diff --git a/Documentation/hwmon/bt1-pvt.rst b/Documentation/hwmon/bt1-pvt.rst
new file mode 100644
index 000000000000..cbb0c0613132
--- /dev/null
+++ b/Documentation/hwmon/bt1-pvt.rst
@@ -0,0 +1,117 @@
+.. SPDX-License-Identifier: GPL-2.0-only
+
+Kernel driver bt1-pvt
+=====================
+
+Supported chips:
+
+  * Baikal-T1 PVT sensor (in SoC)
+
+    Prefix: 'bt1-pvt'
+
+    Addresses scanned: -
+
+    Datasheet: Provided by BAIKAL ELECTRONICS upon request and under NDA
+
+Authors:
+    Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
+    Serge Semin <Sergey.Semin@baikalelectronics.ru>
+
+Description
+-----------
+
+This driver implements support for the hardware monitoring capabilities of the
+embedded into Baikal-T1 process, voltage and temperature sensors. PVT IP-core
+consists of one temperature and four voltage sensors, which can be used to
+monitor the chip internal environment like heating, supply voltage and
+transistors performance. The driver can optionally provide the hwmon alarms
+for each sensor the PVT controller supports. The alarms functionality is made
+compile-time configurable due to the hardware interface implementation
+peculiarity, which is connected with an ability to convert data from only one
+sensor at a time. Additional limitation is that the controller performs the
+thresholds checking synchronously with the data conversion procedure. Due to
+these in order to have the hwmon alarms automatically detected the driver code
+must switch from one sensor to another, read converted data and manually check
+the threshold status bits. Depending on the measurements timeout settings
+(update_interval sysfs node value) this design may cause additional burden on
+the system performance. So in case if alarms are unnecessary in your system
+design it's recommended to have them disabled to prevent the PVT IRQs being
+periodically raised to get the data cache/alarms status up to date. By default
+in alarm-less configuration the data conversion is performed by the driver
+on demand when read operation is requested via corresponding _input-file.
+
+Temperature Monitoring
+----------------------
+
+Temperature is measured with 10-bit resolution and reported in millidegree
+Celsius. The driver performs all the scaling by itself therefore reports true
+temperatures that don't need any user-space adjustments. While the data
+translation formulae isn't linear, which gives us non-linear discreteness,
+it's close to one, but giving a bit better accuracy for higher temperatures.
+The temperature input is mapped as follows (the last column indicates the input
+ranges)::
+
+	temp1: CPU embedded diode	-48.38C - +147.438C
+
+In case if the alarms kernel config is enabled in the driver the temperature input
+has associated min and max limits which trigger an alarm when crossed.
+
+Voltage Monitoring
+------------------
+
+The voltage inputs are also sampled with 10-bit resolution and reported in
+millivolts. But in this case the data translation formulae is linear, which
+provides a constant measurements discreteness. The data scaling is also
+performed by the driver, so returning true millivolts. The voltage inputs are
+mapped as follows (the last column indicates the input ranges)::
+
+	in0: VDD		(processor core)		0.62V - 1.168V
+	in1: Low-Vt		(low voltage threshold)		0.62V - 1.168V
+	in2: High-Vt		(high voltage threshold)	0.62V - 1.168V
+	in3: Standard-Vt	(standard voltage threshold)	0.62V - 1.168V
+
+In case if the alarms config is enabled in the driver the voltage inputs
+have associated min and max limits which trigger an alarm when crossed.
+
+Sysfs Attributes
+----------------
+
+Following is a list of all sysfs attributes that the driver provides, their
+permissions and a short description:
+
+=============================== ======= =======================================
+Name				Perm	Description
+=============================== ======= =======================================
+update_interval			RW	Measurements update interval per
+					sensor.
+temp1_type			RO	Sensor type (always 1 as CPU embedded
+					diode).
+temp1_label			RO	CPU Core Temperature sensor.
+temp1_input			RO	Measured temperature in millidegree
+					Celsius.
+temp1_min			RW	Low limit for temp input.
+temp1_max			RW	High limit for temp input.
+temp1_min_alarm			RO	Temperature input alarm. Returns 1 if
+					temperature input went below min limit,
+					0 otherwise.
+temp1_max_alarm			RO	Temperature input alarm. Returns 1 if
+					temperature input went above max limit,
+					0 otherwise.
+temp1_offset			RW	Temperature offset in millidegree
+					Celsius which is added to the
+					temperature reading by the chip. It can
+					be used to manually adjust the
+					temperature measurements within 7.130
+					degrees Celsius.
+in[0-3]_label			RO	CPU Voltage sensor (either core or
+					low/high/standard thresholds).
+in[0-3]_input			RO	Measured voltage in millivolts.
+in[0-3]_min			RW	Low limit for voltage input.
+in[0-3]_max			RW	High limit for voltage input.
+in[0-3]_min_alarm		RO	Voltage input alarm. Returns 1 if
+					voltage input went below min limit,
+					0 otherwise.
+in[0-3]_max_alarm		RO	Voltage input alarm. Returns 1 if
+					voltage input went above max limit,
+					0 otherwise.
+=============================== ======= =======================================
diff --git a/Documentation/hwmon/index.rst b/Documentation/hwmon/index.rst
index e463fa9a219d..005bf9e124bb 100644
--- a/Documentation/hwmon/index.rst
+++ b/Documentation/hwmon/index.rst
@@ -44,6 +44,7 @@ Hardware Monitoring Kernel Drivers
    asc7621
    aspeed-pwm-tacho
    bel-pfe
+   bt1-pvt
    coretemp
    da9052
    da9055
diff --git a/drivers/hwmon/Kconfig b/drivers/hwmon/Kconfig
index 3ae303d6c12b..288ae9f63588 100644
--- a/drivers/hwmon/Kconfig
+++ b/drivers/hwmon/Kconfig
@@ -414,6 +414,31 @@ config SENSORS_ATXP1
 	  This driver can also be built as a module. If so, the module
 	  will be called atxp1.
 
+config SENSORS_BT1_PVT
+	tristate "Baikal-T1 Process, Voltage, Temperature sensor driver"
+	depends on MIPS_BAIKAL_T1 || COMPILE_TEST
+	help
+	  If you say yes here you get support for Baikal-T1 PVT sensor
+	  embedded into the SoC.
+
+	  This driver can also be built as a module. If so, the module will be
+	  called bt1-pvt.
+
+config SENSORS_BT1_PVT_ALARMS
+	bool "Enable Baikal-T1 PVT sensor alarms"
+	depends on SENSORS_BT1_PVT
+	help
+	  Baikal-T1 PVT IP-block provides threshold registers for each
+	  supported sensor. But the corresponding interrupts might be
+	  generated by the thresholds comparator only in synchronization with
+	  a data conversion. Additionally there is only one sensor data can
+	  be converted at a time. All of these makes the interface impossible
+	  to be used for the hwmon alarms implementation without periodic
+	  switch between the PVT sensors. By default the data conversion is
+	  performed on demand from the user-space. If this config is enabled
+	  the data conversion will be periodically performed and the data will be
+	  saved in the internal driver cache.
