_poll_tx_status(dev, false);
txi->tries = 0;
txi->jiffies = jiffies;
txi->wcid = txwi->wcid;
txi->pktid = txwi->pktid;
trace_mac_txdone_add(dev, txwi->wcid, txwi->pktid);
mt76x2_tx_complete(dev, skb);
}
void mt76x2_mac_process_tx_status_fifo(struct mt76x2_dev *dev)
{
struct mt76x2_tx_status stat;
u8 update = 1;
while (kfifo_get(&dev->txstatus_fifo, &stat))
mt76x2_send_tx_status(dev, &stat, &update);
}
void mt76x2_tx_complete_skb(struct mt76_dev *mdev, struct mt76_queue *q,
struct mt76_queue_entry *e, bool flush)
{
struct mt76x2_dev *dev = container_of(mdev, struct mt76x2_dev, mt76);
if (e->txwi)
mt76x2_mac_queue_txdone(dev, e->skb, &e->txwi->txwi);
else
dev_kfree_skb_any(e->skb);
}
static enum mt76x2_cipher_type
mt76x2_mac_get_key_info(struct ieee80211_key_conf *key, u8 *key_data)
{
memset(key_data, 0, 32);
if (!key)
return MT_CIPHER_NONE;
if (key->keylen > 32)
return MT_CIPHER_NONE;
memcpy(key_data, key->key, key->keylen);
switch (key->cipher) {
case WLAN_CIPHER_SUITE_WEP40:
return MT_CIPHER_WEP40;
case WLAN_CIPHER_SUITE_WEP104:
return MT_CIPHER_WEP104;
case WLAN_CIPHER_SUITE_TKIP:
return MT_CIPHER_TKIP;
case WLAN_CIPHER_SUITE_CCMP:
return MT_CIPHER_AES_CCMP;
default:
return MT_CIPHER_NONE;
}
}
void mt76x2_mac_wcid_setup(struct mt76x2_dev *dev, u8 idx, u8 vif_idx, u8 *mac)
{
struct mt76_wcid_addr addr = {};
u32 attr;
attr = FIELD_PREP(MT_WCID_ATTR_BSS_IDX, vif_idx & 7) |
FIELD_PREP(MT_WCID_ATTR_BSS_IDX_EXT, !!(vif_idx & 8));
mt76_wr(dev, MT_WCID_ATTR(idx), attr);
mt76_wr(dev, MT_WCID_TX_RATE(idx), 0);
mt76_wr(dev, MT_WCID_TX_RATE(idx) + 4, 0);
if (idx >= 128)
return;
if (mac)
memcpy(addr.macaddr, mac, ETH_ALEN);
mt76_wr_copy(dev, MT_WCID_ADDR(idx), &addr, sizeof(addr));
}
int mt76x2_mac_wcid_set_key(struct mt76x2_dev *dev, u8 idx,
struct ieee80211_key_conf *key)
{
enum mt76x2_cipher_type cipher;
u8 key_data[32];
u8 iv_data[8];
cipher = mt76x2_mac_get_key_info(key, key_data);
if (cipher == MT_CIPHER_NONE && key)
return -EOPNOTSUPP;
mt76_rmw_field(dev, MT_WCID_ATTR(idx), MT_WCID_ATTR_PKEY_MODE, cipher);
mt76_wr_copy(dev, MT_WCID_KEY(idx), key_data, sizeof(key_data));
memset(iv_data, 0, sizeof(iv_data));
if (key) {
mt76_rmw_field(dev, MT_WCID_ATTR(idx), MT_WCID_ATTR_PAIRWISE,
!!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE));
iv_data[3] = key->keyidx << 6;
if (cipher >= MT_CIPHER_TKIP)
iv_data[3] |= 0x20;
}
mt76_wr_copy(dev, MT_WCID_IV(idx), iv_data, sizeof(iv_data));
return 0;
}
int mt76x2_mac_shared_key_setup(struct mt76x2_dev *dev, u8 vif_idx, u8 key_idx,
struct ieee80211_key_conf *key)
{
enum mt76x2_cipher_type cipher;
u8 key_data[32];
u32 val;
cipher = mt76x2_mac_get_key_info(key, key_data);
if (cipher == MT_CIPHER_NONE && key)
return -EOPNOTSUPP;
val = mt76_rr(dev, MT_SKEY_MODE(vif_idx));
val &= ~(MT_SKEY_MODE_MASK << MT_SKEY_MODE_SHIFT(vif_idx, key_idx));
val |= cipher << MT_SKEY_MODE_SHIFT(vif_idx, key_idx);
mt76_wr(dev, MT_SKEY_MODE(vif_idx), val);
mt76_wr_copy(dev, MT_SKEY(vif_idx, key_idx), key_data,
sizeof(key_data));
return 0;
}
static int
mt76_write_beacon(struct mt76x2_dev *dev, int offset, struct sk_buff *skb)
{
int beacon_len = dev->beacon_offsets[1] - dev->beacon_offsets[0];
struct mt76x2_txwi txwi;
if (WARN_ON_ONCE(beacon_len < skb->len + sizeof(struct mt76x2_txwi)))
return -ENOSPC;
mt76x2_mac_write_txwi(dev, &txwi, skb, NULL, NULL);
txwi.flags |= cpu_to_le16(MT_TXWI_FLAGS_TS);
mt76_wr_copy(dev, offset, &txwi, sizeof(txwi));
offset += sizeof(txwi);
mt76_wr_copy(dev, offset, skb->data, skb->len);
return 0;
}
static int
__mt76x2_mac_set_beacon(struct mt76x2_dev *dev, u8 bcn_idx, struct sk_buff *skb)
{
int beacon_len = dev->beacon_offsets[1] - dev->beacon_offsets[0];
int beacon_addr = dev->beacon_offsets[bcn_idx];
int ret = 0;
int i;
/* Prevent corrupt transmissions during update */
mt76_set(dev, MT_BCN_BYPASS_MASK, BIT(bcn_idx));
if (skb) {
ret = mt76_write_beacon(dev, beacon_addr, skb);
if (!ret)
dev->beacon_data_mask |= BIT(bcn_idx) &
dev->beacon_mask;
} else {
dev->beacon_data_mask &= ~BIT(bcn_idx);
for (i = 0; i < beacon_len; i += 4)
mt76_wr(dev, beacon_addr + i, 0);
}
mt76_wr(dev, MT_BCN_BYPASS_MASK, 0xff00 | ~dev->beacon_data_mask);
return ret;
}
int mt76x2_mac_set_beacon(struct mt76x2_dev *dev, u8 vif_idx,
struct sk_buff *skb)
{
bool force_update = false;
int bcn_idx = 0;
int i;
for (i = 0; i < ARRAY_SIZE(dev->beacons); i++) {
if (vif_idx == i) {
force_update = !!dev->beacons[i] ^ !!skb;
if (dev->beacons[i])
dev_kfree_skb(dev->beacons[i]);
dev->beacons[i] = skb;
__mt76x2_mac_set_beacon(dev, bcn_idx, skb);
} else if (force_update && dev->beacons[i]) {
__mt76x2_mac_set_beacon(dev, bcn_idx, dev->beacons[i]);
}
bcn_idx += !!dev->beacons[i];
}
for (i = bcn_idx; i < ARRAY_SIZE(dev->beacons); i++) {
if (!(dev->beacon_data_mask & BIT(i)))
break;
__mt76x2_mac_set_beacon(dev, i, NULL);
}
mt76_rmw_field(dev, MT_MAC_BSSID_DW1, MT_MAC_BSSID_DW1_MBEACON_N,
bcn_idx - 1);
return 0;
}
void mt76x2_mac_set_beacon_enable(struct mt76x2_dev *dev, u8 vif_idx, bool val)
{
u8 old_mask = dev->beacon_mask;
bool en;
u32 reg;
if (val) {
dev->beacon_mask |= BIT(vif_idx);
} else {
dev->beacon_mask &= ~BIT(vif_idx);
mt76x2_mac_set_beacon(dev, vif_idx, NULL);
}
if (!!old_mask == !!dev->beacon_mask)
return;
en = dev->beacon_mask;
mt76_rmw_field(dev, MT_INT_TIMER_EN, MT_INT_TIMER_EN_PRE_TBTT_EN, en);
reg = MT_BEACON_TIME_CFG_BEACON_TX |
MT_BEACON_TIME_CFG_TBTT_EN |
MT_BEACON_TIME_CFG_TIMER_EN;
mt76_rmw(dev, MT_BEACON_TIME_CFG, reg, reg * en);
if (en)
mt76x2_irq_enable(dev, MT_INT_PRE_TBTT | MT_INT_TBTT);
else
mt76x2_irq_disable(dev, MT_INT_PRE_TBTT | MT_INT_TBTT);
}
void mt76x2_update_channel(struct mt76_dev *mdev)
{
struct mt76x2_dev *dev = container_of(mdev, struct mt76x2_dev, mt76);
struct mt76_channel_state *state;
u32 active, busy;
state = mt76_channel_state(&dev->mt76, dev->mt76.chandef.chan);
busy = mt76_rr(dev, MT_CH_BUSY);
active = busy + mt76_rr(dev, MT_CH_IDLE);
spin_lock_bh(&dev->mt76.cc_lock);
state->cc_busy += busy;
state->cc_active += active;
spin_unlock_bh(&dev->mt76.cc_lock);
}
void mt76x2_mac_work(struct work_struct *work)
{
struct mt76x2_dev *dev = container_of(work, struct mt76x2_dev,
mac_work.work);
int i, idx;
mt76x2_update_channel(&dev->mt76);
for (i = 0, idx = 0; i < 16; i++) {
u32 val = mt76_rr(dev, MT_TX_AGG_CNT(i));
dev->aggr_stats[idx++] += val & 0xffff;
dev->aggr_stats[idx++] += val >> 16;
}
ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mac_work,
MT_CALIBRATE_INTERVAL);
}

View File

@ -0,0 +1,190 @@
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef __MT76x2_MAC_H
#define __MT76x2_MAC_H
#include "mt76.h"
struct mt76x2_dev;
struct mt76x2_sta;
struct mt76x2_vif;
struct mt76x2_txwi;
struct mt76x2_tx_status {
u8 valid:1;
u8 success:1;
u8 aggr:1;
u8 ack_req:1;
u8 wcid;
u8 pktid;
u8 retry;
u16 rate;
} __packed __aligned(2);
struct mt76x2_tx_info {
unsigned long jiffies;
u8 tries;
u8 wcid;
u8 pktid;
u8 retry;
};
struct mt76x2_rxwi {
__le32 rxinfo;
__le32 ctl;
__le16 tid_sn;
__le16 rate;
u8 rssi[4];
__le32 bbp_rxinfo[4];
};
#define MT_RXINFO_BA BIT(0)
#define MT_RXINFO_DATA BIT(1)
#define MT_RXINFO_NULL BIT(2)
#define MT_RXINFO_FRAG BIT(3)
#define MT_RXINFO_UNICAST BIT(4)
#define MT_RXINFO_MULTICAST BIT(5)
#define MT_RXINFO_BROADCAST BIT(6)
#define MT_RXINFO_MYBSS BIT(7)
#define MT_RXINFO_CRCERR BIT(8)
#define MT_RXINFO_ICVERR BIT(9)
#define MT_RXINFO_MICERR BIT(10)
#define MT_RXINFO_AMSDU BIT(11)
#define MT_RXINFO_HTC BIT(12)
#define MT_RXINFO_RSSI BIT(13)
#define MT_RXINFO_L2PAD BIT(14)
#define MT_RXINFO_AMPDU BIT(15)
#define MT_RXINFO_DECRYPT BIT(16)
#define MT_RXINFO_BSSIDX3 BIT(17)
#define MT_RXINFO_WAPI_KEY BIT(18)
#define MT_RXINFO_PN_LEN GENMASK(21, 19)
#define MT_RXINFO_SW_FTYPE0 BIT(22)
#define MT_RXINFO_SW_FTYPE1 BIT(23)
#define MT_RXINFO_PROBE_RESP BIT(24)
#define MT_RXINFO_BEACON BIT(25)
#define MT_RXINFO_DISASSOC BIT(26)
#define MT_RXINFO_DEAUTH BIT(27)
#define MT_RXINFO_ACTION BIT(28)
#define MT_RXINFO_TCP_SUM_ERR BIT(30)
#define MT_RXINFO_IP_SUM_ERR BIT(31)
#define MT_RXWI_CTL_WCID GENMASK(7, 0)
#define MT_RXWI_CTL_KEY_IDX GENMASK(9, 8)
#define MT_RXWI_CTL_BSS_IDX GENMASK(12, 10)
#define MT_RXWI_CTL_UDF GENMASK(15, 13)
#define MT_RXWI_CTL_MPDU_LEN GENMASK(29, 16)
#define MT_RXWI_CTL_EOF BIT(31)
#define MT_RXWI_TID GENMASK(3, 0)
#define MT_RXWI_SN GENMASK(15, 4)
#define MT_RXWI_RATE_INDEX GENMASK(5, 0)
#define MT_RXWI_RATE_LDPC BIT(6)
#define MT_RXWI_RATE_BW GENMASK(8, 7)
#define MT_RXWI_RATE_SGI BIT(9)
#define MT_RXWI_RATE_STBC BIT(10)
#define MT_RXWI_RATE_LDPC_EXSYM BIT(11)
#define MT_RXWI_RATE_PHY GENMASK(15, 13)
#define MT_RATE_INDEX_VHT_IDX GENMASK(3, 0)
#define MT_RATE_INDEX_VHT_NSS GENMASK(5, 4)
#define MT_TX_PWR_ADJ GENMASK(3, 0)
enum mt76x2_phy_bandwidth {
MT_PHY_BW_20,
MT_PHY_BW_40,
MT_PHY_BW_80,
};
#define MT_TXWI_FLAGS_FRAG BIT(0)
#define MT_TXWI_FLAGS_MMPS BIT(1)
#define MT_TXWI_FLAGS_CFACK BIT(2)
#define MT_TXWI_FLAGS_TS BIT(3)
#define MT_TXWI_FLAGS_AMPDU BIT(4)
#define MT_TXWI_FLAGS_MPDU_DENSITY GENMASK(7, 5)
#define MT_TXWI_FLAGS_TXOP GENMASK(9, 8)
#define MT_TXWI_FLAGS_NDPS BIT(10)
#define MT_TXWI_FLAGS_RTSBWSIG BIT(11)
#define MT_TXWI_FLAGS_NDP_BW GENMASK(13, 12)
#define MT_TXWI_FLAGS_SOUND BIT(14)
#define MT_TXWI_FLAGS_TX_RATE_LUT BIT(15)
#define MT_TXWI_ACK_CTL_REQ BIT(0)
#define MT_TXWI_ACK_CTL_NSEQ BIT(1)
#define MT_TXWI_ACK_CTL_BA_WINDOW GENMASK(7, 2)
#define MT_TXWI_PKTID_PROBE BIT(7)
struct mt76x2_txwi {
__le16 flags;
__le16 rate;
u8 ack_ctl;
u8 wcid;
__le16 len_ctl;
__le32 iv;
__le32 eiv;
u8 aid;
u8 txstream;
u8 ctl2;
u8 pktid;
} __packed __aligned(4);
static inline struct mt76x2_tx_info *
mt76x2_skb_tx_info(struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
return (void *) info->status.status_driver_data;
}
int mt76x2_mac_reset(struct mt76x2_dev *dev, bool hard);
int mt76x2_mac_start(struct mt76x2_dev *dev);
void mt76x2_mac_stop(struct mt76x2_dev *dev, bool force);
void mt76x2_mac_resume(struct mt76x2_dev *dev);
void mt76x2_mac_set_bssid(struct mt76x2_dev *dev, u8 idx, const u8 *addr);
int mt76x2_mac_process_rx(struct mt76x2_dev *dev, struct sk_buff *skb,
void *rxi);
void mt76x2_mac_write_txwi(struct mt76x2_dev *dev, struct mt76x2_txwi *txwi,
struct sk_buff *skb, struct mt76_wcid *wcid,
struct ieee80211_sta *sta);
void mt76x2_mac_wcid_setup(struct mt76x2_dev *dev, u8 idx, u8 vif_idx, u8 *mac);
int mt76x2_mac_wcid_set_key(struct mt76x2_dev *dev, u8 idx,
struct ieee80211_key_conf *key);
void mt76x2_mac_wcid_set_rate(struct mt76x2_dev *dev, struct mt76_wcid *wcid,
const struct ieee80211_tx_rate *rate);
void mt76x2_mac_wcid_set_drop(struct mt76x2_dev *dev, u8 idx, bool drop);
int mt76x2_mac_shared_key_setup(struct mt76x2_dev *dev, u8 vif_idx, u8 key_idx,
struct ieee80211_key_conf *key);
int mt76x2_mac_set_beacon(struct mt76x2_dev *dev, u8 vif_idx,
struct sk_buff *skb);
void mt76x2_mac_set_beacon_enable(struct mt76x2_dev *dev, u8 vif_idx, bool val);
void mt76x2_mac_poll_tx_status(struct mt76x2_dev *dev, bool irq);
void mt76x2_mac_process_tx_status_fifo(struct mt76x2_dev *dev);
void mt76x2_mac_work(struct work_struct *work);
#endif

