IIO: ADC: New driver for AD7792/AD7793 3 Channel SPI ADC

New driver for AD7792/AD7793 3-Channel, Low Noise,
Low Power, 16-/24-Bit Sigma-Delta ADC with On-Chip In-Amp
and Reference.

The AD7792/AD7793 features a dual use data out ready DOUT/RDY output.
In order to avoid contentions on the SPI bus, it's necessary to use
spi bus locking. The DOUT/RDY output must also be wired to an
interrupt capable GPIO.

In INDIO_RING_TRIGGERED mode, this driver may block its SPI bus segment
for an extended period of time.

Changes since V1:

Use bool where applicable.
Use data buffer that lives in their own cache line.
Restructure ad7793_calibrate_all to use an array.
Use msleep.
Query REG_ID instead of doing a write/read This is a test.
Add support for unipolar mode.
Drop range attribute in favor of write scale.
Add proper locking.
Use new validate_trigger callbacks.
Use IIO_IN_DIFF for differential channels.
Change attribute naming.
Use available_scan_masks.
Some other miscellaneous cleanup (none functional changes).

Signed-off-by: Michael Hennerich <michael.hennerich@analog.com>
Acked-by: Jonathan Cameron <jic23@cam.ac.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
This commit is contained in:
Michael Hennerich 2011-06-08 16:12:44 +02:00 committed by Greg Kroah-Hartman
parent 3fd47d4486
commit 88bc30548a
4 changed files with 1109 additions and 0 deletions

View File

@ -130,6 +130,20 @@ config AD7780
To compile this driver as a module, choose M here: the
module will be called ad7780.
config AD7793
tristate "Analog Devices AD7792 AD7793 ADC driver"
depends on SPI
select IIO_RING_BUFFER
select IIO_SW_RING
select IIO_TRIGGER
help
Say yes here to build support for Analog Devices
AD7792 and AD7793 SPI analog to digital convertors (ADC).
If unsure, say N (but it's safe to say "Y").
To compile this driver as a module, choose M here: the
module will be called AD7793.
config AD7745
tristate "Analog Devices AD7745, AD7746 AD7747 capacitive sensor driver"
depends on I2C

View File

@ -35,6 +35,7 @@ obj-$(CONFIG_AD7291) += ad7291.o
obj-$(CONFIG_AD7314) += ad7314.o
obj-$(CONFIG_AD7745) += ad7745.o
obj-$(CONFIG_AD7780) += ad7780.o
obj-$(CONFIG_AD7793) += ad7793.o
obj-$(CONFIG_AD7816) += ad7816.o
obj-$(CONFIG_ADT75) += adt75.o
obj-$(CONFIG_ADT7310) += adt7310.o