+
 config SENSORS_DRIVETEMP
 	tristate "Hard disk drives with temperature sensors"
 	depends on SCSI && ATA
diff --git a/drivers/hwmon/Makefile b/drivers/hwmon/Makefile
index 892174f18f6b..3e32c21f5efe 100644
--- a/drivers/hwmon/Makefile
+++ b/drivers/hwmon/Makefile
@@ -54,6 +54,7 @@ obj-$(CONFIG_SENSORS_ASC7621)	+= asc7621.o
 obj-$(CONFIG_SENSORS_ASPEED)	+= aspeed-pwm-tacho.o
 obj-$(CONFIG_SENSORS_ATXP1)	+= atxp1.o
 obj-$(CONFIG_SENSORS_AXI_FAN_CONTROL) += axi-fan-control.o
+obj-$(CONFIG_SENSORS_BT1_PVT)	+= bt1-pvt.o
 obj-$(CONFIG_SENSORS_CORETEMP)	+= coretemp.o
 obj-$(CONFIG_SENSORS_DA9052_ADC)+= da9052-hwmon.o
 obj-$(CONFIG_SENSORS_DA9055)+= da9055-hwmon.o
diff --git a/drivers/hwmon/bt1-pvt.c b/drivers/hwmon/bt1-pvt.c
new file mode 100644
index 000000000000..1a9772fb1f73
--- /dev/null
+++ b/drivers/hwmon/bt1-pvt.c
@@ -0,0 +1,1146 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
+ *
+ * Authors:
+ *   Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>
+ *   Serge Semin <Sergey.Semin@baikalelectronics.ru>
+ *
+ * Baikal-T1 Process, Voltage, Temperature sensor driver
+ */
+
+#include <linux/bitfield.h>
+#include <linux/bitops.h>
+#include <linux/clk.h>
+#include <linux/completion.h>
+#include <linux/device.h>
+#include <linux/hwmon-sysfs.h>
+#include <linux/hwmon.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/ktime.h>
+#include <linux/limits.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/seqlock.h>
+#include <linux/sysfs.h>
+#include <linux/types.h>
+
+#include "bt1-pvt.h"
+
+/*
+ * For the sake of the code simplification we created the sensors info table
+ * with the sensor names, activation modes, threshold registers base address
+ * and the thresholds bit fields.
+ */
+static const struct pvt_sensor_info pvt_info[] = {
+	PVT_SENSOR_INFO(0, "CPU Core Temperature", hwmon_temp, TEMP, TTHRES),
+	PVT_SENSOR_INFO(0, "CPU Core Voltage", hwmon_in, VOLT, VTHRES),
+	PVT_SENSOR_INFO(1, "CPU Core Low-Vt", hwmon_in, LVT, LTHRES),
+	PVT_SENSOR_INFO(2, "CPU Core High-Vt", hwmon_in, HVT, HTHRES),
+	PVT_SENSOR_INFO(3, "CPU Core Standard-Vt", hwmon_in, SVT, STHRES),
+};
+
+/*
+ * The original translation formulae of the temperature (in degrees of Celsius)
+ * to PVT data and vice-versa are following:
+ * N = 1.8322e-8*(T^4) + 2.343e-5*(T^3) + 8.7018e-3*(T^2) + 3.9269*(T^1) +
+ *     1.7204e2,
+ * T = -1.6743e-11*(N^4) + 8.1542e-8*(N^3) + -1.8201e-4*(N^2) +
+ *     3.1020e-1*(N^1) - 4.838e1,
+ * where T = [-48.380, 147.438]C and N = [0, 1023].
+ * They must be accordingly altered to be suitable for the integer arithmetics.
+ * The technique is called 'factor redistribution', which just makes sure the
+ * multiplications and divisions are made so to have a result of the operations
+ * within the integer numbers limit. In addition we need to translate the
+ * formulae to accept millidegrees of Celsius. Here what they look like after
+ * the alterations:
+ * N = (18322e-20*(T^4) + 2343e-13*(T^3) + 87018e-9*(T^2) + 39269e-3*T +
+ *     17204e2) / 1e4,
+ * T = -16743e-12*(D^4) + 81542e-9*(D^3) - 182010e-6*(D^2) + 310200e-3*D -
+ *     48380,
+ * where T = [-48380, 147438] mC and N = [0, 1023].
+ */
+static const struct pvt_poly poly_temp_to_N = {
+	.total_divider = 10000,
+	.terms = {
+		{4, 18322, 10000, 10000},
+		{3, 2343, 10000, 10},
+		{2, 87018, 10000, 10},
+		{1, 39269, 1000, 1},
+		{0, 1720400, 1, 1}
+	}
+};
+
+static const struct pvt_poly poly_N_to_temp = {
+	.total_divider = 1,
+	.terms = {
+		{4, -16743, 1000, 1},
+		{3, 81542, 1000, 1},
+		{2, -182010, 1000, 1},
+		{1, 310200, 1000, 1},
+		{0, -48380, 1, 1}
+	}
+};
+
+/*
+ * Similar alterations are performed for the voltage conversion equations.
+ * The original formulae are:
+ * N = 1.8658e3*V - 1.1572e3,
+ * V = (N + 1.1572e3) / 1.8658e3,
+ * where V = [0.620, 1.168] V and N = [0, 1023].
+ * After the optimization they looks as follows:
+ * N = (18658e-3*V - 11572) / 10,
+ * V = N * 10^5 / 18658 + 11572 * 10^4 / 18658.
+ */
+static const struct pvt_poly poly_volt_to_N = {
+	.total_divider = 10,
+	.terms = {
+		{1, 18658, 1000, 1},
+		{0, -11572, 1, 1}
+	}
+};
+
+static const struct pvt_poly poly_N_to_volt = {
+	.total_divider = 10,
+	.terms = {
+		{1, 100000, 18658, 1},
+		{0, 115720000, 1, 18658}
+	}
+};
+
+/*
+ * Here is the polynomial calculation function, which performs the
+ * redistributed terms calculations. It's pretty straightforward. We walk
+ * over each degree term up to the free one, and perform the redistributed
+ * multiplication of the term coefficient, its divider (as for the rationale
+ * fraction representation), data power and the rational fraction divider
+ * leftover. Then all of this is collected in a total sum variable, which
+ * value is normalized by the total divider before being returned.
+ */
+static long pvt_calc_poly(const struct pvt_poly *poly, long data)
+{
+	const struct pvt_poly_term *term = poly->terms;
+	long tmp, ret = 0;
+	int deg;
+
+	do {
+		tmp = term->coef;
+		for (deg = 0; deg < term->deg; ++deg)
+			tmp = mult_frac(tmp, data, term->divider);
+		ret += tmp / term->divider_leftover;
+	} while ((term++)->deg);
+
+	return ret / poly->total_divider;
+}
+
+static inline u32 pvt_update(void __iomem *reg, u32 mask, u32 data)
+{
+	u32 old;
+
+	old = readl_relaxed(reg);
+	writel((old & ~mask) | (data & mask), reg);
+
+	return old & mask;
+}
+
+/*
+ * Baikal-T1 PVT mode can be updated only when the controller is disabled.
+ * So first we disable it, then set the new mode together with the controller
+ * getting back enabled. The same concerns the temperature trim and
+ * measurements timeout. If it is necessary the interface mutex is supposed
+ * to be locked at the time the operations are performed.