View File

@ -0,0 +1,545 @@
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "mt76x2.h"
static int
mt76x2_start(struct ieee80211_hw *hw)
{
struct mt76x2_dev *dev = hw->priv;
int ret;
mutex_lock(&dev->mutex);
ret = mt76x2_mac_start(dev);
if (ret)
goto out;
ret = mt76x2_phy_start(dev);
if (ret)
goto out;
ieee80211_queue_delayed_work(mt76_hw(dev), &dev->mac_work,
MT_CALIBRATE_INTERVAL);
set_bit(MT76_STATE_RUNNING, &dev->mt76.state);
out:
mutex_unlock(&dev->mutex);
return ret;
}
static void
mt76x2_stop(struct ieee80211_hw *hw)
{
struct mt76x2_dev *dev = hw->priv;
mutex_lock(&dev->mutex);
clear_bit(MT76_STATE_RUNNING, &dev->mt76.state);
mt76x2_stop_hardware(dev);
mutex_unlock(&dev->mutex);
}
static void
mt76x2_txq_init(struct mt76x2_dev *dev, struct ieee80211_txq *txq)
{
struct mt76_txq *mtxq;
if (!txq)
return;
mtxq = (struct mt76_txq *) txq->drv_priv;
if (txq->sta) {
struct mt76x2_sta *sta;
sta = (struct mt76x2_sta *) txq->sta->drv_priv;
mtxq->wcid = &sta->wcid;
} else {
struct mt76x2_vif *mvif;
mvif = (struct mt76x2_vif *) txq->vif->drv_priv;
mtxq->wcid = &mvif->group_wcid;
}
mt76_txq_init(&dev->mt76, txq);
}
static int
mt76x2_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
struct mt76x2_dev *dev = hw->priv;
struct mt76x2_vif *mvif = (struct mt76x2_vif *) vif->drv_priv;
unsigned int idx = 0;
int ret = 0;
if (vif->addr[0] & BIT(1))
idx = 1 + (((dev->mt76.macaddr[0] ^ vif->addr[0]) >> 2) & 7);
/*
* Client mode typically only has one configurable BSSID register,
* which is used for bssidx=0. This is linked to the MAC address.
* Since mac80211 allows changing interface types, and we cannot
* force the use of the primary MAC address for a station mode
* interface, we need some other way of configuring a per-interface
* remote BSSID.
* The hardware provides an AP-Client feature, where bssidx 0-7 are
* used for AP mode and bssidx 8-15 for client mode.
* We shift the station interface bss index by 8 to force the
* hardware to recognize the BSSID.
* The resulting bssidx mismatch for unicast frames is ignored by hw.
*/
if (vif->type == NL80211_IFTYPE_STATION)
idx += 8;
mvif->idx = idx;
mvif->group_wcid.idx = 254 - idx;
mvif->group_wcid.hw_key_idx = -1;
mt76x2_txq_init(dev, vif->txq);
return ret;
}
static void
mt76x2_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
struct mt76x2_dev *dev = hw->priv;
mt76_txq_remove(&dev->mt76, vif->txq);
}
static int
mt76x2_set_channel(struct mt76x2_dev *dev, struct cfg80211_chan_def *chandef)
{
int ret;
mt76_set_channel(&dev->mt76);
tasklet_disable(&dev->pre_tbtt_tasklet);
cancel_delayed_work_sync(&dev->cal_work);
mt76x2_mac_stop(dev, true);
ret = mt76x2_phy_set_channel(dev, chandef);
/* channel cycle counters read-and-clear */
mt76_rr(dev, MT_CH_IDLE);
mt76_rr(dev, MT_CH_BUSY);
mt76x2_dfs_init_params(dev);
mt76x2_mac_resume(dev);
tasklet_enable(&dev->pre_tbtt_tasklet);
return ret;
}
static int
mt76x2_config(struct ieee80211_hw *hw, u32 changed)
{
struct mt76x2_dev *dev = hw->priv;
int ret = 0;
mutex_lock(&dev->mutex);
if (changed & IEEE80211_CONF_CHANGE_POWER) {
dev->txpower_conf = hw->conf.power_level * 2;
if (test_bit(MT76_STATE_RUNNING, &dev->mt76.state)) {
mt76x2_phy_set_txpower(dev);
mt76x2_tx_set_txpwr_auto(dev, dev->txpower_conf);
}
}
if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
ieee80211_stop_queues(hw);
ret = mt76x2_set_channel(dev, &hw->conf.chandef);
ieee80211_wake_queues(hw);
}
mutex_unlock(&dev->mutex);
return ret;
}
static void
mt76x2_configure_filter(struct ieee80211_hw *hw, unsigned int changed_flags,
unsigned int *total_flags, u64 multicast)
{
struct mt76x2_dev *dev = hw->priv;
u32 flags = 0;
#define MT76_FILTER(_flag, _hw) do { \
flags |= *total_flags & FIF_##_flag; \
dev->rxfilter &= ~(_hw); \
dev->rxfilter |= !(flags & FIF_##_flag) * (_hw); \
} while (0)
mutex_lock(&dev->mutex);
dev->rxfilter &= ~MT_RX_FILTR_CFG_OTHER_BSS;
MT76_FILTER(FCSFAIL, MT_RX_FILTR_CFG_CRC_ERR);
MT76_FILTER(PLCPFAIL, MT_RX_FILTR_CFG_PHY_ERR);
MT76_FILTER(CONTROL, MT_RX_FILTR_CFG_ACK |
MT_RX_FILTR_CFG_CTS |
MT_RX_FILTR_CFG_CFEND |
MT_RX_FILTR_CFG_CFACK |
MT_RX_FILTR_CFG_BA |
MT_RX_FILTR_CFG_CTRL_RSV);
MT76_FILTER(PSPOLL, MT_RX_FILTR_CFG_PSPOLL);
*total_flags = flags;
mt76_wr(dev, MT_RX_FILTR_CFG, dev->rxfilter);
mutex_unlock(&dev->mutex);
}
static void
mt76x2_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info, u32 changed)
{
struct mt76x2_dev *dev = hw->priv;
struct mt76x2_vif *mvif = (struct mt76x2_vif *) vif->drv_priv;
mutex_lock(&dev->mutex);
if (changed & BSS_CHANGED_BSSID)
mt76x2_mac_set_bssid(dev, mvif->idx, info->bssid);
if (changed & BSS_CHANGED_BEACON_INT)
mt76_rmw_field(dev, MT_BEACON_TIME_CFG,
MT_BEACON_TIME_CFG_INTVAL,
info->beacon_int << 4);
if (changed & BSS_CHANGED_BEACON_ENABLED) {
tasklet_disable(&dev->pre_tbtt_tasklet);
mt76x2_mac_set_beacon_enable(dev, mvif->idx,
info->enable_beacon);
tasklet_enable(&dev->pre_tbtt_tasklet);
}
if (changed & BSS_CHANGED_ERP_SLOT) {
int slottime = info->use_short_slot ? 9 : 20;
dev->slottime = slottime;
mt76_rmw_field(dev, MT_BKOFF_SLOT_CFG,
MT_BKOFF_SLOT_CFG_SLOTTIME, slottime);
}
mutex_unlock(&dev->mutex);
}
static int
mt76x2_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct mt76x2_dev *dev = hw->priv;
struct mt76x2_sta *msta = (struct mt76x2_sta *) sta->drv_priv;
struct mt76x2_vif *mvif = (struct mt76x2_vif *) vif->drv_priv;
int ret = 0;
int idx = 0;
int i;
mutex_lock(&dev->mutex);
idx = mt76_wcid_alloc(dev->wcid_mask, ARRAY_SIZE(dev->wcid));
if (idx < 0) {
ret = -ENOSPC;
goto out;
}
msta->wcid.idx = idx;
msta->wcid.hw_key_idx = -1;
mt76x2_mac_wcid_setup(dev, idx, mvif->idx, sta->addr);
mt76x2_mac_wcid_set_drop(dev, idx, false);
for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
mt76x2_txq_init(dev, sta->txq[i]);
rcu_assign_pointer(dev->wcid[idx], &msta->wcid);
out:
mutex_unlock(&dev->mutex);
return ret;
}
static int
mt76x2_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct mt76x2_dev *dev = hw->priv;
struct mt76x2_sta *msta = (struct mt76x2_sta *) sta->drv_priv;
int idx = msta->wcid.idx;
int i;
mutex_lock(&dev->mutex);
rcu_assign_pointer(dev->wcid[idx], NULL);
for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
mt76_txq_remove(&dev->mt76, sta->txq[i]);
mt76x2_mac_wcid_set_drop(dev, idx, true);
mt76_wcid_free(dev->wcid_mask, idx);
mt76x2_mac_wcid_setup(dev, idx, 0, NULL);
mutex_unlock(&dev->mutex);
return 0;
}
static void
mt76x2_sta_notify(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
enum sta_notify_cmd cmd, struct ieee80211_sta *sta)
{
struct mt76x2_sta *msta = (struct mt76x2_sta *) sta->drv_priv;
struct mt76x2_dev *dev = hw->priv;
int idx = msta->wcid.idx;
switch (cmd) {
case STA_NOTIFY_SLEEP:
mt76x2_mac_wcid_set_drop(dev, idx, true);
mt76_stop_tx_queues(&dev->mt76, sta, true);
break;
case STA_NOTIFY_AWAKE:
mt76x2_mac_wcid_set_drop(dev, idx, false);
break;
}
}
static int
mt76x2_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
struct ieee80211_vif *vif, struct ieee80211_sta *sta,
struct ieee80211_key_conf *key)
{
struct mt76x2_dev *dev = hw->priv;
struct mt76x2_vif *mvif = (struct mt76x2_vif *) vif->drv_priv;
struct mt76x2_sta *msta;
struct mt76_wcid *wcid;
int idx = key->keyidx;
int ret;
/*
* The hardware does not support per-STA RX GTK, fall back
* to software mode for these.
*/
if ((vif->type == NL80211_IFTYPE_ADHOC ||
vif->type == NL80211_IFTYPE_MESH_POINT) &&
(key->cipher == WLAN_CIPHER_SUITE_TKIP ||
key->cipher == WLAN_CIPHER_SUITE_CCMP) &&
!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE))
return -EOPNOTSUPP;
msta = sta ? (struct mt76x2_sta *) sta->drv_priv : NULL;
wcid = msta ? &msta->wcid : &mvif->group_wcid;
if (cmd == SET_KEY) {
key->hw_key_idx = wcid->idx;
wcid->hw_key_idx = idx;
} else {
if (idx == wcid->hw_key_idx)
wcid->hw_key_idx = -1;
key = NULL;
}
if (!msta) {
if (key || wcid->hw_key_idx == idx) {
ret = mt76x2_mac_wcid_set_key(dev, wcid->idx, key);
if (ret)
return ret;
}
return mt76x2_mac_shared_key_setup(dev, mvif->idx, idx, key);
}
return mt76x2_mac_wcid_set_key(dev, msta->wcid.idx, key);
}
static int
mt76x2_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
struct mt76x2_dev *dev = hw->priv;
u8 cw_min = 5, cw_max = 10;
u32 val;
if (params->cw_min)
cw_min = fls(params->cw_min);
if (params->cw_max)
cw_max = fls(params->cw_max);
val = FIELD_PREP(MT_EDCA_CFG_TXOP, params->txop) |
FIELD_PREP(MT_EDCA_CFG_AIFSN, params->aifs) |
FIELD_PREP(MT_EDCA_CFG_CWMIN, cw_min) |
FIELD_PREP(MT_EDCA_CFG_CWMAX, cw_max);
mt76_wr(dev, MT_EDCA_CFG_AC(queue), val);
val = mt76_rr(dev, MT_WMM_TXOP(queue));
val &= ~(MT_WMM_TXOP_MASK << MT_WMM_TXOP_SHIFT(queue));
val |= params->txop << MT_WMM_TXOP_SHIFT(queue);
mt76_wr(dev, MT_WMM_TXOP(queue), val);
val = mt76_rr(dev, MT_WMM_AIFSN);
val &= ~(MT_WMM_AIFSN_MASK << MT_WMM_AIFSN_SHIFT(queue));
val |= params->aifs << MT_WMM_AIFSN_SHIFT(queue);
mt76_wr(dev, MT_WMM_AIFSN, val);
val = mt76_rr(dev, MT_WMM_CWMIN);
val &= ~(MT_WMM_CWMIN_MASK << MT_WMM_CWMIN_SHIFT(queue));
val |= cw_min << MT_WMM_CWMIN_SHIFT(queue);
mt76_wr(dev, MT_WMM_CWMIN, val);
val = mt76_rr(dev, MT_WMM_CWMAX);
val &= ~(MT_WMM_CWMAX_MASK << MT_WMM_CWMAX_SHIFT(queue));
val |= cw_max << MT_WMM_CWMAX_SHIFT(queue);
mt76_wr(dev, MT_WMM_CWMAX, val);
return 0;
}
static void
mt76x2_sw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
const u8 *mac)
{
struct mt76x2_dev *dev = hw->priv;
tasklet_disable(&dev->pre_tbtt_tasklet);
set_bit(MT76_SCANNING, &dev->mt76.state);
}
static void
mt76x2_sw_scan_complete(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
struct mt76x2_dev *dev = hw->priv;
clear_bit(MT76_SCANNING, &dev->mt76.state);
tasklet_enable(&dev->pre_tbtt_tasklet);
mt76_txq_schedule_all(&dev->mt76);
}
static void
mt76x2_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
u32 queues, bool drop)
{
}
static int
mt76x2_get_txpower(struct ieee80211_hw *hw, struct ieee80211_vif *vif, int *dbm)
{
struct mt76x2_dev *dev = hw->priv;
*dbm = dev->txpower_cur / 2;
return 0;
}
static int
mt76x2_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_ampdu_params *params)
{
enum ieee80211_ampdu_mlme_action action = params->action;
struct ieee80211_sta *sta = params->sta;
struct mt76x2_dev *dev = hw->priv;
struct mt76x2_sta *msta = (struct mt76x2_sta *) sta->drv_priv;
struct ieee80211_txq *txq = sta->txq[params->tid];
struct mt76_txq *mtxq = (struct mt76_txq *) txq->drv_priv;
u16 tid = params->tid;
u16 *ssn = &params->ssn;
if (!txq)
return -EINVAL;
switch (action) {
case IEEE80211_AMPDU_RX_START:
mt76_set(dev, MT_WCID_ADDR(msta->wcid.idx) + 4, BIT(16 + tid));
break;
case IEEE80211_AMPDU_RX_STOP:
mt76_clear(dev, MT_WCID_ADDR(msta->wcid.idx) + 4,
BIT(16 + tid));
break;
case IEEE80211_AMPDU_TX_OPERATIONAL:
mtxq->aggr = true;
mtxq->send_bar = false;
ieee80211_send_bar(vif, sta->addr, tid, mtxq->agg_ssn);
break;
case IEEE80211_AMPDU_TX_STOP_FLUSH:
case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
mtxq->aggr = false;
ieee80211_send_bar(vif, sta->addr, tid, mtxq->agg_ssn);
break;
case IEEE80211_AMPDU_TX_START:
mtxq->agg_ssn = *ssn << 4;
ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
break;
case IEEE80211_AMPDU_TX_STOP_CONT:
mtxq->aggr = false;
ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
break;
}
return 0;
}
static void
mt76x2_sta_rate_tbl_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta)
{
struct mt76x2_dev *dev = hw->priv;
struct mt76x2_sta *msta = (struct mt76x2_sta *) sta->drv_priv;
struct ieee80211_sta_rates *rates = rcu_dereference(sta->rates);
struct ieee80211_tx_rate rate = {};
if (!rates)
return;
rate.idx = rates->rate[0].idx;
rate.flags = rates->rate[0].flags;
mt76x2_mac_wcid_set_rate(dev, &msta->wcid, &rate);
msta->wcid.max_txpwr_adj = mt76x2_tx_get_max_txpwr_adj(dev, &rate);
}
static void mt76x2_set_coverage_class(struct ieee80211_hw *hw,
s16 coverage_class)
{
struct mt76x2_dev *dev = hw->priv;
mutex_lock(&dev->mutex);
dev->coverage_class = coverage_class;
mt76x2_set_tx_ackto(dev);
mutex_unlock(&dev->mutex);
}
const struct ieee80211_ops mt76x2_ops = {
.tx = mt76x2_tx,
.start = mt76x2_start,
.stop = mt76x2_stop,
.add_interface = mt76x2_add_interface,
.remove_interface = mt76x2_remove_interface,
.config = mt76x2_config,
.configure_filter = mt76x2_configure_filter,
.bss_info_changed = mt76x2_bss_info_changed,
.sta_add = mt76x2_sta_add,
.sta_remove = mt76x2_sta_remove,
.sta_notify = mt76x2_sta_notify,
.set_key = mt76x2_set_key,
.conf_tx = mt76x2_conf_tx,
.sw_scan_start = mt76x2_sw_scan,
.sw_scan_complete = mt76x2_sw_scan_complete,
.flush = mt76x2_flush,
.ampdu_action = mt76x2_ampdu_action,
.get_txpower = mt76x2_get_txpower,
.wake_tx_queue = mt76_wake_tx_queue,
.sta_rate_tbl_update = mt76x2_sta_rate_tbl_update,
.release_buffered_frames = mt76_release_buffered_frames,
.set_coverage_class = mt76x2_set_coverage_class,
.get_survey = mt76_get_survey,
};