+ */
+static inline void pvt_set_mode(struct pvt_hwmon *pvt, u32 mode)
+{
+	u32 old;
+
+	mode = FIELD_PREP(PVT_CTRL_MODE_MASK, mode);
+
+	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
+	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_MODE_MASK | PVT_CTRL_EN,
+		   mode | old);
+}
+
+static inline u32 pvt_calc_trim(long temp)
+{
+	temp = clamp_val(temp, 0, PVT_TRIM_TEMP);
+
+	return DIV_ROUND_UP(temp, PVT_TRIM_STEP);
+}
+
+static inline void pvt_set_trim(struct pvt_hwmon *pvt, u32 trim)
+{
+	u32 old;
+
+	trim = FIELD_PREP(PVT_CTRL_TRIM_MASK, trim);
+
+	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
+	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_TRIM_MASK | PVT_CTRL_EN,
+		   trim | old);
+}
+
+static inline void pvt_set_tout(struct pvt_hwmon *pvt, u32 tout)
+{
+	u32 old;
+
+	old = pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
+	writel(tout, pvt->regs + PVT_TTIMEOUT);
+	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, old);
+}
+
+/*
+ * This driver can optionally provide the hwmon alarms for each sensor the PVT
+ * controller supports. The alarms functionality is made compile-time
+ * configurable due to the hardware interface implementation peculiarity
+ * described further in this comment. So in case if alarms are unnecessary in
+ * your system design it's recommended to have them disabled to prevent the PVT
+ * IRQs being periodically raised to get the data cache/alarms status up to
+ * date.
+ *
+ * Baikal-T1 PVT embedded controller is based on the Analog Bits PVT sensor,
+ * but is equipped with a dedicated control wrapper. It exposes the PVT
+ * sub-block registers space via the APB3 bus. In addition the wrapper provides
+ * a common interrupt vector of the sensors conversion completion events and
+ * threshold value alarms. Alas the wrapper interface hasn't been fully thought
+ * through. There is only one sensor can be activated at a time, for which the
+ * thresholds comparator is enabled right after the data conversion is
+ * completed. Due to this if alarms need to be implemented for all available
+ * sensors we can't just set the thresholds and enable the interrupts. We need
+ * to enable the sensors one after another and let the controller to detect
+ * the alarms by itself at each conversion. This also makes pointless to handle
+ * the alarms interrupts, since in occasion they happen synchronously with
+ * data conversion completion. The best driver design would be to have the
+ * completion interrupts enabled only and keep the converted value in the
+ * driver data cache. This solution is implemented if hwmon alarms are enabled
+ * in this driver. In case if the alarms are disabled, the conversion is
+ * performed on demand at the time a sensors input file is read.
+ */
+
+#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
+
+#define pvt_hard_isr NULL
+
+static irqreturn_t pvt_soft_isr(int irq, void *data)
+{
+	const struct pvt_sensor_info *info;
+	struct pvt_hwmon *pvt = data;
+	struct pvt_cache *cache;
+	u32 val, thres_sts, old;
+
+	/*
+	 * DVALID bit will be cleared by reading the data. We need to save the
+	 * status before the next conversion happens. Threshold events will be
+	 * handled a bit later.
+	 */
+	thres_sts = readl(pvt->regs + PVT_RAW_INTR_STAT);
+
+	/*
+	 * Then lets recharge the PVT interface with the next sampling mode.
+	 * Lock the interface mutex to serialize trim, timeouts and alarm
+	 * thresholds settings.
+	 */
+	cache = &pvt->cache[pvt->sensor];
+	info = &pvt_info[pvt->sensor];
+	pvt->sensor = (pvt->sensor == PVT_SENSOR_LAST) ?
+		      PVT_SENSOR_FIRST : (pvt->sensor + 1);
+
+	/*
+	 * For some reason we have to mask the interrupt before changing the
+	 * mode, otherwise sometimes the temperature mode doesn't get
+	 * activated even though the actual mode in the ctrl register
+	 * corresponds to one. Then we read the data. By doing so we also
+	 * recharge the data conversion. After this the mode corresponding
+	 * to the next sensor in the row is set. Finally we enable the
+	 * interrupts back.
+	 */
+	mutex_lock(&pvt->iface_mtx);
+
+	old = pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
+			 PVT_INTR_DVALID);
+
+	val = readl(pvt->regs + PVT_DATA);
+
+	pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
+
+	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, old);
+
+	mutex_unlock(&pvt->iface_mtx);
+
+	/*
+	 * We can now update the data cache with data just retrieved from the
+	 * sensor. Lock write-seqlock to make sure the reader has a coherent
+	 * data.
+	 */
+	write_seqlock(&cache->data_seqlock);
+
+	cache->data = FIELD_GET(PVT_DATA_DATA_MASK, val);
+
+	write_sequnlock(&cache->data_seqlock);
+
+	/*
+	 * While PVT core is doing the next mode data conversion, we'll check
+	 * whether the alarms were triggered for the current sensor. Note that
+	 * according to the documentation only one threshold IRQ status can be
+	 * set at a time, that's why if-else statement is utilized.
+	 */
+	if ((thres_sts & info->thres_sts_lo) ^ cache->thres_sts_lo) {
+		WRITE_ONCE(cache->thres_sts_lo, thres_sts & info->thres_sts_lo);
+		hwmon_notify_event(pvt->hwmon, info->type, info->attr_min_alarm,
+				   info->channel);
+	} else if ((thres_sts & info->thres_sts_hi) ^ cache->thres_sts_hi) {
+		WRITE_ONCE(cache->thres_sts_hi, thres_sts & info->thres_sts_hi);
+		hwmon_notify_event(pvt->hwmon, info->type, info->attr_max_alarm,
+				   info->channel);
+	}
+
+	return IRQ_HANDLED;
+}
+
+inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
+{
+	return 0644;
+}
+
+inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
+{
+	return 0444;
+}
+
+static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
+			 long *val)
+{
+	struct pvt_cache *cache = &pvt->cache[type];
+	unsigned int seq;
+	u32 data;
+
+	do {
+		seq = read_seqbegin(&cache->data_seqlock);
+		data = cache->data;
+	} while (read_seqretry(&cache->data_seqlock, seq));
+
+	if (type == PVT_TEMP)
+		*val = pvt_calc_poly(&poly_N_to_temp, data);
+	else
+		*val = pvt_calc_poly(&poly_N_to_volt, data);
+
+	return 0;
+}
+
+static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
+			  bool is_low, long *val)
+{
+	u32 data;
+
+	/* No need in serialization, since it is just read from MMIO. */
+	data = readl(pvt->regs + pvt_info[type].thres_base);
+
+	if (is_low)
+		data = FIELD_GET(PVT_THRES_LO_MASK, data);
+	else
+		data = FIELD_GET(PVT_THRES_HI_MASK, data);
+
+	if (type == PVT_TEMP)
+		*val = pvt_calc_poly(&poly_N_to_temp, data);
+	else
+		*val = pvt_calc_poly(&poly_N_to_volt, data);
+
+	return 0;
+}
+
+static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
+			   bool is_low, long val)
+{
+	u32 data, limit, mask;
+	int ret;
+
+	if (type == PVT_TEMP) {
+		val = clamp(val, PVT_TEMP_MIN, PVT_TEMP_MAX);
+		data = pvt_calc_poly(&poly_temp_to_N, val);
+	} else {
+		val = clamp(val, PVT_VOLT_MIN, PVT_VOLT_MAX);
+		data = pvt_calc_poly(&poly_volt_to_N, val);
+	}
+
+	/* Serialize limit update, since a part of the register is changed. */
+	ret = mutex_lock_interruptible(&pvt->iface_mtx);
+	if (ret)
+		return ret;
+
+	/* Make sure the upper and lower ranges don't intersect. */
+	limit = readl(pvt->regs + pvt_info[type].thres_base);
+	if (is_low) {
+		limit = FIELD_GET(PVT_THRES_HI_MASK, limit);
+		data = clamp_val(data, PVT_DATA_MIN, limit);
+		data = FIELD_PREP(PVT_THRES_LO_MASK, data);
+		mask = PVT_THRES_LO_MASK;
+	} else {
+		limit = FIELD_GET(PVT_THRES_LO_MASK, limit);
+		data = clamp_val(data, limit, PVT_DATA_MAX);
+		data = FIELD_PREP(PVT_THRES_HI_MASK, data);
+		mask = PVT_THRES_HI_MASK;
+	}
+
+	pvt_update(pvt->regs + pvt_info[type].thres_base, mask, data);
+
+	mutex_unlock(&pvt->iface_mtx);
+
+	return 0;
+}
+
+static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
+			  bool is_low, long *val)
+{
+	if (is_low)
+		*val = !!READ_ONCE(pvt->cache[type].thres_sts_lo);
+	else
+		*val = !!READ_ONCE(pvt->cache[type].thres_sts_hi);
+
+	return 0;
+}
+
+static const struct hwmon_channel_info *pvt_channel_info[] = {
+	HWMON_CHANNEL_INFO(chip,
+			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
+	HWMON_CHANNEL_INFO(temp,
+			   HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
+			   HWMON_T_MIN | HWMON_T_MIN_ALARM |
+			   HWMON_T_MAX | HWMON_T_MAX_ALARM |
+			   HWMON_T_OFFSET),
+	HWMON_CHANNEL_INFO(in,
+			   HWMON_I_INPUT | HWMON_I_LABEL |
+			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
+			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
+			   HWMON_I_INPUT | HWMON_I_LABEL |
+			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
+			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
+			   HWMON_I_INPUT | HWMON_I_LABEL |
+			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
+			   HWMON_I_MAX | HWMON_I_MAX_ALARM,
+			   HWMON_I_INPUT | HWMON_I_LABEL |
+			   HWMON_I_MIN | HWMON_I_MIN_ALARM |
+			   HWMON_I_MAX | HWMON_I_MAX_ALARM),
+	NULL
+};
+
+#else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
+
+static irqreturn_t pvt_hard_isr(int irq, void *data)
+{
+	struct pvt_hwmon *pvt = data;
+	struct pvt_cache *cache;
+	u32 val;
+
+	/*
+	 * Mask the DVALID interrupt so after exiting from the handler a
+	 * repeated conversion wouldn't happen.
+	 */
+	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
+		   PVT_INTR_DVALID);
+
+	/*
+	 * Nothing special for alarm-less driver. Just read the data, update
+	 * the cache and notify a waiter of this event.
+	 */
+	val = readl(pvt->regs + PVT_DATA);
+	if (!(val & PVT_DATA_VALID)) {
+		dev_err(pvt->dev, "Got IRQ when data isn't valid\n");
+		return IRQ_HANDLED;
+	}
+
+	cache = &pvt->cache[pvt->sensor];
+
+	WRITE_ONCE(cache->data, FIELD_GET(PVT_DATA_DATA_MASK, val));
+
+	complete(&cache->conversion);
+
+	return IRQ_HANDLED;
+}
+
+#define pvt_soft_isr NULL
+
+inline umode_t pvt_limit_is_visible(enum pvt_sensor_type type)
+{
+	return 0;
+}
+
+inline umode_t pvt_alarm_is_visible(enum pvt_sensor_type type)
+{
+	return 0;
+}
+
+static int pvt_read_data(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
+			 long *val)
+{
+	struct pvt_cache *cache = &pvt->cache[type];
+	u32 data;
+	int ret;
+
+	/*
+	 * Lock PVT conversion interface until data cache is updated. The
+	 * data read procedure is following: set the requested PVT sensor
+	 * mode, enable IRQ and conversion, wait until conversion is finished,
+	 * then disable conversion and IRQ, and read the cached data.
+	 */
+	ret = mutex_lock_interruptible(&pvt->iface_mtx);
+	if (ret)
+		return ret;
+
+	pvt->sensor = type;
+	pvt_set_mode(pvt, pvt_info[type].mode);
+
+	/*
+	 * Unmask the DVALID interrupt and enable the sensors conversions.
+	 * Do the reverse procedure when conversion is done.
+	 */
+	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
+	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
+
+	wait_for_completion(&cache->conversion);
+
+	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
+	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
+		   PVT_INTR_DVALID);
+
+	data = READ_ONCE(cache->data);
+
+	mutex_unlock(&pvt->iface_mtx);
+
+	if (type == PVT_TEMP)
+		*val = pvt_calc_poly(&poly_N_to_temp, data);
+	else
+		*val = pvt_calc_poly(&poly_N_to_volt, data);
+
+	return 0;
+}
+
+static int pvt_read_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
+			  bool is_low, long *val)
+{
+	return -EOPNOTSUPP;
+}
+
+static int pvt_write_limit(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
+			   bool is_low, long val)
+{
+	return -EOPNOTSUPP;
+}
+
+static int pvt_read_alarm(struct pvt_hwmon *pvt, enum pvt_sensor_type type,
+			  bool is_low, long *val)
+{
+	return -EOPNOTSUPP;
+}
+
+static const struct hwmon_channel_info *pvt_channel_info[] = {
+	HWMON_CHANNEL_INFO(chip,
+			   HWMON_C_REGISTER_TZ | HWMON_C_UPDATE_INTERVAL),
+	HWMON_CHANNEL_INFO(temp,
+			   HWMON_T_INPUT | HWMON_T_TYPE | HWMON_T_LABEL |
+			   HWMON_T_OFFSET),
+	HWMON_CHANNEL_INFO(in,
+			   HWMON_I_INPUT | HWMON_I_LABEL,
+			   HWMON_I_INPUT | HWMON_I_LABEL,
+			   HWMON_I_INPUT | HWMON_I_LABEL,
+			   HWMON_I_INPUT | HWMON_I_LABEL),
+	NULL
+};
+
+#endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
+
+static inline bool pvt_hwmon_channel_is_valid(enum hwmon_sensor_types type,
+					      int ch)
+{
+	switch (type) {
+	case hwmon_temp:
+		if (ch < 0 || ch >= PVT_TEMP_CHS)
+			return false;
+		break;
+	case hwmon_in:
+		if (ch < 0 || ch >= PVT_VOLT_CHS)
+			return false;
+		break;
+	default:
+		break;
+	}
+
+	/* The rest of the types are independent from the channel number. */
+	return true;
+}
+
+static umode_t pvt_hwmon_is_visible(const void *data,
+				    enum hwmon_sensor_types type,
+				    u32 attr, int ch)
+{
+	if (!pvt_hwmon_channel_is_valid(type, ch))
+		return 0;
+
+	switch (type) {
+	case hwmon_chip:
+		switch (attr) {
+		case hwmon_chip_update_interval:
+			return 0644;
+		}
+		break;
+	case hwmon_temp:
+		switch (attr) {
+		case hwmon_temp_input:
+		case hwmon_temp_type:
+		case hwmon_temp_label:
+			return 0444;
+		case hwmon_temp_min:
+		case hwmon_temp_max:
+			return pvt_limit_is_visible(ch);
+		case hwmon_temp_min_alarm:
+		case hwmon_temp_max_alarm:
+			return pvt_alarm_is_visible(ch);
+		case hwmon_temp_offset:
+			return 0644;
+		}
+		break;
+	case hwmon_in:
+		switch (attr) {
+		case hwmon_in_input:
+		case hwmon_in_label:
+			return 0444;
+		case hwmon_in_min:
+		case hwmon_in_max:
+			return pvt_limit_is_visible(PVT_VOLT + ch);
+		case hwmon_in_min_alarm:
+		case hwmon_in_max_alarm:
+			return pvt_alarm_is_visible(PVT_VOLT + ch);
+		}
+		break;
+	default:
+		break;
+	}
+
+	return 0;
+}
+
+static int pvt_read_trim(struct pvt_hwmon *pvt, long *val)
+{
+	u32 data;
+
+	data = readl(pvt->regs + PVT_CTRL);
+	*val = FIELD_GET(PVT_CTRL_TRIM_MASK, data) * PVT_TRIM_STEP;
+
+	return 0;
+}
+
+static int pvt_write_trim(struct pvt_hwmon *pvt, long val)
+{
+	u32 trim;
+	int ret;
+
+	/*
+	 * Serialize trim update, since a part of the register is changed and
+	 * the controller is supposed to be disabled during this operation.