View File

@ -0,0 +1,451 @@
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/kernel.h>
#include <linux/firmware.h>
#include <linux/delay.h>
#include "mt76x2.h"
#include "mt76x2_mcu.h"
#include "mt76x2_dma.h"
#include "mt76x2_eeprom.h"
struct mt76x2_fw_header {
__le32 ilm_len;
__le32 dlm_len;
__le16 build_ver;
__le16 fw_ver;
u8 pad[4];
char build_time[16];
};
struct mt76x2_patch_header {
char build_time[16];
char platform[4];
char hw_version[4];
char patch_version[4];
u8 pad[2];
};
static struct sk_buff *mt76x2_mcu_msg_alloc(const void *data, int len)
{
struct sk_buff *skb;
skb = alloc_skb(len, GFP_KERNEL);
memcpy(skb_put(skb, len), data, len);
return skb;
}
static struct sk_buff *
mt76x2_mcu_get_response(struct mt76x2_dev *dev, unsigned long expires)
{
unsigned long timeout;
if (!time_is_after_jiffies(expires))
return NULL;
timeout = expires - jiffies;
wait_event_timeout(dev->mcu.wait, !skb_queue_empty(&dev->mcu.res_q),
timeout);
return skb_dequeue(&dev->mcu.res_q);
}
static int
mt76x2_mcu_msg_send(struct mt76x2_dev *dev, struct sk_buff *skb,
enum mcu_cmd cmd)
{
unsigned long expires = jiffies + HZ;
int ret;
u8 seq;
if (!skb)
return -EINVAL;
mutex_lock(&dev->mcu.mutex);
seq = ++dev->mcu.msg_seq & 0xf;
if (!seq)
seq = ++dev->mcu.msg_seq & 0xf;
ret = mt76x2_tx_queue_mcu(dev, MT_TXQ_MCU, skb, cmd, seq);
if (ret)
goto out;
while (1) {
u32 *rxfce;
bool check_seq = false;
skb = mt76x2_mcu_get_response(dev, expires);
if (!skb) {
dev_err(dev->mt76.dev,
"MCU message %d (seq %d) timed out\n", cmd,
seq);
ret = -ETIMEDOUT;
break;
}
rxfce = (u32 *) skb->cb;
if (seq == FIELD_GET(MT_RX_FCE_INFO_CMD_SEQ, *rxfce))
check_seq = true;
dev_kfree_skb(skb);
if (check_seq)
break;
}
out:
mutex_unlock(&dev->mcu.mutex);
return ret;
}
static int
mt76pci_load_rom_patch(struct mt76x2_dev *dev)
{
const struct firmware *fw = NULL;
struct mt76x2_patch_header *hdr;
bool rom_protect = !is_mt7612(dev);
int len, ret = 0;
__le32 *cur;
u32 patch_mask, patch_reg;
if (rom_protect && !mt76_poll(dev, MT_MCU_SEMAPHORE_03, 1, 1, 600)) {
dev_err(dev->mt76.dev,
"Could not get hardware semaphore for ROM PATCH\n");
return -ETIMEDOUT;
}
if (mt76xx_rev(dev) >= MT76XX_REV_E3) {
patch_mask = BIT(0);
patch_reg = MT_MCU_CLOCK_CTL;
} else {
patch_mask = BIT(1);
patch_reg = MT_MCU_COM_REG0;
}
if (rom_protect && (mt76_rr(dev, patch_reg) & patch_mask)) {
dev_info(dev->mt76.dev, "ROM patch already applied\n");
goto out;
}
ret = request_firmware(&fw, MT7662_ROM_PATCH, dev->mt76.dev);
if (ret)
goto out;
if (!fw || !fw->data || fw->size <= sizeof(*hdr)) {
ret = -EIO;
dev_err(dev->mt76.dev, "Failed to load firmware\n");
goto out;
}
hdr = (struct mt76x2_patch_header *) fw->data;
dev_info(dev->mt76.dev, "ROM patch build: %.15s\n", hdr->build_time);
mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, MT_MCU_ROM_PATCH_OFFSET);
cur = (__le32 *) (fw->data + sizeof(*hdr));
len = fw->size - sizeof(*hdr);
mt76_wr_copy(dev, MT_MCU_ROM_PATCH_ADDR, cur, len);
mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, 0);
/* Trigger ROM */
mt76_wr(dev, MT_MCU_INT_LEVEL, 4);
if (!mt76_poll_msec(dev, patch_reg, patch_mask, patch_mask, 2000)) {
dev_err(dev->mt76.dev, "Failed to load ROM patch\n");
ret = -ETIMEDOUT;
}
out:
/* release semaphore */
if (rom_protect)
mt76_wr(dev, MT_MCU_SEMAPHORE_03, 1);
release_firmware(fw);
return ret;
}
static int
mt76pci_load_firmware(struct mt76x2_dev *dev)
{
const struct firmware *fw;
const struct mt76x2_fw_header *hdr;
int i, len, ret;
__le32 *cur;
u32 offset, val;
ret = request_firmware(&fw, MT7662_FIRMWARE, dev->mt76.dev);
if (ret)
return ret;
if (!fw || !fw->data || fw->size < sizeof(*hdr))
goto error;
hdr = (const struct mt76x2_fw_header *) fw->data;
len = sizeof(*hdr);
len += le32_to_cpu(hdr->ilm_len);
len += le32_to_cpu(hdr->dlm_len);
if (fw->size != len)
goto error;
val = le16_to_cpu(hdr->fw_ver);
dev_info(dev->mt76.dev, "Firmware Version: %d.%d.%02d\n",
(val >> 12) & 0xf, (val >> 8) & 0xf, val & 0xf);
val = le16_to_cpu(hdr->build_ver);
dev_info(dev->mt76.dev, "Build: %x\n", val);
dev_info(dev->mt76.dev, "Build Time: %.16s\n", hdr->build_time);
cur = (__le32 *) (fw->data + sizeof(*hdr));
len = le32_to_cpu(hdr->ilm_len);
mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, MT_MCU_ILM_OFFSET);
mt76_wr_copy(dev, MT_MCU_ILM_ADDR, cur, len);
cur += len / sizeof(*cur);
len = le32_to_cpu(hdr->dlm_len);
if (mt76xx_rev(dev) >= MT76XX_REV_E3)
offset = MT_MCU_DLM_ADDR_E3;
else
offset = MT_MCU_DLM_ADDR;
mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, MT_MCU_DLM_OFFSET);
mt76_wr_copy(dev, offset, cur, len);
mt76_wr(dev, MT_MCU_PCIE_REMAP_BASE4, 0);
val = mt76x2_eeprom_get(dev, MT_EE_NIC_CONF_2);
if (FIELD_GET(MT_EE_NIC_CONF_2_XTAL_OPTION, val) == 1)
mt76_set(dev, MT_MCU_COM_REG0, BIT(30));
/* trigger firmware */
mt76_wr(dev, MT_MCU_INT_LEVEL, 2);
for (i = 200; i > 0; i--) {
val = mt76_rr(dev, MT_MCU_COM_REG0);
if (val & 1)
break;
msleep(10);
}
if (!i) {
dev_err(dev->mt76.dev, "Firmware failed to start\n");
release_firmware(fw);
return -ETIMEDOUT;
}
dev_info(dev->mt76.dev, "Firmware running!\n");
release_firmware(fw);
return ret;
error:
dev_err(dev->mt76.dev, "Invalid firmware\n");
release_firmware(fw);
return -ENOENT;
}
static int
mt76x2_mcu_function_select(struct mt76x2_dev *dev, enum mcu_function func,
u32 val)
{
struct sk_buff *skb;
struct {
__le32 id;
__le32 value;
} __packed __aligned(4) msg = {
.id = cpu_to_le32(func),
.value = cpu_to_le32(val),
};
skb = mt76x2_mcu_msg_alloc(&msg, sizeof(msg));
return mt76x2_mcu_msg_send(dev, skb, CMD_FUN_SET_OP);
}
int mt76x2_mcu_load_cr(struct mt76x2_dev *dev, u8 type, u8 temp_level,
u8 channel)
{
struct sk_buff *skb;
struct {
u8 cr_mode;
u8 temp;
u8 ch;
u8 _pad0;
__le32 cfg;
} __packed __aligned(4) msg = {
.cr_mode = type,
.temp = temp_level,
.ch = channel,
};
u32 val;
val = BIT(31);
val |= (mt76x2_eeprom_get(dev, MT_EE_NIC_CONF_0) >> 8) & 0x00ff;
val |= (mt76x2_eeprom_get(dev, MT_EE_NIC_CONF_1) << 8) & 0xff00;
msg.cfg = cpu_to_le32(val);
/* first set the channel without the extension channel info */
skb = mt76x2_mcu_msg_alloc(&msg, sizeof(msg));
return mt76x2_mcu_msg_send(dev, skb, CMD_LOAD_CR);
}
int mt76x2_mcu_set_channel(struct mt76x2_dev *dev, u8 channel, u8 bw,
u8 bw_index, bool scan)
{
struct sk_buff *skb;
struct {
u8 idx;
u8 scan;
u8 bw;
u8 _pad0;
__le16 chainmask;
u8 ext_chan;
u8 _pad1;
} __packed __aligned(4) msg = {
.idx = channel,
.scan = scan,
.bw = bw,
.chainmask = cpu_to_le16(dev->chainmask),
};
/* first set the channel without the extension channel info */
skb = mt76x2_mcu_msg_alloc(&msg, sizeof(msg));
mt76x2_mcu_msg_send(dev, skb, CMD_SWITCH_CHANNEL_OP);
usleep_range(5000, 10000);
msg.ext_chan = 0xe0 + bw_index;
skb = mt76x2_mcu_msg_alloc(&msg, sizeof(msg));
return mt76x2_mcu_msg_send(dev, skb, CMD_SWITCH_CHANNEL_OP);
}
int mt76x2_mcu_set_radio_state(struct mt76x2_dev *dev, bool on)
{
struct sk_buff *skb;
struct {
__le32 mode;
__le32 level;
} __packed __aligned(4) msg = {
.mode = cpu_to_le32(on ? RADIO_ON : RADIO_OFF),
.level = cpu_to_le32(0),
};
skb = mt76x2_mcu_msg_alloc(&msg, sizeof(msg));
return mt76x2_mcu_msg_send(dev, skb, CMD_POWER_SAVING_OP);
}
int mt76x2_mcu_calibrate(struct mt76x2_dev *dev, enum mcu_calibration type,
u32 param)
{
struct sk_buff *skb;
struct {
__le32 id;
__le32 value;
} __packed __aligned(4) msg = {
.id = cpu_to_le32(type),
.value = cpu_to_le32(param),
};
int ret;
mt76_clear(dev, MT_MCU_COM_REG0, BIT(31));
skb = mt76x2_mcu_msg_alloc(&msg, sizeof(msg));
ret = mt76x2_mcu_msg_send(dev, skb, CMD_CALIBRATION_OP);
if (ret)
return ret;
if (WARN_ON(!mt76_poll_msec(dev, MT_MCU_COM_REG0,
BIT(31), BIT(31), 100)))
return -ETIMEDOUT;
return 0;
}
int mt76x2_mcu_tssi_comp(struct mt76x2_dev *dev,
struct mt76x2_tssi_comp *tssi_data)
{
struct sk_buff *skb;
struct {
__le32 id;
struct mt76x2_tssi_comp data;
} __packed __aligned(4) msg = {
.id = cpu_to_le32(MCU_CAL_TSSI_COMP),
.data = *tssi_data,
};
skb = mt76x2_mcu_msg_alloc(&msg, sizeof(msg));
return mt76x2_mcu_msg_send(dev, skb, CMD_CALIBRATION_OP);
}
int mt76x2_mcu_init_gain(struct mt76x2_dev *dev, u8 channel, u32 gain,
bool force)
{
struct sk_buff *skb;
struct {
__le32 channel;
__le32 gain_val;
} __packed __aligned(4) msg = {
.channel = cpu_to_le32(channel),
.gain_val = cpu_to_le32(gain),
};
if (force)
msg.channel |= cpu_to_le32(BIT(31));
skb = mt76x2_mcu_msg_alloc(&msg, sizeof(msg));
return mt76x2_mcu_msg_send(dev, skb, CMD_INIT_GAIN_OP);
}
int mt76x2_mcu_init(struct mt76x2_dev *dev)
{
int ret;
mutex_init(&dev->mcu.mutex);
ret = mt76pci_load_rom_patch(dev);
if (ret)
return ret;
ret = mt76pci_load_firmware(dev);
if (ret)
return ret;
mt76x2_mcu_function_select(dev, Q_SELECT, 1);
return 0;
}
int mt76x2_mcu_cleanup(struct mt76x2_dev *dev)
{
struct sk_buff *skb;
mt76_wr(dev, MT_MCU_INT_LEVEL, 1);
usleep_range(20000, 30000);
while ((skb = skb_dequeue(&dev->mcu.res_q)) != NULL)
dev_kfree_skb(skb);
return 0;
}

View File

@ -0,0 +1,155 @@
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef __MT76x2_MCU_H
#define __MT76x2_MCU_H
/* Register definitions */
#define MT_MCU_CPU_CTL 0x0704
#define MT_MCU_CLOCK_CTL 0x0708
#define MT_MCU_RESET_CTL 0x070C
#define MT_MCU_INT_LEVEL 0x0718
#define MT_MCU_COM_REG0 0x0730
#define MT_MCU_COM_REG1 0x0734
#define MT_MCU_COM_REG2 0x0738
#define MT_MCU_COM_REG3 0x073C
#define MT_MCU_PCIE_REMAP_BASE1 0x0740
#define MT_MCU_PCIE_REMAP_BASE2 0x0744
#define MT_MCU_PCIE_REMAP_BASE3 0x0748
#define MT_MCU_PCIE_REMAP_BASE4 0x074C
#define MT_LED_CTRL 0x0770
#define MT_LED_CTRL_REPLAY(_n) BIT(0 + (8 * (_n)))
#define MT_LED_CTRL_POLARITY(_n) BIT(1 + (8 * (_n)))
#define MT_LED_CTRL_TX_BLINK_MODE(_n) BIT(2 + (8 * (_n)))
#define MT_LED_CTRL_KICK(_n) BIT(7 + (8 * (_n)))
#define MT_LED_TX_BLINK_0 0x0774
#define MT_LED_TX_BLINK_1 0x0778
#define MT_LED_S0_BASE 0x077C
#define MT_LED_S0(_n) (MT_LED_S0_BASE + 8 * (_n))
#define MT_LED_S1_BASE 0x0780
#define MT_LED_S1(_n) (MT_LED_S1_BASE + 8 * (_n))
#define MT_LED_STATUS_OFF_MASK GENMASK(31, 24)
#define MT_LED_STATUS_OFF(_v) (((_v) << __ffs(MT_LED_STATUS_OFF_MASK)) & \
MT_LED_STATUS_OFF_MASK)
#define MT_LED_STATUS_ON_MASK GENMASK(23, 16)
#define MT_LED_STATUS_ON(_v) (((_v) << __ffs(MT_LED_STATUS_ON_MASK)) & \
MT_LED_STATUS_ON_MASK)
#define MT_LED_STATUS_DURATION_MASK GENMASK(15, 8)
#define MT_LED_STATUS_DURATION(_v) (((_v) << __ffs(MT_LED_STATUS_DURATION_MASK)) & \
MT_LED_STATUS_DURATION_MASK)
#define MT_MCU_SEMAPHORE_00 0x07B0
#define MT_MCU_SEMAPHORE_01 0x07B4
#define MT_MCU_SEMAPHORE_02 0x07B8
#define MT_MCU_SEMAPHORE_03 0x07BC
#define MT_MCU_ROM_PATCH_OFFSET 0x80000
#define MT_MCU_ROM_PATCH_ADDR 0x90000
#define MT_MCU_ILM_OFFSET 0x80000
#define MT_MCU_ILM_ADDR 0x80000
#define MT_MCU_DLM_OFFSET 0x100000
#define MT_MCU_DLM_ADDR 0x90000
#define MT_MCU_DLM_ADDR_E3 0x90800
enum mcu_cmd {
CMD_FUN_SET_OP = 1,
CMD_LOAD_CR = 2,
CMD_INIT_GAIN_OP = 3,
CMD_DYNC_VGA_OP = 6,
CMD_TDLS_CH_SW = 7,
CMD_BURST_WRITE = 8,
CMD_READ_MODIFY_WRITE = 9,
CMD_RANDOM_READ = 10,
CMD_BURST_READ = 11,
CMD_RANDOM_WRITE = 12,
CMD_LED_MODE_OP = 16,
CMD_POWER_SAVING_OP = 20,
CMD_WOW_CONFIG = 21,
CMD_WOW_QUERY = 22,
CMD_WOW_FEATURE = 24,
CMD_CARRIER_DETECT_OP = 28,
CMD_RADOR_DETECT_OP = 29,
CMD_SWITCH_CHANNEL_OP = 30,
CMD_CALIBRATION_OP = 31,
CMD_BEACON_OP = 32,
CMD_ANTENNA_OP = 33,
};
enum mcu_function {
Q_SELECT = 1,
BW_SETTING = 2,
USB2_SW_DISCONNECT = 2,
USB3_SW_DISCONNECT = 3,
LOG_FW_DEBUG_MSG = 4,
GET_FW_VERSION = 5,
};
enum mcu_power_mode {
RADIO_OFF = 0x30,
RADIO_ON = 0x31,
RADIO_OFF_AUTO_WAKEUP = 0x32,
RADIO_OFF_ADVANCE = 0x33,
RADIO_ON_ADVANCE = 0x34,
};
enum mcu_calibration {
MCU_CAL_R = 1,
MCU_CAL_TEMP_SENSOR,
MCU_CAL_RXDCOC,
MCU_CAL_RC,
MCU_CAL_SX_LOGEN,
MCU_CAL_LC,
MCU_CAL_TX_LOFT,
MCU_CAL_TXIQ,
MCU_CAL_TSSI,
MCU_CAL_TSSI_COMP,
MCU_CAL_DPD,
MCU_CAL_RXIQC_FI,
MCU_CAL_RXIQC_FD,
MCU_CAL_PWRON,
MCU_CAL_TX_SHAPING,
};
enum mt76x2_mcu_cr_mode {
MT_RF_CR,
MT_BBP_CR,
MT_RF_BBP_CR,
MT_HL_TEMP_CR_UPDATE,
};
struct mt76x2_tssi_comp {
u8 pa_mode;
u8 cal_mode;
u16 pad;
u8 slope0;
u8 slope1;
u8 offset0;
u8 offset1;
} __packed __aligned(4);
int mt76x2_mcu_calibrate(struct mt76x2_dev *dev, enum mcu_calibration type,
u32 param);
int mt76x2_mcu_tssi_comp(struct mt76x2_dev *dev, struct mt76x2_tssi_comp *tssi_data);
int mt76x2_mcu_init_gain(struct mt76x2_dev *dev, u8 channel, u32 gain,
bool force);
#endif

View File

@ -0,0 +1,110 @@
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/pci.h>
#include "mt76x2.h"
#include "mt76x2_trace.h"
static const struct pci_device_id mt76pci_device_table[] = {
{ PCI_DEVICE(0x14c3, 0x7662) },
{ PCI_DEVICE(0x14c3, 0x7612) },
{ PCI_DEVICE(0x14c3, 0x7602) },
{ },
};
static int
mt76pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct mt76x2_dev *dev;
int ret;
ret = pcim_enable_device(pdev);
if (ret)
return ret;
ret = pcim_iomap_regions(pdev, BIT(0), pci_name(pdev));
if (ret)
return ret;
pci_set_master(pdev);
ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (ret)
return ret;
dev = mt76x2_alloc_device(&pdev->dev);
if (!dev)
return -ENOMEM;
mt76_mmio_init(&dev->mt76, pcim_iomap_table(pdev)[0]);
dev->mt76.rev = mt76_rr(dev, MT_ASIC_VERSION);
dev_info(dev->mt76.dev, "ASIC revision: %08x\n", dev->mt76.rev);
ret = devm_request_irq(dev->mt76.dev, pdev->irq, mt76x2_irq_handler,
IRQF_SHARED, KBUILD_MODNAME, dev);
if (ret)
goto error;
ret = mt76x2_register_device(dev);
if (ret)
goto error;
/* Fix up ASPM configuration */
/* RG_SSUSB_G1_CDR_BIR_LTR = 0x9 */
mt76_rmw_field(dev, 0x15a10, 0x1f << 16, 0x9);
/* RG_SSUSB_G1_CDR_BIC_LTR = 0xf */
mt76_rmw_field(dev, 0x15a0c, 0xf << 28, 0xf);
/* RG_SSUSB_CDR_BR_PE1D = 0x3 */
mt76_rmw_field(dev, 0x15c58, 0x3 << 6, 0x3);
return 0;
error:
ieee80211_free_hw(mt76_hw(dev));
return ret;
}
static void
mt76pci_remove(struct pci_dev *pdev)
{
struct mt76_dev *mdev = pci_get_drvdata(pdev);
struct mt76x2_dev *dev = container_of(mdev, struct mt76x2_dev, mt76);
mt76_unregister_device(mdev);
mt76x2_cleanup(dev);
ieee80211_free_hw(mdev->hw);
}
MODULE_DEVICE_TABLE(pci, mt76pci_device_table);
MODULE_FIRMWARE(MT7662_FIRMWARE);
MODULE_FIRMWARE(MT7662_ROM_PATCH);
MODULE_LICENSE("Dual BSD/GPL");
static struct pci_driver mt76pci_driver = {
.name = KBUILD_MODNAME,
.id_table = mt76pci_device_table,
.probe = mt76pci_probe,
.remove = mt76pci_remove,
};
module_pci_driver(mt76pci_driver);