+	 */
+	ret = mutex_lock_interruptible(&pvt->iface_mtx);
+	if (ret)
+		return ret;
+
+	trim = pvt_calc_trim(val);
+	pvt_set_trim(pvt, trim);
+
+	mutex_unlock(&pvt->iface_mtx);
+
+	return 0;
+}
+
+static int pvt_read_timeout(struct pvt_hwmon *pvt, long *val)
+{
+	unsigned long rate;
+	ktime_t kt;
+	u32 data;
+
+	rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
+	if (!rate)
+		return -ENODEV;
+
+	/*
+	 * Don't bother with mutex here, since we just read data from MMIO.
+	 * We also have to scale the ticks timeout up to compensate the
+	 * ms-ns-data translations.
+	 */
+	data = readl(pvt->regs + PVT_TTIMEOUT) + 1;
+
+	/*
+	 * Calculate ref-clock based delay (Ttotal) between two consecutive
+	 * data samples of the same sensor. So we first must calculate the
+	 * delay introduced by the internal ref-clock timer (Tref * Fclk).
+	 * Then add the constant timeout cuased by each conversion latency
+	 * (Tmin). The basic formulae for each conversion is following:
+	 *   Ttotal = Tref * Fclk + Tmin
+	 * Note if alarms are enabled the sensors are polled one after
+	 * another, so in order to have the delay being applicable for each
+	 * sensor the requested value must be equally redistirbuted.
+	 */
+#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
+	kt = ktime_set(PVT_SENSORS_NUM * (u64)data, 0);
+	kt = ktime_divns(kt, rate);
+	kt = ktime_add_ns(kt, PVT_SENSORS_NUM * PVT_TOUT_MIN);
+#else
+	kt = ktime_set(data, 0);
+	kt = ktime_divns(kt, rate);
+	kt = ktime_add_ns(kt, PVT_TOUT_MIN);
+#endif
+
+	/* Return the result in msec as hwmon sysfs interface requires. */
+	*val = ktime_to_ms(kt);
+
+	return 0;
+}
+
+static int pvt_write_timeout(struct pvt_hwmon *pvt, long val)
+{
+	unsigned long rate;
+	ktime_t kt;
+	u32 data;
+	int ret;
+
+	rate = clk_get_rate(pvt->clks[PVT_CLOCK_REF].clk);
+	if (!rate)
+		return -ENODEV;
+
+	/*
+	 * If alarms are enabled, the requested timeout must be divided
+	 * between all available sensors to have the requested delay
+	 * applicable to each individual sensor.
+	 */
+	kt = ms_to_ktime(val);
+#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
+	kt = ktime_divns(kt, PVT_SENSORS_NUM);
+#endif
+
+	/*
+	 * Subtract a constant lag, which always persists due to the limited
+	 * PVT sampling rate. Make sure the timeout is not negative.
+	 */
+	kt = ktime_sub_ns(kt, PVT_TOUT_MIN);
+	if (ktime_to_ns(kt) < 0)
+		kt = ktime_set(0, 0);
+
+	/*
+	 * Finally recalculate the timeout in terms of the reference clock
+	 * period.
+	 */
+	data = ktime_divns(kt * rate, NSEC_PER_SEC);
+
+	/*
+	 * Update the measurements delay, but lock the interface first, since
+	 * we have to disable PVT in order to have the new delay actually
+	 * updated.
+	 */
+	ret = mutex_lock_interruptible(&pvt->iface_mtx);
+	if (ret)
+		return ret;
+
+	pvt_set_tout(pvt, data);
+
+	mutex_unlock(&pvt->iface_mtx);
+
+	return 0;
+}
+
+static int pvt_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
+			  u32 attr, int ch, long *val)
+{
+	struct pvt_hwmon *pvt = dev_get_drvdata(dev);
+
+	if (!pvt_hwmon_channel_is_valid(type, ch))
+		return -EINVAL;
+
+	switch (type) {
+	case hwmon_chip:
+		switch (attr) {
+		case hwmon_chip_update_interval:
+			return pvt_read_timeout(pvt, val);
+		}
+		break;
+	case hwmon_temp:
+		switch (attr) {
+		case hwmon_temp_input:
+			return pvt_read_data(pvt, ch, val);
+		case hwmon_temp_type:
+			*val = 1;
+			return 0;
+		case hwmon_temp_min:
+			return pvt_read_limit(pvt, ch, true, val);
+		case hwmon_temp_max:
+			return pvt_read_limit(pvt, ch, false, val);
+		case hwmon_temp_min_alarm:
+			return pvt_read_alarm(pvt, ch, true, val);
+		case hwmon_temp_max_alarm:
+			return pvt_read_alarm(pvt, ch, false, val);
+		case hwmon_temp_offset:
+			return pvt_read_trim(pvt, val);
+		}
+		break;
+	case hwmon_in:
+		switch (attr) {
+		case hwmon_in_input:
+			return pvt_read_data(pvt, PVT_VOLT + ch, val);
+		case hwmon_in_min:
+			return pvt_read_limit(pvt, PVT_VOLT + ch, true, val);
+		case hwmon_in_max:
+			return pvt_read_limit(pvt, PVT_VOLT + ch, false, val);
+		case hwmon_in_min_alarm:
+			return pvt_read_alarm(pvt, PVT_VOLT + ch, true, val);
+		case hwmon_in_max_alarm:
+			return pvt_read_alarm(pvt, PVT_VOLT + ch, false, val);
+		}
+		break;
+	default:
+		break;
+	}
+
+	return -EOPNOTSUPP;
+}
+
+static int pvt_hwmon_read_string(struct device *dev,
+				 enum hwmon_sensor_types type,
+				 u32 attr, int ch, const char **str)
+{
+	if (!pvt_hwmon_channel_is_valid(type, ch))
+		return -EINVAL;
+
+	switch (type) {
+	case hwmon_temp:
+		switch (attr) {
+		case hwmon_temp_label:
+			*str = pvt_info[ch].label;
+			return 0;
+		}
+		break;
+	case hwmon_in:
+		switch (attr) {
+		case hwmon_in_label:
+			*str = pvt_info[PVT_VOLT + ch].label;
+			return 0;
+		}
+		break;
+	default:
+		break;
+	}
+
+	return -EOPNOTSUPP;
+}
+
+static int pvt_hwmon_write(struct device *dev, enum hwmon_sensor_types type,
+			   u32 attr, int ch, long val)
+{
+	struct pvt_hwmon *pvt = dev_get_drvdata(dev);
+
+	if (!pvt_hwmon_channel_is_valid(type, ch))
+		return -EINVAL;
+
+	switch (type) {
+	case hwmon_chip:
+		switch (attr) {
+		case hwmon_chip_update_interval:
+			return pvt_write_timeout(pvt, val);
+		}
+		break;
+	case hwmon_temp:
+		switch (attr) {
+		case hwmon_temp_min:
+			return pvt_write_limit(pvt, ch, true, val);
+		case hwmon_temp_max:
+			return pvt_write_limit(pvt, ch, false, val);
+		case hwmon_temp_offset:
+			return pvt_write_trim(pvt, val);
+		}
+		break;
+	case hwmon_in:
+		switch (attr) {
+		case hwmon_in_min:
+			return pvt_write_limit(pvt, PVT_VOLT + ch, true, val);
+		case hwmon_in_max:
+			return pvt_write_limit(pvt, PVT_VOLT + ch, false, val);
+		}
+		break;
+	default:
+		break;
+	}
+
+	return -EOPNOTSUPP;
+}
+
+static const struct hwmon_ops pvt_hwmon_ops = {
+	.is_visible = pvt_hwmon_is_visible,
+	.read = pvt_hwmon_read,
+	.read_string = pvt_hwmon_read_string,
+	.write = pvt_hwmon_write
+};
+
+static const struct hwmon_chip_info pvt_hwmon_info = {
+	.ops = &pvt_hwmon_ops,
+	.info = pvt_channel_info
+};
+
+static void pvt_clear_data(void *data)
+{
+	struct pvt_hwmon *pvt = data;
+#if !defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
+	int idx;
+
+	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
+		complete_all(&pvt->cache[idx].conversion);
+#endif
+
+	mutex_destroy(&pvt->iface_mtx);
+}
+
+static struct pvt_hwmon *pvt_create_data(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct pvt_hwmon *pvt;
+	int ret, idx;
+
+	pvt = devm_kzalloc(dev, sizeof(*pvt), GFP_KERNEL);
+	if (!pvt)
+		return ERR_PTR(-ENOMEM);
+
+	ret = devm_add_action(dev, pvt_clear_data, pvt);
+	if (ret) {
+		dev_err(dev, "Can't add PVT data clear action\n");
+		return ERR_PTR(ret);
+	}
+
+	pvt->dev = dev;
+	pvt->sensor = PVT_SENSOR_FIRST;
+	mutex_init(&pvt->iface_mtx);
+
+#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
+	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
+		seqlock_init(&pvt->cache[idx].data_seqlock);
+#else
+	for (idx = 0; idx < PVT_SENSORS_NUM; ++idx)
+		init_completion(&pvt->cache[idx].conversion);
+#endif
+
+	return pvt;
+}
+
+static int pvt_request_regs(struct pvt_hwmon *pvt)
+{
+	struct platform_device *pdev = to_platform_device(pvt->dev);
+	struct resource *res;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	if (!res) {
+		dev_err(pvt->dev, "Couldn't find PVT memresource\n");
+		return -EINVAL;
+	}
+
+	pvt->regs = devm_ioremap_resource(pvt->dev, res);
+	if (IS_ERR(pvt->regs)) {
+		dev_err(pvt->dev, "Couldn't map PVT registers\n");
+		return PTR_ERR(pvt->regs);
+	}
+
+	return 0;
+}
+
+static void pvt_disable_clks(void *data)
+{
+	struct pvt_hwmon *pvt = data;
+
+	clk_bulk_disable_unprepare(PVT_CLOCK_NUM, pvt->clks);
+}
+
+static int pvt_request_clks(struct pvt_hwmon *pvt)
+{
+	int ret;
+
+	pvt->clks[PVT_CLOCK_APB].id = "pclk";
+	pvt->clks[PVT_CLOCK_REF].id = "ref";
+
+	ret = devm_clk_bulk_get(pvt->dev, PVT_CLOCK_NUM, pvt->clks);
+	if (ret) {
+		dev_err(pvt->dev, "Couldn't get PVT clocks descriptors\n");
+		return ret;
+	}
+
+	ret = clk_bulk_prepare_enable(PVT_CLOCK_NUM, pvt->clks);
+	if (ret) {
+		dev_err(pvt->dev, "Couldn't enable the PVT clocks\n");
+		return ret;
+	}
+
+	ret = devm_add_action_or_reset(pvt->dev, pvt_disable_clks, pvt);
+	if (ret) {
+		dev_err(pvt->dev, "Can't add PVT clocks disable action\n");
+		return ret;
+	}
+
+	return 0;
+}
+
+static void pvt_init_iface(struct pvt_hwmon *pvt)
+{
+	u32 trim, temp;
+
+	/*
+	 * Make sure all interrupts and controller are disabled so not to
+	 * accidentally have ISR executed before the driver data is fully
+	 * initialized. Clear the IRQ status as well.
+	 */
+	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_ALL, PVT_INTR_ALL);
+	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
+	readl(pvt->regs + PVT_CLR_INTR);
+	readl(pvt->regs + PVT_DATA);
+
+	/* Setup default sensor mode, timeout and temperature trim. */
+	pvt_set_mode(pvt, pvt_info[pvt->sensor].mode);
+	pvt_set_tout(pvt, PVT_TOUT_DEF);
+
+	trim = PVT_TRIM_DEF;
+	if (!of_property_read_u32(pvt->dev->of_node,
+	     "baikal,pvt-temp-offset-millicelsius", &temp))
+		trim = pvt_calc_trim(temp);
+
+	pvt_set_trim(pvt, trim);
+}
+
+static int pvt_request_irq(struct pvt_hwmon *pvt)
+{
+	struct platform_device *pdev = to_platform_device(pvt->dev);
+	int ret;
+
+	pvt->irq = platform_get_irq(pdev, 0);
+	if (pvt->irq < 0)
+		return pvt->irq;
+
+	ret = devm_request_threaded_irq(pvt->dev, pvt->irq,
+					pvt_hard_isr, pvt_soft_isr,
+#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
+					IRQF_SHARED | IRQF_TRIGGER_HIGH |
+					IRQF_ONESHOT,
+#else
+					IRQF_SHARED | IRQF_TRIGGER_HIGH,
+#endif
+					"pvt", pvt);
+	if (ret) {
+		dev_err(pvt->dev, "Couldn't request PVT IRQ\n");
+		return ret;
+	}
+
+	return 0;
+}
+
+static int pvt_create_hwmon(struct pvt_hwmon *pvt)
+{
+	pvt->hwmon = devm_hwmon_device_register_with_info(pvt->dev, "pvt", pvt,
+		&pvt_hwmon_info, NULL);
+	if (IS_ERR(pvt->hwmon)) {
+		dev_err(pvt->dev, "Couldn't create hwmon device\n");
+		return PTR_ERR(pvt->hwmon);
+	}
+
+	return 0;
+}
+
+#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
+
+static void pvt_disable_iface(void *data)
+{
+	struct pvt_hwmon *pvt = data;
+
+	mutex_lock(&pvt->iface_mtx);
+	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, 0);
+	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID,
+		   PVT_INTR_DVALID);
+	mutex_unlock(&pvt->iface_mtx);
+}
+
+static int pvt_enable_iface(struct pvt_hwmon *pvt)
+{
+	int ret;
+
+	ret = devm_add_action(pvt->dev, pvt_disable_iface, pvt);
+	if (ret) {
+		dev_err(pvt->dev, "Can't add PVT disable interface action\n");
+		return ret;
+	}
+
+	/*
+	 * Enable sensors data conversion and IRQ. We need to lock the
+	 * interface mutex since hwmon has just been created and the
+	 * corresponding sysfs files are accessible from user-space,
+	 * which theoretically may cause races.