View File

@ -0,0 +1,758 @@
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/delay.h>
#include "mt76x2.h"
#include "mt76x2_mcu.h"
#include "mt76x2_eeprom.h"
static void
mt76x2_adjust_high_lna_gain(struct mt76x2_dev *dev, int reg, s8 offset)
{
s8 gain;
gain = FIELD_GET(MT_BBP_AGC_LNA_HIGH_GAIN, mt76_rr(dev, MT_BBP(AGC, reg)));
gain -= offset / 2;
mt76_rmw_field(dev, MT_BBP(AGC, reg), MT_BBP_AGC_LNA_HIGH_GAIN, gain);
}
static void
mt76x2_adjust_agc_gain(struct mt76x2_dev *dev, int reg, s8 offset)
{
s8 gain;
gain = FIELD_GET(MT_BBP_AGC_GAIN, mt76_rr(dev, MT_BBP(AGC, reg)));
gain += offset;
mt76_rmw_field(dev, MT_BBP(AGC, reg), MT_BBP_AGC_GAIN, gain);
}
static void
mt76x2_apply_gain_adj(struct mt76x2_dev *dev)
{
s8 *gain_adj = dev->cal.rx.high_gain;
mt76x2_adjust_high_lna_gain(dev, 4, gain_adj[0]);
mt76x2_adjust_high_lna_gain(dev, 5, gain_adj[1]);
mt76x2_adjust_agc_gain(dev, 8, gain_adj[0]);
mt76x2_adjust_agc_gain(dev, 9, gain_adj[1]);
}
static u32
mt76x2_tx_power_mask(u8 v1, u8 v2, u8 v3, u8 v4)
{
u32 val = 0;
val |= (v1 & (BIT(6) - 1)) << 0;
val |= (v2 & (BIT(6) - 1)) << 8;
val |= (v3 & (BIT(6) - 1)) << 16;
val |= (v4 & (BIT(6) - 1)) << 24;
return val;
}
int mt76x2_phy_get_rssi(struct mt76x2_dev *dev, s8 rssi, int chain)
{
struct mt76x2_rx_freq_cal *cal = &dev->cal.rx;
rssi += cal->rssi_offset[chain];
rssi -= cal->lna_gain;
return rssi;
}
static u8
mt76x2_txpower_check(int value)
{
if (value < 0)
return 0;
if (value > 0x2f)
return 0x2f;
return value;
}
static void
mt76x2_add_rate_power_offset(struct mt76_rate_power *r, int offset)
{
int i;
for (i = 0; i < sizeof(r->all); i++)
r->all[i] += offset;
}
static void
mt76x2_limit_rate_power(struct mt76_rate_power *r, int limit)
{
int i;
for (i = 0; i < sizeof(r->all); i++)
if (r->all[i] > limit)
r->all[i] = limit;
}
static int
mt76x2_get_max_power(struct mt76_rate_power *r)
{
int i;
s8 ret = 0;
for (i = 0; i < sizeof(r->all); i++)
ret = max(ret, r->all[i]);
return ret;
}
void mt76x2_phy_set_txpower(struct mt76x2_dev *dev)
{
enum nl80211_chan_width width = dev->mt76.chandef.width;
struct mt76x2_tx_power_info txp;
int txp_0, txp_1, delta = 0;
struct mt76_rate_power t = {};
mt76x2_get_power_info(dev, &txp);
if (width == NL80211_CHAN_WIDTH_40)
delta = txp.delta_bw40;
else if (width == NL80211_CHAN_WIDTH_80)
delta = txp.delta_bw80;
if (txp.target_power > dev->txpower_conf)
delta -= txp.target_power - dev->txpower_conf;
mt76x2_get_rate_power(dev, &t);
mt76x2_add_rate_power_offset(&t, txp.chain[0].target_power +
txp.chain[0].delta);
mt76x2_limit_rate_power(&t, dev->txpower_conf);
dev->txpower_cur = mt76x2_get_max_power(&t);
mt76x2_add_rate_power_offset(&t, -(txp.chain[0].target_power +
txp.chain[0].delta + delta));
dev->target_power = txp.chain[0].target_power;
dev->target_power_delta[0] = txp.chain[0].delta + delta;
dev->target_power_delta[1] = txp.chain[1].delta + delta;
dev->rate_power = t;
txp_0 = mt76x2_txpower_check(txp.chain[0].target_power +
txp.chain[0].delta + delta);
txp_1 = mt76x2_txpower_check(txp.chain[1].target_power +
txp.chain[1].delta + delta);
mt76_rmw_field(dev, MT_TX_ALC_CFG_0, MT_TX_ALC_CFG_0_CH_INIT_0, txp_0);
mt76_rmw_field(dev, MT_TX_ALC_CFG_0, MT_TX_ALC_CFG_0_CH_INIT_1, txp_1);
mt76_wr(dev, MT_TX_PWR_CFG_0,
mt76x2_tx_power_mask(t.cck[0], t.cck[2], t.ofdm[0], t.ofdm[2]));
mt76_wr(dev, MT_TX_PWR_CFG_1,
mt76x2_tx_power_mask(t.ofdm[4], t.ofdm[6], t.ht[0], t.ht[2]));
mt76_wr(dev, MT_TX_PWR_CFG_2,
mt76x2_tx_power_mask(t.ht[4], t.ht[6], t.ht[8], t.ht[10]));
mt76_wr(dev, MT_TX_PWR_CFG_3,
mt76x2_tx_power_mask(t.ht[12], t.ht[14], t.ht[0], t.ht[2]));
mt76_wr(dev, MT_TX_PWR_CFG_4,
mt76x2_tx_power_mask(t.ht[4], t.ht[6], 0, 0));
mt76_wr(dev, MT_TX_PWR_CFG_7,
mt76x2_tx_power_mask(t.ofdm[6], t.vht[8], t.ht[6], t.vht[8]));
mt76_wr(dev, MT_TX_PWR_CFG_8,
mt76x2_tx_power_mask(t.ht[14], t.vht[8], t.vht[8], 0));
mt76_wr(dev, MT_TX_PWR_CFG_9,
mt76x2_tx_power_mask(t.ht[6], t.vht[8], t.vht[8], 0));
}
static bool
mt76x2_channel_silent(struct mt76x2_dev *dev)
{
struct ieee80211_channel *chan = dev->mt76.chandef.chan;
return ((chan->flags & IEEE80211_CHAN_RADAR) &&
chan->dfs_state != NL80211_DFS_AVAILABLE);
}
static bool
mt76x2_phy_tssi_init_cal(struct mt76x2_dev *dev)
{
struct ieee80211_channel *chan = dev->mt76.chandef.chan;
u32 flag = 0;
if (!mt76x2_tssi_enabled(dev))
return false;
if (mt76x2_channel_silent(dev))
return false;
if (chan->band == NL80211_BAND_2GHZ)
flag |= BIT(0);
if (mt76x2_ext_pa_enabled(dev, chan->band))
flag |= BIT(8);
mt76x2_mcu_calibrate(dev, MCU_CAL_TSSI, flag);
dev->cal.tssi_cal_done = true;
return true;
}
static void
mt76x2_phy_channel_calibrate(struct mt76x2_dev *dev, bool mac_stopped)
{
struct ieee80211_channel *chan = dev->mt76.chandef.chan;
bool is_5ghz = chan->band == NL80211_BAND_5GHZ;
if (dev->cal.channel_cal_done)
return;
if (mt76x2_channel_silent(dev))
return;
if (!dev->cal.tssi_cal_done)
mt76x2_phy_tssi_init_cal(dev);
if (!mac_stopped)
mt76x2_mac_stop(dev, false);
if (is_5ghz)
mt76x2_mcu_calibrate(dev, MCU_CAL_LC, 0);
mt76x2_mcu_calibrate(dev, MCU_CAL_TX_LOFT, is_5ghz);
mt76x2_mcu_calibrate(dev, MCU_CAL_TXIQ, is_5ghz);
mt76x2_mcu_calibrate(dev, MCU_CAL_RXIQC_FI, is_5ghz);
mt76x2_mcu_calibrate(dev, MCU_CAL_TEMP_SENSOR, 0);
mt76x2_mcu_calibrate(dev, MCU_CAL_TX_SHAPING, 0);
if (!mac_stopped)
mt76x2_mac_resume(dev);
mt76x2_apply_gain_adj(dev);
dev->cal.channel_cal_done = true;
}
static void
mt76x2_phy_set_txpower_regs(struct mt76x2_dev *dev, enum nl80211_band band)
{
u32 pa_mode[2];
u32 pa_mode_adj;
if (band == NL80211_BAND_2GHZ) {
pa_mode[0] = 0x010055ff;
pa_mode[1] = 0x00550055;
mt76_wr(dev, MT_TX_ALC_CFG_2, 0x35160a00);
mt76_wr(dev, MT_TX_ALC_CFG_3, 0x35160a06);
if (mt76x2_ext_pa_enabled(dev, band)) {
mt76_wr(dev, MT_RF_PA_MODE_ADJ0, 0x0000ec00);
mt76_wr(dev, MT_RF_PA_MODE_ADJ1, 0x0000ec00);
} else {
mt76_wr(dev, MT_RF_PA_MODE_ADJ0, 0xf4000200);
mt76_wr(dev, MT_RF_PA_MODE_ADJ1, 0xfa000200);
}
} else {
pa_mode[0] = 0x0000ffff;
pa_mode[1] = 0x00ff00ff;
if (mt76x2_ext_pa_enabled(dev, band)) {
mt76_wr(dev, MT_TX_ALC_CFG_2, 0x2f0f0400);
mt76_wr(dev, MT_TX_ALC_CFG_3, 0x2f0f0476);
} else {
mt76_wr(dev, MT_TX_ALC_CFG_2, 0x1b0f0400);
mt76_wr(dev, MT_TX_ALC_CFG_3, 0x1b0f0476);
}
mt76_wr(dev, MT_TX_ALC_CFG_4, 0);
if (mt76x2_ext_pa_enabled(dev, band))
pa_mode_adj = 0x04000000;
else
pa_mode_adj = 0;
mt76_wr(dev, MT_RF_PA_MODE_ADJ0, pa_mode_adj);
mt76_wr(dev, MT_RF_PA_MODE_ADJ1, pa_mode_adj);
}
mt76_wr(dev, MT_BB_PA_MODE_CFG0, pa_mode[0]);
mt76_wr(dev, MT_BB_PA_MODE_CFG1, pa_mode[1]);
mt76_wr(dev, MT_RF_PA_MODE_CFG0, pa_mode[0]);
mt76_wr(dev, MT_RF_PA_MODE_CFG1, pa_mode[1]);
if (mt76x2_ext_pa_enabled(dev, band)) {
u32 val;
if (band == NL80211_BAND_2GHZ)
val = 0x3c3c023c;
else
val = 0x363c023c;
mt76_wr(dev, MT_TX0_RF_GAIN_CORR, val);
mt76_wr(dev, MT_TX1_RF_GAIN_CORR, val);
mt76_wr(dev, MT_TX_ALC_CFG_4, 0x00001818);
} else {
if (band == NL80211_BAND_2GHZ) {
u32 val = 0x0f3c3c3c;
mt76_wr(dev, MT_TX0_RF_GAIN_CORR, val);
mt76_wr(dev, MT_TX1_RF_GAIN_CORR, val);
mt76_wr(dev, MT_TX_ALC_CFG_4, 0x00000606);
} else {
mt76_wr(dev, MT_TX0_RF_GAIN_CORR, 0x383c023c);
mt76_wr(dev, MT_TX1_RF_GAIN_CORR, 0x24282e28);
mt76_wr(dev, MT_TX_ALC_CFG_4, 0);
}
}
}
static void
mt76x2_configure_tx_delay(struct mt76x2_dev *dev, enum nl80211_band band, u8 bw)
{
u32 cfg0, cfg1;
if (mt76x2_ext_pa_enabled(dev, band)) {
cfg0 = bw ? 0x000b0c01 : 0x00101101;
cfg1 = 0x00011414;
} else {
cfg0 = bw ? 0x000b0b01 : 0x00101001;
cfg1 = 0x00021414;
}
mt76_wr(dev, MT_TX_SW_CFG0, cfg0);
mt76_wr(dev, MT_TX_SW_CFG1, cfg1);
mt76_rmw_field(dev, MT_XIFS_TIME_CFG, MT_XIFS_TIME_CFG_CCK_SIFS,
13 + (bw ? 1 : 0));
}
static void
mt76x2_phy_set_bw(struct mt76x2_dev *dev, int width, u8 ctrl)
{
int core_val, agc_val;
switch (width) {
case NL80211_CHAN_WIDTH_80:
core_val = 3;
agc_val = 7;
break;
case NL80211_CHAN_WIDTH_40:
core_val = 2;
agc_val = 3;
break;
default:
core_val = 0;
agc_val = 1;
break;
}
mt76_rmw_field(dev, MT_BBP(CORE, 1), MT_BBP_CORE_R1_BW, core_val);
mt76_rmw_field(dev, MT_BBP(AGC, 0), MT_BBP_AGC_R0_BW, agc_val);
mt76_rmw_field(dev, MT_BBP(AGC, 0), MT_BBP_AGC_R0_CTRL_CHAN, ctrl);
mt76_rmw_field(dev, MT_BBP(TXBE, 0), MT_BBP_TXBE_R0_CTRL_CHAN, ctrl);
}
static void
mt76x2_phy_set_band(struct mt76x2_dev *dev, int band, bool primary_upper)
{
switch (band) {
case NL80211_BAND_2GHZ:
mt76_set(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_2G);
mt76_clear(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_5G);
break;
case NL80211_BAND_5GHZ:
mt76_clear(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_2G);
mt76_set(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_5G);
break;
}
mt76_rmw_field(dev, MT_TX_BAND_CFG, MT_TX_BAND_CFG_UPPER_40M,
primary_upper);
}
static void
mt76x2_set_rx_chains(struct mt76x2_dev *dev)
{
u32 val;
val = mt76_rr(dev, MT_BBP(AGC, 0));
val &= ~(BIT(3) | BIT(4));
if (dev->chainmask & BIT(1))
val |= BIT(3);
mt76_wr(dev, MT_BBP(AGC, 0), val);
}
static void
mt76x2_set_tx_dac(struct mt76x2_dev *dev)
{
if (dev->chainmask & BIT(1))
mt76_set(dev, MT_BBP(TXBE, 5), 3);
else
mt76_clear(dev, MT_BBP(TXBE, 5), 3);
}
static void
mt76x2_get_agc_gain(struct mt76x2_dev *dev, u8 *dest)
{
dest[0] = mt76_get_field(dev, MT_BBP(AGC, 8), MT_BBP_AGC_GAIN);
dest[1] = mt76_get_field(dev, MT_BBP(AGC, 9), MT_BBP_AGC_GAIN);
}
static int
mt76x2_get_rssi_gain_thresh(struct mt76x2_dev *dev)
{
switch (dev->mt76.chandef.width) {
case NL80211_CHAN_WIDTH_80:
return -62;
case NL80211_CHAN_WIDTH_40:
return -65;
default:
return -68;
}
}
static int
mt76x2_get_low_rssi_gain_thresh(struct mt76x2_dev *dev)
{
switch (dev->mt76.chandef.width) {
case NL80211_CHAN_WIDTH_80:
return -76;
case NL80211_CHAN_WIDTH_40:
return -79;
default:
return -82;
}
}
static void
mt76x2_phy_set_gain_val(struct mt76x2_dev *dev)
{
u32 val;
u8 gain_val[2];
gain_val[0] = dev->cal.agc_gain_cur[0] - dev->cal.agc_gain_adjust;
gain_val[1] = dev->cal.agc_gain_cur[1] - dev->cal.agc_gain_adjust;
if (dev->mt76.chandef.width >= NL80211_CHAN_WIDTH_40)
val = 0x1e42 << 16;
else
val = 0x1836 << 16;
val |= 0xf8;
mt76_wr(dev, MT_BBP(AGC, 8),
val | FIELD_PREP(MT_BBP_AGC_GAIN, gain_val[0]));
mt76_wr(dev, MT_BBP(AGC, 9),
val | FIELD_PREP(MT_BBP_AGC_GAIN, gain_val[1]));
if (dev->mt76.chandef.chan->flags & IEEE80211_CHAN_RADAR)
mt76x2_dfs_adjust_agc(dev);
}
static void
mt76x2_phy_adjust_vga_gain(struct mt76x2_dev *dev)
{
u32 false_cca;
u8 limit = dev->cal.low_gain > 1 ? 4 : 16;
false_cca = FIELD_GET(MT_RX_STAT_1_CCA_ERRORS, mt76_rr(dev, MT_RX_STAT_1));
if (false_cca > 800 && dev->cal.agc_gain_adjust < limit)
dev->cal.agc_gain_adjust += 2;
else if (false_cca < 10 && dev->cal.agc_gain_adjust > 0)
dev->cal.agc_gain_adjust -= 2;
else
return;
mt76x2_phy_set_gain_val(dev);
}
static void
mt76x2_phy_update_channel_gain(struct mt76x2_dev *dev)
{
u32 val = mt76_rr(dev, MT_BBP(AGC, 20));
int rssi0 = (s8) FIELD_GET(MT_BBP_AGC20_RSSI0, val);
int rssi1 = (s8) FIELD_GET(MT_BBP_AGC20_RSSI1, val);
u8 *gain = dev->cal.agc_gain_init;
u8 gain_delta;
int low_gain;
dev->cal.avg_rssi[0] = (dev->cal.avg_rssi[0] * 15) / 16 + (rssi0 << 8);
dev->cal.avg_rssi[1] = (dev->cal.avg_rssi[1] * 15) / 16 + (rssi1 << 8);
dev->cal.avg_rssi_all = (dev->cal.avg_rssi[0] +
dev->cal.avg_rssi[1]) / 512;
low_gain = (dev->cal.avg_rssi_all > mt76x2_get_rssi_gain_thresh(dev)) +
(dev->cal.avg_rssi_all > mt76x2_get_low_rssi_gain_thresh(dev));
if (dev->cal.low_gain == low_gain) {
mt76x2_phy_adjust_vga_gain(dev);
return;
}
dev->cal.low_gain = low_gain;
if (dev->mt76.chandef.width == NL80211_CHAN_WIDTH_80)
mt76_wr(dev, MT_BBP(RXO, 14), 0x00560211);
else
mt76_wr(dev, MT_BBP(RXO, 14), 0x00560423);
if (low_gain) {
mt76_wr(dev, MT_BBP(RXO, 18), 0xf000a991);
mt76_wr(dev, MT_BBP(AGC, 35), 0x08080808);
mt76_wr(dev, MT_BBP(AGC, 37), 0x08080808);
if (mt76x2_has_ext_lna(dev))
gain_delta = 10;
else
gain_delta = 14;
} else {
mt76_wr(dev, MT_BBP(RXO, 18), 0xf000a990);
if (dev->mt76.chandef.width == NL80211_CHAN_WIDTH_80)
mt76_wr(dev, MT_BBP(AGC, 35), 0x10101014);
else
mt76_wr(dev, MT_BBP(AGC, 35), 0x11111116);
mt76_wr(dev, MT_BBP(AGC, 37), 0x2121262C);
gain_delta = 0;
}
dev->cal.agc_gain_cur[0] = gain[0] - gain_delta;
dev->cal.agc_gain_cur[1] = gain[1] - gain_delta;
dev->cal.agc_gain_adjust = 0;
mt76x2_phy_set_gain_val(dev);
}
int mt76x2_phy_set_channel(struct mt76x2_dev *dev,
struct cfg80211_chan_def *chandef)
{
struct ieee80211_channel *chan = chandef->chan;
bool scan = test_bit(MT76_SCANNING, &dev->mt76.state);
enum nl80211_band band = chan->band;
u8 channel;
u32 ext_cca_chan[4] = {
[0] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(0)),
[1] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(1)),
[2] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(2)),
[3] = FIELD_PREP(MT_EXT_CCA_CFG_CCA0, 3) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA1, 2) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA2, 1) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA3, 0) |
FIELD_PREP(MT_EXT_CCA_CFG_CCA_MASK, BIT(3)),
};
int ch_group_index;
u8 bw, bw_index;
int freq, freq1;
int ret;
u8 sifs = 13;
dev->cal.channel_cal_done = false;
freq = chandef->chan->center_freq;
freq1 = chandef->center_freq1;
channel = chan->hw_value;
switch (chandef->width) {
case NL80211_CHAN_WIDTH_40:
bw = 1;
if (freq1 > freq) {
bw_index = 1;
ch_group_index = 0;
} else {
bw_index = 3;
ch_group_index = 1;
}
channel += 2 - ch_group_index * 4;
break;
case NL80211_CHAN_WIDTH_80:
ch_group_index = (freq - freq1 + 30) / 20;
if (WARN_ON(ch_group_index < 0 || ch_group_index > 3))
ch_group_index = 0;
bw = 2;
bw_index = ch_group_index;
channel += 6 - ch_group_index * 4;
break;
default:
bw = 0;
bw_index = 0;
ch_group_index = 0;
break;
}
mt76x2_read_rx_gain(dev);
mt76x2_phy_set_txpower_regs(dev, band);
mt76x2_configure_tx_delay(dev, band, bw);
mt76x2_phy_set_txpower(dev);
mt76x2_set_rx_chains(dev);
mt76x2_phy_set_band(dev, chan->band, ch_group_index & 1);
mt76x2_phy_set_bw(dev, chandef->width, ch_group_index);
mt76x2_set_tx_dac(dev);
mt76_rmw(dev, MT_EXT_CCA_CFG,
(MT_EXT_CCA_CFG_CCA0 |
MT_EXT_CCA_CFG_CCA1 |
MT_EXT_CCA_CFG_CCA2 |
MT_EXT_CCA_CFG_CCA3 |
MT_EXT_CCA_CFG_CCA_MASK),
ext_cca_chan[ch_group_index]);
if (chandef->width >= NL80211_CHAN_WIDTH_40)
sifs++;
mt76_rmw_field(dev, MT_XIFS_TIME_CFG, MT_XIFS_TIME_CFG_OFDM_SIFS, sifs);
ret = mt76x2_mcu_set_channel(dev, channel, bw, bw_index, scan);
if (ret)
return ret;
mt76x2_mcu_init_gain(dev, channel, dev->cal.rx.mcu_gain, true);
/* Enable LDPC Rx */
if (mt76xx_rev(dev) >= MT76XX_REV_E3)
mt76_set(dev, MT_BBP(RXO, 13), BIT(10));
if (!dev->cal.init_cal_done) {
u8 val = mt76x2_eeprom_get(dev, MT_EE_BT_RCAL_RESULT);
if (val != 0xff)
mt76x2_mcu_calibrate(dev, MCU_CAL_R, 0);
}
mt76x2_mcu_calibrate(dev, MCU_CAL_RXDCOC, channel);
/* Rx LPF calibration */
if (!dev->cal.init_cal_done)
mt76x2_mcu_calibrate(dev, MCU_CAL_RC, 0);
dev->cal.init_cal_done = true;
mt76_wr(dev, MT_BBP(AGC, 61), 0xFF64A4E2);
mt76_wr(dev, MT_BBP(AGC, 7), 0x08081010);
mt76_wr(dev, MT_BBP(AGC, 11), 0x00000404);
mt76_wr(dev, MT_BBP(AGC, 2), 0x00007070);
mt76_wr(dev, MT_TXOP_CTRL_CFG, 0x04101B3F);
if (scan)
return 0;
dev->cal.low_gain = -1;
mt76x2_phy_channel_calibrate(dev, true);
mt76x2_get_agc_gain(dev, dev->cal.agc_gain_init);
memcpy(dev->cal.agc_gain_cur, dev->cal.agc_gain_init,
sizeof(dev->cal.agc_gain_cur));
ieee80211_queue_delayed_work(mt76_hw(dev), &dev->cal_work,
MT_CALIBRATE_INTERVAL);
return 0;
}
static void
mt76x2_phy_tssi_compensate(struct mt76x2_dev *dev)
{
struct ieee80211_channel *chan = dev->mt76.chandef.chan;
struct mt76x2_tx_power_info txp;
struct mt76x2_tssi_comp t = {};
if (!dev->cal.tssi_cal_done)
return;
if (!dev->cal.tssi_comp_pending) {
/* TSSI trigger */
t.cal_mode = BIT(0);
mt76x2_mcu_tssi_comp(dev, &t);
dev->cal.tssi_comp_pending = true;
} else {
if (mt76_rr(dev, MT_BBP(CORE, 34)) & BIT(4))
return;
dev->cal.tssi_comp_pending = false;
mt76x2_get_power_info(dev, &txp);
if (mt76x2_ext_pa_enabled(dev, chan->band))
t.pa_mode = 1;
t.cal_mode = BIT(1);
t.slope0 = txp.chain[0].tssi_slope;
t.offset0 = txp.chain[0].tssi_offset;
t.slope1 = txp.chain[1].tssi_slope;
t.offset1 = txp.chain[1].tssi_offset;
mt76x2_mcu_tssi_comp(dev, &t);
if (t.pa_mode || dev->cal.dpd_cal_done)
return;
usleep_range(10000, 20000);
mt76x2_mcu_calibrate(dev, MCU_CAL_DPD, chan->hw_value);
dev->cal.dpd_cal_done = true;
}
}
static void
mt76x2_phy_temp_compensate(struct mt76x2_dev *dev)
{
struct mt76x2_temp_comp t;
int temp, db_diff;
if (mt76x2_get_temp_comp(dev, &t))
return;
temp = mt76_get_field(dev, MT_TEMP_SENSOR, MT_TEMP_SENSOR_VAL);
temp -= t.temp_25_ref;
temp = (temp * 1789) / 1000 + 25;
dev->cal.temp = temp;
if (temp > 25)
db_diff = (temp - 25) / t.high_slope;
else
db_diff = (25 - temp) / t.low_slope;
db_diff = min(db_diff, t.upper_bound);
db_diff = max(db_diff, t.lower_bound);
mt76_rmw_field(dev, MT_TX_ALC_CFG_1, MT_TX_ALC_CFG_1_TEMP_COMP,
db_diff * 2);
mt76_rmw_field(dev, MT_TX_ALC_CFG_2, MT_TX_ALC_CFG_2_TEMP_COMP,
db_diff * 2);
}
void mt76x2_phy_calibrate(struct work_struct *work)
{
struct mt76x2_dev *dev;
dev = container_of(work, struct mt76x2_dev, cal_work.work);
mt76x2_phy_channel_calibrate(dev, false);
mt76x2_phy_tssi_compensate(dev);
mt76x2_phy_temp_compensate(dev);
mt76x2_phy_update_channel_gain(dev);
ieee80211_queue_delayed_work(mt76_hw(dev), &dev->cal_work,
MT_CALIBRATE_INTERVAL);
}
int mt76x2_phy_start(struct mt76x2_dev *dev)
{
int ret;
ret = mt76x2_mcu_set_radio_state(dev, true);
if (ret)
return ret;
mt76x2_mcu_load_cr(dev, MT_RF_BBP_CR, 0, 0);
return ret;
}

View File

@ -0,0 +1,587 @@
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifndef __MT76x2_REGS_H
#define __MT76x2_REGS_H
#define MT_ASIC_VERSION 0x0000
#define MT76XX_REV_E3 0x22
#define MT76XX_REV_E4 0x33
#define MT_CMB_CTRL 0x0020
#define MT_CMB_CTRL_XTAL_RDY BIT(22)
#define MT_CMB_CTRL_PLL_LD BIT(23)
#define MT_EFUSE_CTRL 0x0024
#define MT_EFUSE_CTRL_AOUT GENMASK(5, 0)
#define MT_EFUSE_CTRL_MODE GENMASK(7, 6)
#define MT_EFUSE_CTRL_LDO_OFF_TIME GENMASK(13, 8)
#define MT_EFUSE_CTRL_LDO_ON_TIME GENMASK(15, 14)
#define MT_EFUSE_CTRL_AIN GENMASK(25, 16)
#define MT_EFUSE_CTRL_KICK BIT(30)
#define MT_EFUSE_CTRL_SEL BIT(31)
#define MT_EFUSE_DATA_BASE 0x0028
#define MT_EFUSE_DATA(_n) (MT_EFUSE_DATA_BASE + ((_n) << 2))
#define MT_COEXCFG0 0x0040
#define MT_COEXCFG0_COEX_EN BIT(0)
#define MT_WLAN_FUN_CTRL 0x0080
#define MT_WLAN_FUN_CTRL_WLAN_EN BIT(0)
#define MT_WLAN_FUN_CTRL_WLAN_CLK_EN BIT(1)
#define MT_WLAN_FUN_CTRL_WLAN_RESET_RF BIT(2)
#define MT_WLAN_FUN_CTRL_WLAN_RESET BIT(3) /* MT76x0 */
#define MT_WLAN_FUN_CTRL_CSR_F20M_CKEN BIT(3) /* MT76x2 */
#define MT_WLAN_FUN_CTRL_PCIE_CLK_REQ BIT(4)
#define MT_WLAN_FUN_CTRL_FRC_WL_ANT_SEL BIT(5)
#define MT_WLAN_FUN_CTRL_INV_ANT_SEL BIT(6)
#define MT_WLAN_FUN_CTRL_WAKE_HOST BIT(7)
#define MT_WLAN_FUN_CTRL_THERM_RST BIT(8) /* MT76x2 */
#define MT_WLAN_FUN_CTRL_THERM_CKEN BIT(9) /* MT76x2 */
#define MT_WLAN_FUN_CTRL_GPIO_IN GENMASK(15, 8) /* MT76x0 */
#define MT_WLAN_FUN_CTRL_GPIO_OUT GENMASK(23, 16) /* MT76x0 */
#define MT_WLAN_FUN_CTRL_GPIO_OUT_EN GENMASK(31, 24) /* MT76x0 */
#define MT_XO_CTRL0 0x0100
#define MT_XO_CTRL1 0x0104
#define MT_XO_CTRL2 0x0108
#define MT_XO_CTRL3 0x010c
#define MT_XO_CTRL4 0x0110
#define MT_XO_CTRL5 0x0114
#define MT_XO_CTRL5_C2_VAL GENMASK(14, 8)
#define MT_XO_CTRL6 0x0118
#define MT_XO_CTRL6_C2_CTRL GENMASK(14, 8)
#define MT_XO_CTRL7 0x011c
#define MT_WLAN_MTC_CTRL 0x10148
#define MT_WLAN_MTC_CTRL_MTCMOS_PWR_UP BIT(0)
#define MT_WLAN_MTC_CTRL_PWR_ACK BIT(12)
#define MT_WLAN_MTC_CTRL_PWR_ACK_S BIT(13)
#define MT_WLAN_MTC_CTRL_BBP_MEM_PD GENMASK(19, 16)
#define MT_WLAN_MTC_CTRL_PBF_MEM_PD BIT(20)
#define MT_WLAN_MTC_CTRL_FCE_MEM_PD BIT(21)
#define MT_WLAN_MTC_CTRL_TSO_MEM_PD BIT(22)
#define MT_WLAN_MTC_CTRL_BBP_MEM_RB BIT(24)
#define MT_WLAN_MTC_CTRL_PBF_MEM_RB BIT(25)
#define MT_WLAN_MTC_CTRL_FCE_MEM_RB BIT(26)
#define MT_WLAN_MTC_CTRL_TSO_MEM_RB BIT(27)
#define MT_WLAN_MTC_CTRL_STATE_UP BIT(28)
#define MT_INT_SOURCE_CSR 0x0200
#define MT_INT_MASK_CSR 0x0204
#define MT_INT_RX_DONE(_n) BIT(_n)
#define MT_INT_RX_DONE_ALL GENMASK(1, 0)
#define MT_INT_TX_DONE_ALL GENMASK(13, 4)
#define MT_INT_TX_DONE(_n) BIT(_n + 4)
#define MT_INT_RX_COHERENT BIT(16)
#define MT_INT_TX_COHERENT BIT(17)
#define MT_INT_ANY_COHERENT BIT(18)
#define MT_INT_MCU_CMD BIT(19)
#define MT_INT_TBTT BIT(20)
#define MT_INT_PRE_TBTT BIT(21)
#define MT_INT_TX_STAT BIT(22)
#define MT_INT_AUTO_WAKEUP BIT(23)
#define MT_INT_GPTIMER BIT(24)
#define MT_INT_RXDELAYINT BIT(26)
#define MT_INT_TXDELAYINT BIT(27)
#define MT_WPDMA_GLO_CFG 0x0208
#define MT_WPDMA_GLO_CFG_TX_DMA_EN BIT(0)
#define MT_WPDMA_GLO_CFG_TX_DMA_BUSY BIT(1)
#define MT_WPDMA_GLO_CFG_RX_DMA_EN BIT(2)
#define MT_WPDMA_GLO_CFG_RX_DMA_BUSY BIT(3)
#define MT_WPDMA_GLO_CFG_DMA_BURST_SIZE GENMASK(5, 4)
#define MT_WPDMA_GLO_CFG_TX_WRITEBACK_DONE BIT(6)
#define MT_WPDMA_GLO_CFG_BIG_ENDIAN BIT(7)
#define MT_WPDMA_GLO_CFG_HDR_SEG_LEN GENMASK(15, 8)
#define MT_WPDMA_GLO_CFG_CLK_GATE_DIS BIT(30)
#define MT_WPDMA_GLO_CFG_RX_2B_OFFSET BIT(31)
#define MT_WPDMA_RST_IDX 0x020c
#define MT_WPDMA_DELAY_INT_CFG 0x0210
#define MT_WMM_AIFSN 0x0214
#define MT_WMM_AIFSN_MASK GENMASK(3, 0)
#define MT_WMM_AIFSN_SHIFT(_n) ((_n) * 4)
#define MT_WMM_CWMIN 0x0218
#define MT_WMM_CWMIN_MASK GENMASK(3, 0)
#define MT_WMM_CWMIN_SHIFT(_n) ((_n) * 4)
#define MT_WMM_CWMAX 0x021c
#define MT_WMM_CWMAX_MASK GENMASK(3, 0)
#define MT_WMM_CWMAX_SHIFT(_n) ((_n) * 4)
#define MT_WMM_TXOP_BASE 0x0220
#define MT_WMM_TXOP(_n) (MT_WMM_TXOP_BASE + (((_n) / 2) << 2))
#define MT_WMM_TXOP_SHIFT(_n) ((_n & 1) * 16)
#define MT_WMM_TXOP_MASK GENMASK(15, 0)
#define MT_TSO_CTRL 0x0250
#define MT_HEADER_TRANS_CTRL_REG 0x0260
#define MT_TX_RING_BASE 0x0300
#define MT_RX_RING_BASE 0x03c0
#define MT_TX_HW_QUEUE_MCU 8
#define MT_TX_HW_QUEUE_MGMT 9
#define MT_PBF_SYS_CTRL 0x0400
#define MT_PBF_SYS_CTRL_MCU_RESET BIT(0)
#define MT_PBF_SYS_CTRL_DMA_RESET BIT(1)
#define MT_PBF_SYS_CTRL_MAC_RESET BIT(2)
#define MT_PBF_SYS_CTRL_PBF_RESET BIT(3)
#define MT_PBF_SYS_CTRL_ASY_RESET BIT(4)
#define MT_PBF_CFG 0x0404
#define MT_PBF_CFG_TX0Q_EN BIT(0)
#define MT_PBF_CFG_TX1Q_EN BIT(1)
#define MT_PBF_CFG_TX2Q_EN BIT(2)
#define MT_PBF_CFG_TX3Q_EN BIT(3)
#define MT_PBF_CFG_RX0Q_EN BIT(4)
#define MT_PBF_CFG_RX_DROP_EN BIT(8)
#define MT_PBF_TX_MAX_PCNT 0x0408
#define MT_PBF_RX_MAX_PCNT 0x040c
#define MT_BCN_OFFSET_BASE 0x041c
#define MT_BCN_OFFSET(_n) (MT_BCN_OFFSET_BASE + ((_n) << 2))
#define MT_RF_BYPASS_0 0x0504
#define MT_RF_BYPASS_1 0x0508
#define MT_RF_SETTING_0 0x050c
#define MT_RF_DATA_WRITE 0x0524
#define MT_RF_CTRL 0x0528
#define MT_RF_CTRL_ADDR GENMASK(11, 0)
#define MT_RF_CTRL_WRITE BIT(12)
#define MT_RF_CTRL_BUSY BIT(13)
#define MT_RF_CTRL_IDX BIT(16)
#define MT_RF_DATA_READ 0x052c
#define MT_FCE_PSE_CTRL 0x0800
#define MT_FCE_PARAMETERS 0x0804
#define MT_FCE_CSO 0x0808
#define MT_FCE_L2_STUFF 0x080c
#define MT_FCE_L2_STUFF_HT_L2_EN BIT(0)
#define MT_FCE_L2_STUFF_QOS_L2_EN BIT(1)
#define MT_FCE_L2_STUFF_RX_STUFF_EN BIT(2)
#define MT_FCE_L2_STUFF_TX_STUFF_EN BIT(3)
#define MT_FCE_L2_STUFF_WR_MPDU_LEN_EN BIT(4)
#define MT_FCE_L2_STUFF_MVINV_BSWAP BIT(5)
#define MT_FCE_L2_STUFF_TS_CMD_QSEL_EN GENMASK(15, 8)
#define MT_FCE_L2_STUFF_TS_LEN_EN GENMASK(23, 16)
#define MT_FCE_L2_STUFF_OTHER_PORT GENMASK(25, 24)
#define MT_FCE_WLAN_FLOW_CONTROL1 0x0824
#define MT_PAUSE_ENABLE_CONTROL1 0x0a38
#define MT_MAC_CSR0 0x1000
#define MT_MAC_SYS_CTRL 0x1004
#define MT_MAC_SYS_CTRL_RESET_CSR BIT(0)
#define MT_MAC_SYS_CTRL_RESET_BBP BIT(1)
#define MT_MAC_SYS_CTRL_ENABLE_TX BIT(2)
#define MT_MAC_SYS_CTRL_ENABLE_RX BIT(3)
#define MT_MAC_ADDR_DW0 0x1008
#define MT_MAC_ADDR_DW1 0x100c
#define MT_MAC_BSSID_DW0 0x1010
#define MT_MAC_BSSID_DW1 0x1014
#define MT_MAC_BSSID_DW1_ADDR GENMASK(15, 0)
#define MT_MAC_BSSID_DW1_MBSS_MODE GENMASK(17, 16)
#define MT_MAC_BSSID_DW1_MBEACON_N GENMASK(20, 18)
#define MT_MAC_BSSID_DW1_MBSS_LOCAL_BIT BIT(21)
#define MT_MAC_BSSID_DW1_MBSS_MODE_B2 BIT(22)
#define MT_MAC_BSSID_DW1_MBEACON_N_B3 BIT(23)
#define MT_MAC_BSSID_DW1_MBSS_IDX_BYTE GENMASK(26, 24)
#define MT_MAX_LEN_CFG 0x1018
#define MT_AMPDU_MAX_LEN_20M1S 0x1030
#define MT_AMPDU_MAX_LEN_20M2S 0x1034
#define MT_AMPDU_MAX_LEN_40M1S 0x1038
#define MT_AMPDU_MAX_LEN_40M2S 0x103c
#define MT_AMPDU_MAX_LEN 0x1040
#define MT_WCID_DROP_BASE 0x106c
#define MT_WCID_DROP(_n) (MT_WCID_DROP_BASE + ((_n) >> 5) * 4)
#define MT_WCID_DROP_MASK(_n) BIT((_n) % 32)
#define MT_BCN_BYPASS_MASK 0x108c
#define MT_MAC_APC_BSSID_BASE 0x1090
#define MT_MAC_APC_BSSID_L(_n) (MT_MAC_APC_BSSID_BASE + ((_n) * 8))
#define MT_MAC_APC_BSSID_H(_n) (MT_MAC_APC_BSSID_BASE + ((_n) * 8 + 4))
#define MT_MAC_APC_BSSID_H_ADDR GENMASK(15, 0)
#define MT_MAC_APC_BSSID0_H_EN BIT(16)
#define MT_XIFS_TIME_CFG 0x1100
#define MT_XIFS_TIME_CFG_CCK_SIFS GENMASK(7, 0)
#define MT_XIFS_TIME_CFG_OFDM_SIFS GENMASK(15, 8)
#define MT_XIFS_TIME_CFG_OFDM_XIFS GENMASK(19, 16)
#define MT_XIFS_TIME_CFG_EIFS GENMASK(28, 20)
#define MT_XIFS_TIME_CFG_BB_RXEND_EN BIT(29)
#define MT_BKOFF_SLOT_CFG 0x1104
#define MT_BKOFF_SLOT_CFG_SLOTTIME GENMASK(7, 0)
#define MT_BKOFF_SLOT_CFG_CC_DELAY GENMASK(11, 8)
#define MT_CH_TIME_CFG 0x110c
#define MT_CH_TIME_CFG_TIMER_EN BIT(0)
#define MT_CH_TIME_CFG_TX_AS_BUSY BIT(1)
#define MT_CH_TIME_CFG_RX_AS_BUSY BIT(2)
#define MT_CH_TIME_CFG_NAV_AS_BUSY BIT(3)
#define MT_CH_TIME_CFG_EIFS_AS_BUSY BIT(4)
#define MT_CH_TIME_CFG_MDRDY_CNT_EN BIT(5)
#define MT_CH_TIME_CFG_CH_TIMER_CLR GENMASK(9, 8)
#define MT_CH_TIME_CFG_MDRDY_CLR GENMASK(11, 10)
#define MT_PBF_LIFE_TIMER 0x1110
#define MT_BEACON_TIME_CFG 0x1114
#define MT_BEACON_TIME_CFG_INTVAL GENMASK(15, 0)
#define MT_BEACON_TIME_CFG_TIMER_EN BIT(16)
#define MT_BEACON_TIME_CFG_SYNC_MODE GENMASK(18, 17)
#define MT_BEACON_TIME_CFG_TBTT_EN BIT(19)
#define MT_BEACON_TIME_CFG_BEACON_TX BIT(20)
#define MT_BEACON_TIME_CFG_TSF_COMP GENMASK(31, 24)
#define MT_TBTT_SYNC_CFG 0x1118
#define MT_TBTT_TIMER_CFG 0x1124
#define MT_INT_TIMER_CFG 0x1128
#define MT_INT_TIMER_CFG_PRE_TBTT GENMASK(15, 0)
#define MT_INT_TIMER_CFG_GP_TIMER GENMASK(31, 16)
#define MT_INT_TIMER_EN 0x112c