+	 */
+	mutex_lock(&pvt->iface_mtx);
+	pvt_update(pvt->regs + PVT_INTR_MASK, PVT_INTR_DVALID, 0);
+	pvt_update(pvt->regs + PVT_CTRL, PVT_CTRL_EN, PVT_CTRL_EN);
+	mutex_unlock(&pvt->iface_mtx);
+
+	return 0;
+}
+
+#else /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
+
+static int pvt_enable_iface(struct pvt_hwmon *pvt)
+{
+	return 0;
+}
+
+#endif /* !CONFIG_SENSORS_BT1_PVT_ALARMS */
+
+static int pvt_probe(struct platform_device *pdev)
+{
+	struct pvt_hwmon *pvt;
+	int ret;
+
+	pvt = pvt_create_data(pdev);
+	if (IS_ERR(pvt))
+		return PTR_ERR(pvt);
+
+	ret = pvt_request_regs(pvt);
+	if (ret)
+		return ret;
+
+	ret = pvt_request_clks(pvt);
+	if (ret)
+		return ret;
+
+	pvt_init_iface(pvt);
+
+	ret = pvt_request_irq(pvt);
+	if (ret)
+		return ret;
+
+	ret = pvt_create_hwmon(pvt);
+	if (ret)
+		return ret;
+
+	ret = pvt_enable_iface(pvt);
+	if (ret)
+		return ret;
+
+	return 0;
+}
+
+static const struct of_device_id pvt_of_match[] = {
+	{ .compatible = "baikal,bt1-pvt" },
+	{ }
+};
+MODULE_DEVICE_TABLE(of, pvt_of_match);
+
+static struct platform_driver pvt_driver = {
+	.probe = pvt_probe,
+	.driver = {
+		.name = "bt1-pvt",
+		.of_match_table = pvt_of_match
+	}
+};
+module_platform_driver(pvt_driver);
+
+MODULE_AUTHOR("Maxim Kaurkin <maxim.kaurkin@baikalelectronics.ru>");
+MODULE_DESCRIPTION("Baikal-T1 PVT driver");
+MODULE_LICENSE("GPL v2");
diff --git a/drivers/hwmon/bt1-pvt.h b/drivers/hwmon/bt1-pvt.h
new file mode 100644
index 000000000000..5eac73e94885
--- /dev/null
+++ b/drivers/hwmon/bt1-pvt.h
@@ -0,0 +1,244 @@
+/* SPDX-License-Identifier: GPL-2.0-only */
+/*
+ * Copyright (C) 2020 BAIKAL ELECTRONICS, JSC
+ *
+ * Baikal-T1 Process, Voltage, Temperature sensor driver
+ */
+#ifndef __HWMON_BT1_PVT_H__
+#define __HWMON_BT1_PVT_H__
+
+#include <linux/completion.h>
+#include <linux/hwmon.h>
+#include <linux/kernel.h>
+#include <linux/mutex.h>
+#include <linux/seqlock.h>
+
+/* Baikal-T1 PVT registers and their bitfields */
+#define PVT_CTRL			0x00
+#define PVT_CTRL_EN			BIT(0)
+#define PVT_CTRL_MODE_FLD		1
+#define PVT_CTRL_MODE_MASK		GENMASK(3, PVT_CTRL_MODE_FLD)
+#define PVT_CTRL_MODE_TEMP		0x0
+#define PVT_CTRL_MODE_VOLT		0x1
+#define PVT_CTRL_MODE_LVT		0x2
+#define PVT_CTRL_MODE_HVT		0x4
+#define PVT_CTRL_MODE_SVT		0x6
+#define PVT_CTRL_TRIM_FLD		4
+#define PVT_CTRL_TRIM_MASK		GENMASK(8, PVT_CTRL_TRIM_FLD)
+#define PVT_DATA			0x04
+#define PVT_DATA_VALID			BIT(10)
+#define PVT_DATA_DATA_FLD		0
+#define PVT_DATA_DATA_MASK		GENMASK(9, PVT_DATA_DATA_FLD)
+#define PVT_TTHRES			0x08
+#define PVT_VTHRES			0x0C
+#define PVT_LTHRES			0x10
+#define PVT_HTHRES			0x14
+#define PVT_STHRES			0x18
+#define PVT_THRES_LO_FLD		0
+#define PVT_THRES_LO_MASK		GENMASK(9, PVT_THRES_LO_FLD)
+#define PVT_THRES_HI_FLD		10
+#define PVT_THRES_HI_MASK		GENMASK(19, PVT_THRES_HI_FLD)
+#define PVT_TTIMEOUT			0x1C
+#define PVT_INTR_STAT			0x20
+#define PVT_INTR_MASK			0x24
+#define PVT_RAW_INTR_STAT		0x28
+#define PVT_INTR_DVALID			BIT(0)
+#define PVT_INTR_TTHRES_LO		BIT(1)
+#define PVT_INTR_TTHRES_HI		BIT(2)
+#define PVT_INTR_VTHRES_LO		BIT(3)
+#define PVT_INTR_VTHRES_HI		BIT(4)
+#define PVT_INTR_LTHRES_LO		BIT(5)
+#define PVT_INTR_LTHRES_HI		BIT(6)
+#define PVT_INTR_HTHRES_LO		BIT(7)
+#define PVT_INTR_HTHRES_HI		BIT(8)
+#define PVT_INTR_STHRES_LO		BIT(9)
+#define PVT_INTR_STHRES_HI		BIT(10)
+#define PVT_INTR_ALL			GENMASK(10, 0)
+#define PVT_CLR_INTR			0x2C
+
+/*
+ * PVT sensors-related limits and default values
+ * @PVT_TEMP_MIN: Minimal temperature in millidegrees of Celsius.
+ * @PVT_TEMP_MAX: Maximal temperature in millidegrees of Celsius.
+ * @PVT_TEMP_CHS: Number of temperature hwmon channels.
+ * @PVT_VOLT_MIN: Minimal voltage in mV.
+ * @PVT_VOLT_MAX: Maximal voltage in mV.
+ * @PVT_VOLT_CHS: Number of voltage hwmon channels.
+ * @PVT_DATA_MIN: Minimal PVT raw data value.
+ * @PVT_DATA_MAX: Maximal PVT raw data value.
+ * @PVT_TRIM_MIN: Minimal temperature sensor trim value.
+ * @PVT_TRIM_MAX: Maximal temperature sensor trim value.
+ * @PVT_TRIM_DEF: Default temperature sensor trim value (set a proper value
+ *		  when one is determined for Baikal-T1 SoC).
+ * @PVT_TRIM_TEMP: Maximum temperature encoded by the trim factor.
+ * @PVT_TRIM_STEP: Temperature stride corresponding to the trim value.
+ * @PVT_TOUT_MIN: Minimal timeout between samples in nanoseconds.
+ * @PVT_TOUT_DEF: Default data measurements timeout. In case if alarms are
+ *		  activated the PVT IRQ is enabled to be raised after each
+ *		  conversion in order to have the thresholds checked and the
+ *		  converted value cached. Too frequent conversions may cause
+ *		  the system CPU overload. Lets set the 50ms delay between
+ *		  them by default to prevent this.
+ */
+#define PVT_TEMP_MIN		-48380L
+#define PVT_TEMP_MAX		147438L
+#define PVT_TEMP_CHS		1
+#define PVT_VOLT_MIN		620L
+#define PVT_VOLT_MAX		1168L
+#define PVT_VOLT_CHS		4
+#define PVT_DATA_MIN		0
+#define PVT_DATA_MAX		(PVT_DATA_DATA_MASK >> PVT_DATA_DATA_FLD)
+#define PVT_TRIM_MIN		0
+#define PVT_TRIM_MAX		(PVT_CTRL_TRIM_MASK >> PVT_CTRL_TRIM_FLD)
+#define PVT_TRIM_TEMP		7130
+#define PVT_TRIM_STEP		(PVT_TRIM_TEMP / PVT_TRIM_MAX)
+#define PVT_TRIM_DEF		0
+#define PVT_TOUT_MIN		(NSEC_PER_SEC / 3000)
+#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
+# define PVT_TOUT_DEF		60000
+#else
+# define PVT_TOUT_DEF		0
+#endif
+
+/*
+ * enum pvt_sensor_type - Baikal-T1 PVT sensor types (correspond to each PVT
+ *			  sampling mode)
+ * @PVT_SENSOR*: helpers to traverse the sensors in loops.
+ * @PVT_TEMP: PVT Temperature sensor.
+ * @PVT_VOLT: PVT Voltage sensor.
+ * @PVT_LVT: PVT Low-Voltage threshold sensor.
+ * @PVT_HVT: PVT High-Voltage threshold sensor.
+ * @PVT_SVT: PVT Standard-Voltage threshold sensor.
+ */
+enum pvt_sensor_type {
+	PVT_SENSOR_FIRST,
+	PVT_TEMP = PVT_SENSOR_FIRST,
+	PVT_VOLT,
+	PVT_LVT,
+	PVT_HVT,
+	PVT_SVT,
+	PVT_SENSOR_LAST = PVT_SVT,
+	PVT_SENSORS_NUM
+};
+
+/*
+ * enum pvt_clock_type - Baikal-T1 PVT clocks.
+ * @PVT_CLOCK_APB: APB clock.
+ * @PVT_CLOCK_REF: PVT reference clock.
+ */
+enum pvt_clock_type {
+	PVT_CLOCK_APB,
+	PVT_CLOCK_REF,
+	PVT_CLOCK_NUM
+};
+
+/*
+ * struct pvt_sensor_info - Baikal-T1 PVT sensor informational structure
+ * @channel: Sensor channel ID.
+ * @label: hwmon sensor label.
+ * @mode: PVT mode corresponding to the channel.
+ * @thres_base: upper and lower threshold values of the sensor.
+ * @thres_sts_lo: low threshold status bitfield.
+ * @thres_sts_hi: high threshold status bitfield.
+ * @type: Sensor type.
+ * @attr_min_alarm: Min alarm attribute ID.
+ * @attr_min_alarm: Max alarm attribute ID.
+ */
+struct pvt_sensor_info {
+	int channel;
+	const char *label;
+	u32 mode;
+	unsigned long thres_base;
+	u32 thres_sts_lo;
+	u32 thres_sts_hi;
+	enum hwmon_sensor_types type;
+	u32 attr_min_alarm;
+	u32 attr_max_alarm;
+};
+
+#define PVT_SENSOR_INFO(_ch, _label, _type, _mode, _thres)	\
+	{							\
+		.channel = _ch,					\
+		.label = _label,				\
+		.mode = PVT_CTRL_MODE_ ##_mode,			\
+		.thres_base = PVT_ ##_thres,			\
+		.thres_sts_lo = PVT_INTR_ ##_thres## _LO,	\
+		.thres_sts_hi = PVT_INTR_ ##_thres## _HI,	\
+		.type = _type,					\
+		.attr_min_alarm = _type## _min,			\
+		.attr_max_alarm = _type## _max,			\
+	}
+
+/*
+ * struct pvt_cache - PVT sensors data cache
+ * @data: data cache in raw format.
+ * @thres_sts_lo: low threshold status saved on the previous data conversion.
+ * @thres_sts_hi: high threshold status saved on the previous data conversion.
+ * @data_seqlock: cached data seq-lock.
+ * @conversion: data conversion completion.
+ */
+struct pvt_cache {
+	u32 data;
+#if defined(CONFIG_SENSORS_BT1_PVT_ALARMS)
+	seqlock_t data_seqlock;
+	u32 thres_sts_lo;
+	u32 thres_sts_hi;
+#else
+	struct completion conversion;
+#endif
+};
+
+/*
+ * struct pvt_hwmon - Baikal-T1 PVT private data
+ * @dev: device structure of the PVT platform device.
+ * @hwmon: hwmon device structure.
+ * @regs: pointer to the Baikal-T1 PVT registers region.
+ * @irq: PVT events IRQ number.
+ * @clks: Array of the PVT clocks descriptor (APB/ref clocks).
+ * @ref_clk: Pointer to the reference clocks descriptor.
+ * @iface_mtx: Generic interface mutex (used to lock the alarm registers
+ *	       when the alarms enabled, or the data conversion interface
+ *	       if alarms are disabled).
+ * @sensor: current PVT sensor the data conversion is being performed for.
+ * @cache: data cache descriptor.
+ */
+struct pvt_hwmon {
+	struct device *dev;
+	struct device *hwmon;
+
+	void __iomem *regs;
+	int irq;
+
+	struct clk_bulk_data clks[PVT_CLOCK_NUM];
+
+	struct mutex iface_mtx;
+	enum pvt_sensor_type sensor;
+	struct pvt_cache cache[PVT_SENSORS_NUM];
+};
+
+/*
+ * struct pvt_poly_term - a term descriptor of the PVT data translation
+ *			  polynomial
+ * @deg: degree of the term.
+ * @coef: multiplication factor of the term.
+ * @divider: distributed divider per each degree.
+ * @divider_leftover: divider leftover, which couldn't be redistributed.
+ */
+struct pvt_poly_term {
+	unsigned int deg;
+	long coef;
+	long divider;
+	long divider_leftover;
+};
+
+/*
+ * struct pvt_poly - PVT data translation polynomial descriptor
+ * @total_divider: total data divider.
+ * @terms: polynomial terms up to a free one.
+ */
+struct pvt_poly {
+	long total_divider;
+	struct pvt_poly_term terms[];
+};
+
+#endif /* __HWMON_BT1_PVT_H__ */