#define MT_INT_TIMER_EN_PRE_TBTT_EN BIT(0)
#define MT_INT_TIMER_EN_GP_TIMER_EN BIT(1)
#define MT_CH_IDLE 0x1130
#define MT_CH_BUSY 0x1134
#define MT_EXT_CH_BUSY 0x1138
#define MT_ED_CCA_TIMER 0x1140
#define MT_MAC_STATUS 0x1200
#define MT_MAC_STATUS_TX BIT(0)
#define MT_MAC_STATUS_RX BIT(1)
#define MT_PWR_PIN_CFG 0x1204
#define MT_AUX_CLK_CFG 0x120c
#define MT_BB_PA_MODE_CFG0 0x1214
#define MT_BB_PA_MODE_CFG1 0x1218
#define MT_RF_PA_MODE_CFG0 0x121c
#define MT_RF_PA_MODE_CFG1 0x1220
#define MT_RF_PA_MODE_ADJ0 0x1228
#define MT_RF_PA_MODE_ADJ1 0x122c
#define MT_DACCLK_EN_DLY_CFG 0x1264
#define MT_EDCA_CFG_BASE 0x1300
#define MT_EDCA_CFG_AC(_n) (MT_EDCA_CFG_BASE + ((_n) << 2))
#define MT_EDCA_CFG_TXOP GENMASK(7, 0)
#define MT_EDCA_CFG_AIFSN GENMASK(11, 8)
#define MT_EDCA_CFG_CWMIN GENMASK(15, 12)
#define MT_EDCA_CFG_CWMAX GENMASK(19, 16)
#define MT_TX_PWR_CFG_0 0x1314
#define MT_TX_PWR_CFG_1 0x1318
#define MT_TX_PWR_CFG_2 0x131c
#define MT_TX_PWR_CFG_3 0x1320
#define MT_TX_PWR_CFG_4 0x1324
#define MT_TX_BAND_CFG 0x132c
#define MT_TX_BAND_CFG_UPPER_40M BIT(0)
#define MT_TX_BAND_CFG_5G BIT(1)
#define MT_TX_BAND_CFG_2G BIT(2)
#define MT_HT_FBK_TO_LEGACY 0x1384
#define MT_TX_MPDU_ADJ_INT 0x1388
#define MT_TX_PWR_CFG_7 0x13d4
#define MT_TX_PWR_CFG_8 0x13d8
#define MT_TX_PWR_CFG_9 0x13dc
#define MT_TX_SW_CFG0 0x1330
#define MT_TX_SW_CFG1 0x1334
#define MT_TX_SW_CFG2 0x1338
#define MT_TXOP_CTRL_CFG 0x1340
#define MT_TX_RTS_CFG 0x1344
#define MT_TX_RTS_CFG_RETRY_LIMIT GENMASK(7, 0)
#define MT_TX_RTS_CFG_THRESH GENMASK(23, 8)
#define MT_TX_RTS_FALLBACK BIT(24)
#define MT_TX_TIMEOUT_CFG 0x1348
#define MT_TX_TIMEOUT_CFG_ACKTO GENMASK(15, 8)
#define MT_TX_RETRY_CFG 0x134c
#define MT_VHT_HT_FBK_CFG1 0x1358
#define MT_PROT_CFG_RATE GENMASK(15, 0)
#define MT_PROT_CFG_CTRL GENMASK(17, 16)
#define MT_PROT_CFG_NAV GENMASK(19, 18)
#define MT_PROT_CFG_TXOP_ALLOW GENMASK(25, 20)
#define MT_PROT_CFG_RTS_THRESH BIT(26)
#define MT_CCK_PROT_CFG 0x1364
#define MT_OFDM_PROT_CFG 0x1368
#define MT_MM20_PROT_CFG 0x136c
#define MT_MM40_PROT_CFG 0x1370
#define MT_GF20_PROT_CFG 0x1374
#define MT_GF40_PROT_CFG 0x1378
#define MT_EXP_ACK_TIME 0x1380
#define MT_TX_PWR_CFG_0_EXT 0x1390
#define MT_TX_PWR_CFG_1_EXT 0x1394
#define MT_TX_FBK_LIMIT 0x1398
#define MT_TX_FBK_LIMIT_MPDU_FBK GENMASK(7, 0)
#define MT_TX_FBK_LIMIT_AMPDU_FBK GENMASK(15, 8)
#define MT_TX_FBK_LIMIT_MPDU_UP_CLEAR BIT(16)
#define MT_TX_FBK_LIMIT_AMPDU_UP_CLEAR BIT(17)
#define MT_TX_FBK_LIMIT_RATE_LUT BIT(18)
#define MT_TX0_RF_GAIN_CORR 0x13a0
#define MT_TX1_RF_GAIN_CORR 0x13a4
#define MT_TX_ALC_CFG_0 0x13b0
#define MT_TX_ALC_CFG_0_CH_INIT_0 GENMASK(5, 0)
#define MT_TX_ALC_CFG_0_CH_INIT_1 GENMASK(13, 8)
#define MT_TX_ALC_CFG_0_LIMIT_0 GENMASK(21, 16)
#define MT_TX_ALC_CFG_0_LIMIT_1 GENMASK(29, 24)
#define MT_TX_ALC_CFG_1 0x13b4
#define MT_TX_ALC_CFG_1_TEMP_COMP GENMASK(5, 0)
#define MT_TX_ALC_CFG_2 0x13a8
#define MT_TX_ALC_CFG_2_TEMP_COMP GENMASK(5, 0)
#define MT_TX_ALC_CFG_3 0x13ac
#define MT_TX_ALC_CFG_4 0x13c0
#define MT_TX_ALC_CFG_4_LOWGAIN_CH_EN BIT(31)
#define MT_TX_ALC_VGA3 0x13c8
#define MT_TX_PROT_CFG6 0x13e0
#define MT_TX_PROT_CFG7 0x13e4
#define MT_TX_PROT_CFG8 0x13e8
#define MT_PIFS_TX_CFG 0x13ec
#define MT_RX_FILTR_CFG 0x1400
#define MT_RX_FILTR_CFG_CRC_ERR BIT(0)
#define MT_RX_FILTR_CFG_PHY_ERR BIT(1)
#define MT_RX_FILTR_CFG_PROMISC BIT(2)
#define MT_RX_FILTR_CFG_OTHER_BSS BIT(3)
#define MT_RX_FILTR_CFG_VER_ERR BIT(4)
#define MT_RX_FILTR_CFG_MCAST BIT(5)
#define MT_RX_FILTR_CFG_BCAST BIT(6)
#define MT_RX_FILTR_CFG_DUP BIT(7)
#define MT_RX_FILTR_CFG_CFACK BIT(8)
#define MT_RX_FILTR_CFG_CFEND BIT(9)
#define MT_RX_FILTR_CFG_ACK BIT(10)
#define MT_RX_FILTR_CFG_CTS BIT(11)
#define MT_RX_FILTR_CFG_RTS BIT(12)
#define MT_RX_FILTR_CFG_PSPOLL BIT(13)
#define MT_RX_FILTR_CFG_BA BIT(14)
#define MT_RX_FILTR_CFG_BAR BIT(15)
#define MT_RX_FILTR_CFG_CTRL_RSV BIT(16)
#define MT_LEGACY_BASIC_RATE 0x1408
#define MT_HT_BASIC_RATE 0x140c
#define MT_HT_CTRL_CFG 0x1410
#define MT_EXT_CCA_CFG 0x141c
#define MT_EXT_CCA_CFG_CCA0 GENMASK(1, 0)
#define MT_EXT_CCA_CFG_CCA1 GENMASK(3, 2)
#define MT_EXT_CCA_CFG_CCA2 GENMASK(5, 4)
#define MT_EXT_CCA_CFG_CCA3 GENMASK(7, 6)
#define MT_EXT_CCA_CFG_CCA_MASK GENMASK(11, 8)
#define MT_EXT_CCA_CFG_ED_CCA_MASK GENMASK(15, 12)
#define MT_TX_SW_CFG3 0x1478
#define MT_PN_PAD_MODE 0x150c
#define MT_TXOP_HLDR_ET 0x1608
#define MT_PROT_AUTO_TX_CFG 0x1648
#define MT_PROT_AUTO_TX_CFG_PROT_PADJ GENMASK(11, 8)
#define MT_PROT_AUTO_TX_CFG_AUTO_PADJ GENMASK(27, 24)
#define MT_RX_STAT_0 0x1700
#define MT_RX_STAT_0_CRC_ERRORS GENMASK(15, 0)
#define MT_RX_STAT_0_PHY_ERRORS GENMASK(31, 16)
#define MT_RX_STAT_1 0x1704
#define MT_RX_STAT_1_CCA_ERRORS GENMASK(15, 0)
#define MT_RX_STAT_1_PLCP_ERRORS GENMASK(31, 16)
#define MT_RX_STAT_2 0x1708
#define MT_RX_STAT_2_DUP_ERRORS GENMASK(15, 0)
#define MT_RX_STAT_2_OVERFLOW_ERRORS GENMASK(31, 16)
#define MT_TX_STAT_FIFO 0x1718
#define MT_TX_STAT_FIFO_VALID BIT(0)
#define MT_TX_STAT_FIFO_SUCCESS BIT(5)
#define MT_TX_STAT_FIFO_AGGR BIT(6)
#define MT_TX_STAT_FIFO_ACKREQ BIT(7)
#define MT_TX_STAT_FIFO_WCID GENMASK(15, 8)
#define MT_TX_STAT_FIFO_RATE GENMASK(31, 16)
#define MT_TX_AGG_CNT_BASE0 0x1720
#define MT_TX_AGG_CNT_BASE1 0x174c
#define MT_TX_AGG_CNT(_id) ((_id) < 8 ? \
MT_TX_AGG_CNT_BASE0 + ((_id) << 2) : \
MT_TX_AGG_CNT_BASE1 + ((_id - 8) << 2))
#define MT_TX_STAT_FIFO_EXT 0x1798
#define MT_TX_STAT_FIFO_EXT_RETRY GENMASK(7, 0)
#define MT_TX_STAT_FIFO_EXT_PKTID GENMASK(15, 8)
#define MT_WCID_TX_RATE_BASE 0x1c00
#define MT_WCID_TX_RATE(_i) (MT_WCID_TX_RATE_BASE + ((_i) << 3))
#define MT_BBP_CORE_BASE 0x2000
#define MT_BBP_IBI_BASE 0x2100
#define MT_BBP_AGC_BASE 0x2300
#define MT_BBP_TXC_BASE 0x2400
#define MT_BBP_RXC_BASE 0x2500
#define MT_BBP_TXO_BASE 0x2600
#define MT_BBP_TXBE_BASE 0x2700
#define MT_BBP_RXFE_BASE 0x2800
#define MT_BBP_RXO_BASE 0x2900
#define MT_BBP_DFS_BASE 0x2a00
#define MT_BBP_TR_BASE 0x2b00
#define MT_BBP_CAL_BASE 0x2c00
#define MT_BBP_DSC_BASE 0x2e00
#define MT_BBP_PFMU_BASE 0x2f00
#define MT_BBP(_type, _n) (MT_BBP_##_type##_BASE + ((_n) << 2))
#define MT_BBP_CORE_R1_BW GENMASK(4, 3)
#define MT_BBP_AGC_R0_CTRL_CHAN GENMASK(9, 8)
#define MT_BBP_AGC_R0_BW GENMASK(14, 12)
/* AGC, R4/R5 */
#define MT_BBP_AGC_LNA_HIGH_GAIN GENMASK(21, 16)
#define MT_BBP_AGC_LNA_MID_GAIN GENMASK(13, 8)
#define MT_BBP_AGC_LNA_LOW_GAIN GENMASK(5, 0)
/* AGC, R6/R7 */
#define MT_BBP_AGC_LNA_ULOW_GAIN GENMASK(5, 0)
/* AGC, R8/R9 */
#define MT_BBP_AGC_LNA_GAIN_MODE GENMASK(7, 6)
#define MT_BBP_AGC_GAIN GENMASK(14, 8)
#define MT_BBP_AGC20_RSSI0 GENMASK(7, 0)
#define MT_BBP_AGC20_RSSI1 GENMASK(15, 8)
#define MT_BBP_TXBE_R0_CTRL_CHAN GENMASK(1, 0)
#define MT_WCID_ADDR_BASE 0x1800
#define MT_WCID_ADDR(_n) (MT_WCID_ADDR_BASE + (_n) * 8)
#define MT_SRAM_BASE 0x4000
#define MT_WCID_KEY_BASE 0x8000
#define MT_WCID_KEY(_n) (MT_WCID_KEY_BASE + (_n) * 32)
#define MT_WCID_IV_BASE 0xa000
#define MT_WCID_IV(_n) (MT_WCID_IV_BASE + (_n) * 8)
#define MT_WCID_ATTR_BASE 0xa800
#define MT_WCID_ATTR(_n) (MT_WCID_ATTR_BASE + (_n) * 4)
#define MT_WCID_ATTR_PAIRWISE BIT(0)
#define MT_WCID_ATTR_PKEY_MODE GENMASK(3, 1)
#define MT_WCID_ATTR_BSS_IDX GENMASK(6, 4)
#define MT_WCID_ATTR_RXWI_UDF GENMASK(9, 7)
#define MT_WCID_ATTR_PKEY_MODE_EXT BIT(10)
#define MT_WCID_ATTR_BSS_IDX_EXT BIT(11)
#define MT_WCID_ATTR_WAPI_MCBC BIT(15)
#define MT_WCID_ATTR_WAPI_KEYID GENMASK(31, 24)
#define MT_SKEY_BASE_0 0xac00
#define MT_SKEY_BASE_1 0xb400
#define MT_SKEY_0(_bss, _idx) (MT_SKEY_BASE_0 + (4 * (_bss) + _idx) * 32)
#define MT_SKEY_1(_bss, _idx) (MT_SKEY_BASE_1 + (4 * ((_bss) & 7) + _idx) * 32)
#define MT_SKEY(_bss, _idx) ((_bss & 8) ? MT_SKEY_1(_bss, _idx) : MT_SKEY_0(_bss, _idx))
#define MT_SKEY_MODE_BASE_0 0xb000
#define MT_SKEY_MODE_BASE_1 0xb3f0
#define MT_SKEY_MODE_0(_bss) (MT_SKEY_MODE_BASE_0 + ((_bss / 2) << 2))
#define MT_SKEY_MODE_1(_bss) (MT_SKEY_MODE_BASE_1 + ((((_bss) & 7) / 2) << 2))
#define MT_SKEY_MODE(_bss) ((_bss & 8) ? MT_SKEY_MODE_1(_bss) : MT_SKEY_MODE_0(_bss))
#define MT_SKEY_MODE_MASK GENMASK(3, 0)
#define MT_SKEY_MODE_SHIFT(_bss, _idx) (4 * ((_idx) + 4 * (_bss & 1)))
#define MT_BEACON_BASE 0xc000
#define MT_TEMP_SENSOR 0x1d000
#define MT_TEMP_SENSOR_VAL GENMASK(6, 0)
struct mt76_wcid_addr {
u8 macaddr[6];
__le16 ba_mask;
} __packed __aligned(4);
struct mt76_wcid_key {
u8 key[16];
u8 tx_mic[8];
u8 rx_mic[8];
} __packed __aligned(4);
enum mt76x2_cipher_type {
MT_CIPHER_NONE,
MT_CIPHER_WEP40,
MT_CIPHER_WEP104,
MT_CIPHER_TKIP,
MT_CIPHER_AES_CCMP,
MT_CIPHER_CKIP40,
MT_CIPHER_CKIP104,
MT_CIPHER_CKIP128,
MT_CIPHER_WAPI,
};
#endif

View File

@ -0,0 +1,23 @@
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/module.h>
#ifndef __CHECKER__
#define CREATE_TRACE_POINTS
#include "mt76x2_trace.h"
#endif

View File

@ -0,0 +1,144 @@
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#if !defined(__MT76x2_TRACE_H) || defined(TRACE_HEADER_MULTI_READ)
#define __MT76x2_TRACE_H
#include <linux/tracepoint.h>
#include "mt76x2.h"
#undef TRACE_SYSTEM
#define TRACE_SYSTEM mt76x2
#define MAXNAME 32
#define DEV_ENTRY __array(char, wiphy_name, 32)
#define DEV_ASSIGN strlcpy(__entry->wiphy_name, wiphy_name(mt76_hw(dev)->wiphy), MAXNAME)
#define DEV_PR_FMT "%s"
#define DEV_PR_ARG __entry->wiphy_name
#define TXID_ENTRY __field(u8, wcid) __field(u8, pktid)
#define TXID_ASSIGN __entry->wcid = wcid; __entry->pktid = pktid
#define TXID_PR_FMT " [%d:%d]"
#define TXID_PR_ARG __entry->wcid, __entry->pktid
DECLARE_EVENT_CLASS(dev_evt,
TP_PROTO(struct mt76x2_dev *dev),
TP_ARGS(dev),
TP_STRUCT__entry(
DEV_ENTRY
),
TP_fast_assign(
DEV_ASSIGN;
),
TP_printk(DEV_PR_FMT, DEV_PR_ARG)
);
DECLARE_EVENT_CLASS(dev_txid_evt,
TP_PROTO(struct mt76x2_dev *dev, u8 wcid, u8 pktid),
TP_ARGS(dev, wcid, pktid),
TP_STRUCT__entry(
DEV_ENTRY
TXID_ENTRY
),
TP_fast_assign(
DEV_ASSIGN;
TXID_ASSIGN;
),
TP_printk(
DEV_PR_FMT TXID_PR_FMT,
DEV_PR_ARG, TXID_PR_ARG
)
);
DEFINE_EVENT(dev_evt, mac_txstat_poll,
TP_PROTO(struct mt76x2_dev *dev),
TP_ARGS(dev)
);
DEFINE_EVENT(dev_txid_evt, mac_txdone_add,
TP_PROTO(struct mt76x2_dev *dev, u8 wcid, u8 pktid),
TP_ARGS(dev, wcid, pktid)
);
TRACE_EVENT(mac_txstat_fetch,
TP_PROTO(struct mt76x2_dev *dev,
struct mt76x2_tx_status *stat),
TP_ARGS(dev, stat),
TP_STRUCT__entry(
DEV_ENTRY
TXID_ENTRY
__field(bool, success)
__field(bool, aggr)
__field(bool, ack_req)
__field(u16, rate)
__field(u8, retry)
),
TP_fast_assign(
DEV_ASSIGN;
__entry->success = stat->success;
__entry->aggr = stat->aggr;
__entry->ack_req = stat->ack_req;
__entry->wcid = stat->wcid;
__entry->pktid = stat->pktid;
__entry->rate = stat->rate;
__entry->retry = stat->retry;
),
TP_printk(
DEV_PR_FMT TXID_PR_FMT
" success:%d aggr:%d ack_req:%d"
" rate:%04x retry:%d",
DEV_PR_ARG, TXID_PR_ARG,
__entry->success, __entry->aggr, __entry->ack_req,
__entry->rate, __entry->retry
)
);
TRACE_EVENT(dev_irq,
TP_PROTO(struct mt76x2_dev *dev, u32 val, u32 mask),
TP_ARGS(dev, val, mask),
TP_STRUCT__entry(
DEV_ENTRY
__field(u32, val)
__field(u32, mask)
),
TP_fast_assign(
DEV_ASSIGN;
__entry->val = val;
__entry->mask = mask;
),
TP_printk(
DEV_PR_FMT " %08x & %08x",
DEV_PR_ARG, __entry->val, __entry->mask
)
);
#endif
#undef TRACE_INCLUDE_PATH
#define TRACE_INCLUDE_PATH .
#undef TRACE_INCLUDE_FILE
#define TRACE_INCLUDE_FILE mt76x2_trace
#include <trace/define_trace.h>

View File

@ -0,0 +1,258 @@
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "mt76x2.h"
#include "mt76x2_dma.h"
struct beacon_bc_data {
struct mt76x2_dev *dev;
struct sk_buff_head q;
struct sk_buff *tail[8];
};
void mt76x2_tx(struct ieee80211_hw *hw, struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct mt76x2_dev *dev = hw->priv;
struct ieee80211_vif *vif = info->control.vif;
struct mt76_wcid *wcid = &dev->global_wcid;
if (control->sta) {
struct mt76x2_sta *msta;
msta = (struct mt76x2_sta *) control->sta->drv_priv;
wcid = &msta->wcid;
} else if (vif) {
struct mt76x2_vif *mvif;
mvif = (struct mt76x2_vif *) vif->drv_priv;
wcid = &mvif->group_wcid;
}
mt76_tx(&dev->mt76, control->sta, wcid, skb);
}
void mt76x2_tx_complete(struct mt76x2_dev *dev, struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
if (info->flags & IEEE80211_TX_CTL_AMPDU) {
ieee80211_free_txskb(mt76_hw(dev), skb);
} else {
ieee80211_tx_info_clear_status(info);
info->status.rates[0].idx = -1;
info->flags |= IEEE80211_TX_STAT_ACK;
ieee80211_tx_status(mt76_hw(dev), skb);
}
}
s8 mt76x2_tx_get_max_txpwr_adj(struct mt76x2_dev *dev,
const struct ieee80211_tx_rate *rate)
{
s8 max_txpwr;
if (rate->flags & IEEE80211_TX_RC_VHT_MCS) {
u8 mcs = ieee80211_rate_get_vht_mcs(rate);
if (mcs == 8 || mcs == 9) {
max_txpwr = dev->rate_power.vht[8];
} else {
u8 nss, idx;
nss = ieee80211_rate_get_vht_nss(rate);
idx = ((nss - 1) << 3) + mcs;
max_txpwr = dev->rate_power.ht[idx & 0xf];
}
} else if (rate->flags & IEEE80211_TX_RC_MCS) {
max_txpwr = dev->rate_power.ht[rate->idx & 0xf];
} else {
enum nl80211_band band = dev->mt76.chandef.chan->band;
if (band == NL80211_BAND_2GHZ) {
const struct ieee80211_rate *r;
struct wiphy *wiphy = mt76_hw(dev)->wiphy;
struct mt76_rate_power *rp = &dev->rate_power;
r = &wiphy->bands[band]->bitrates[rate->idx];
if (r->flags & IEEE80211_RATE_SHORT_PREAMBLE)
max_txpwr = rp->cck[r->hw_value & 0x3];
else
max_txpwr = rp->ofdm[r->hw_value & 0x7];
} else {
max_txpwr = dev->rate_power.ofdm[rate->idx & 0x7];
}
}
return max_txpwr;
}
s8 mt76x2_tx_get_txpwr_adj(struct mt76x2_dev *dev, s8 txpwr, s8 max_txpwr_adj)
{
txpwr = min_t(s8, txpwr, dev->txpower_conf);
txpwr -= (dev->target_power + dev->target_power_delta[0]);
txpwr = min_t(s8, txpwr, max_txpwr_adj);
if (!dev->enable_tpc)
return 0;
else if (txpwr >= 0)
return min_t(s8, txpwr, 7);
else
return (txpwr < -16) ? 8 : (txpwr + 32) / 2;
}
void mt76x2_tx_set_txpwr_auto(struct mt76x2_dev *dev, s8 txpwr)
{
s8 txpwr_adj;
txpwr_adj = mt76x2_tx_get_txpwr_adj(dev, txpwr,
dev->rate_power.ofdm[4]);
mt76_rmw_field(dev, MT_PROT_AUTO_TX_CFG,
MT_PROT_AUTO_TX_CFG_PROT_PADJ, txpwr_adj);
mt76_rmw_field(dev, MT_PROT_AUTO_TX_CFG,
MT_PROT_AUTO_TX_CFG_AUTO_PADJ, txpwr_adj);
}
static int mt76x2_insert_hdr_pad(struct sk_buff *skb)
{
int len = ieee80211_get_hdrlen_from_skb(skb);
if (len % 4 == 0)
return 0;
skb_push(skb, 2);
memmove(skb->data, skb->data + 2, len);
skb->data[len] = 0;
skb->data[len + 1] = 0;
return 2;
}
int mt76x2_tx_prepare_skb(struct mt76_dev *mdev, void *txwi,
struct sk_buff *skb, struct mt76_queue *q,
struct mt76_wcid *wcid, struct ieee80211_sta *sta,
u32 *tx_info)
{
struct mt76x2_dev *dev = container_of(mdev, struct mt76x2_dev, mt76);
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
int qsel = MT_QSEL_EDCA;
int ret;
if (q == &dev->mt76.q_tx[MT_TXQ_PSD] && wcid && wcid->idx < 128)
mt76x2_mac_wcid_set_drop(dev, wcid->idx, false);
mt76x2_mac_write_txwi(dev, txwi, skb, wcid, sta);
ret = mt76x2_insert_hdr_pad(skb);
if (ret < 0)
return ret;
if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)
qsel = MT_QSEL_MGMT;
*tx_info = FIELD_PREP(MT_TXD_INFO_QSEL, qsel) |
MT_TXD_INFO_80211;
if (!wcid || wcid->hw_key_idx == 0xff)
*tx_info |= MT_TXD_INFO_WIV;
return 0;
}
static void
mt76x2_update_beacon_iter(void *priv, u8 *mac, struct ieee80211_vif *vif)
{
struct mt76x2_dev *dev = (struct mt76x2_dev *) priv;
struct mt76x2_vif *mvif = (struct mt76x2_vif *) vif->drv_priv;
struct sk_buff *skb = NULL;
if (!(dev->beacon_mask & BIT(mvif->idx)))
return;
skb = ieee80211_beacon_get(mt76_hw(dev), vif);
if (!skb)
return;
mt76x2_mac_set_beacon(dev, mvif->idx, skb);
}
static void
mt76x2_add_buffered_bc(void *priv, u8 *mac, struct ieee80211_vif *vif)
{
struct beacon_bc_data *data = priv;
struct mt76x2_dev *dev = data->dev;
struct mt76x2_vif *mvif = (struct mt76x2_vif *) vif->drv_priv;
struct ieee80211_tx_info *info;
struct sk_buff *skb;
if (!(dev->beacon_mask & BIT(mvif->idx)))
return;
skb = ieee80211_get_buffered_bc(mt76_hw(dev), vif);
if (!skb)
return;
info = IEEE80211_SKB_CB(skb);
info->control.vif = vif;
info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ;
mt76_skb_set_moredata(skb, true);
__skb_queue_tail(&data->q, skb);
data->tail[mvif->idx] = skb;
}
void mt76x2_pre_tbtt_tasklet(unsigned long arg)
{
struct mt76x2_dev *dev = (struct mt76x2_dev *) arg;
struct mt76_queue *q = &dev->mt76.q_tx[MT_TXQ_PSD];
struct beacon_bc_data data = {};
struct sk_buff *skb;
int i, nframes;
data.dev = dev;
__skb_queue_head_init(&data.q);
ieee80211_iterate_active_interfaces_atomic(mt76_hw(dev),
IEEE80211_IFACE_ITER_RESUME_ALL,
mt76x2_update_beacon_iter, dev);
do {
nframes = skb_queue_len(&data.q);
ieee80211_iterate_active_interfaces_atomic(mt76_hw(dev),
IEEE80211_IFACE_ITER_RESUME_ALL,
mt76x2_add_buffered_bc, &data);
} while (nframes != skb_queue_len(&data.q));
if (!nframes)
return;
for (i = 0; i < ARRAY_SIZE(data.tail); i++) {
if (!data.tail[i])
continue;
mt76_skb_set_moredata(data.tail[i], false);
}
spin_lock_bh(&q->lock);
while ((skb = __skb_dequeue(&data.q)) != NULL) {
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_vif *vif = info->control.vif;
struct mt76x2_vif *mvif = (struct mt76x2_vif *) vif->drv_priv;
mt76_tx_queue_skb(&dev->mt76, q, skb, &mvif->group_wcid, NULL);
}
spin_unlock_bh(&q->lock);
}