View File

@ -0,0 +1,987 @@
/*
* AD7792/AD7793 SPI ADC driver
*
* Copyright 2011 Analog Devices Inc.
*
* Licensed under the GPL-2.
*/
#include <linux/interrupt.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/spi/spi.h>
#include <linux/regulator/consumer.h>
#include <linux/err.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include "../iio.h"
#include "../sysfs.h"
#include "../ring_generic.h"
#include "../ring_sw.h"
#include "../trigger.h"
#include "adc.h"
#include "ad7793.h"
/* NOTE:
* The AD7792/AD7793 features a dual use data out ready DOUT/RDY output.
* In order to avoid contentions on the SPI bus, it's therefore necessary
* to use spi bus locking.
*
* The DOUT/RDY output must also be wired to an interrupt capable GPIO.
*/
struct ad7793_chip_info {
struct iio_chan_spec channel[7];
};
struct ad7793_state {
struct spi_device *spi;
struct iio_trigger *trig;
const struct ad7793_chip_info *chip_info;
struct regulator *reg;
struct ad7793_platform_data *pdata;
wait_queue_head_t wq_data_avail;
bool done;
bool irq_dis;
u16 int_vref_mv;
u16 mode;
u16 conf;
u32 scale_avail[8][2];
u32 available_scan_masks[7];
/*
* DMA (thus cache coherency maintenance) requires the
* transfer buffers to live in their own cache lines.
*/
u8 data[4] ____cacheline_aligned;
};
enum ad7793_supported_device_ids {
ID_AD7792,
ID_AD7793,
};
static int __ad7793_write_reg(struct ad7793_state *st, bool locked,
bool cs_change, unsigned char reg,
unsigned size, unsigned val)
{
u8 *data = st->data;
struct spi_transfer t = {
.tx_buf = data,
.len = size + 1,
.cs_change = cs_change,
};
struct spi_message m;
data[0] = AD7793_COMM_WRITE | AD7793_COMM_ADDR(reg);
switch (size) {
case 3:
data[1] = val >> 16;
data[2] = val >> 8;
data[3] = val;
break;
case 2:
data[1] = val >> 8;
data[2] = val;
break;
case 1:
data[1] = val;
break;
default:
return -EINVAL;
}
spi_message_init(&m);
spi_message_add_tail(&t, &m);
if (locked)
return spi_sync_locked(st->spi, &m);
else
return spi_sync(st->spi, &m);
}
static int ad7793_write_reg(struct ad7793_state *st,
unsigned reg, unsigned size, unsigned val)
{
return __ad7793_write_reg(st, false, false, reg, size, val);
}
static int __ad7793_read_reg(struct ad7793_state *st, bool locked,
bool cs_change, unsigned char reg,
int *val, unsigned size)
{
u8 *data = st->data;
int ret;
struct spi_transfer t[] = {
{
.tx_buf = data,
.len = 1,
}, {
.rx_buf = data,
.len = size,
.cs_change = cs_change,
},
};
struct spi_message m;
data[0] = AD7793_COMM_READ | AD7793_COMM_ADDR(reg);
spi_message_init(&m);
spi_message_add_tail(&t[0], &m);
spi_message_add_tail(&t[1], &m);
if (locked)
ret = spi_sync_locked(st->spi, &m);
else
ret = spi_sync(st->spi, &m);
if (ret < 0)
return ret;
switch (size) {
case 3:
*val = data[0] << 16 | data[1] << 8 | data[2];
break;
case 2:
*val = data[0] << 8 | data[1];
break;
case 1:
*val = data[0];
break;
default:
return -EINVAL;
}
return 0;
}
static int ad7793_read_reg(struct ad7793_state *st,
unsigned reg, int *val, unsigned size)
{
return __ad7793_read_reg(st, 0, 0, reg, val, size);
}
static int ad7793_read(struct ad7793_state *st, unsigned ch,
unsigned len, int *val)
{
int ret;
st->conf = (st->conf & ~AD7793_CONF_CHAN(-1)) | AD7793_CONF_CHAN(ch);
st->mode = (st->mode & ~AD7793_MODE_SEL(-1)) |
AD7793_MODE_SEL(AD7793_MODE_SINGLE);
ad7793_write_reg(st, AD7793_REG_CONF, sizeof(st->conf), st->conf);
spi_bus_lock(st->spi->master);
st->done = false;
ret = __ad7793_write_reg(st, 1, 1, AD7793_REG_MODE,
sizeof(st->mode), st->mode);
if (ret < 0)
goto out;
st->irq_dis = false;
enable_irq(st->spi->irq);
wait_event_interruptible(st->wq_data_avail, st->done);
ret = __ad7793_read_reg(st, 1, 0, AD7793_REG_DATA, val, len);
out:
spi_bus_unlock(st->spi->master);
return ret;
}
static int ad7793_calibrate(struct ad7793_state *st, unsigned mode, unsigned ch)
{
int ret;
st->conf = (st->conf & ~AD7793_CONF_CHAN(-1)) | AD7793_CONF_CHAN(ch);
st->mode = (st->mode & ~AD7793_MODE_SEL(-1)) | AD7793_MODE_SEL(mode);
ad7793_write_reg(st, AD7793_REG_CONF, sizeof(st->conf), st->conf);
spi_bus_lock(st->spi->master);
st->done = false;
ret = __ad7793_write_reg(st, 1, 1, AD7793_REG_MODE,
sizeof(st->mode), st->mode);
if (ret < 0)
goto out;
st->irq_dis = false;
enable_irq(st->spi->irq);
wait_event_interruptible(st->wq_data_avail, st->done);
st->mode = (st->mode & ~AD7793_MODE_SEL(-1)) |
AD7793_MODE_SEL(AD7793_MODE_IDLE);
ret = __ad7793_write_reg(st, 1, 0, AD7793_REG_MODE,
sizeof(st->mode), st->mode);
out:
spi_bus_unlock(st->spi->master);
return ret;
}
static const u8 ad7793_calib_arr[6][2] = {
{AD7793_MODE_CAL_INT_ZERO, AD7793_CH_AIN1P_AIN1M},
{AD7793_MODE_CAL_INT_FULL, AD7793_CH_AIN1P_AIN1M},
{AD7793_MODE_CAL_INT_ZERO, AD7793_CH_AIN2P_AIN2M},
{AD7793_MODE_CAL_INT_FULL, AD7793_CH_AIN2P_AIN2M},
{AD7793_MODE_CAL_INT_ZERO, AD7793_CH_AIN3P_AIN3M},
{AD7793_MODE_CAL_INT_FULL, AD7793_CH_AIN3P_AIN3M}
};
static int ad7793_calibrate_all(struct ad7793_state *st)
{
int i, ret;
for (i = 0; i < ARRAY_SIZE(ad7793_calib_arr); i++) {
ret = ad7793_calibrate(st, ad7793_calib_arr[i][0],
ad7793_calib_arr[i][1]);
if (ret)
goto out;
}
return 0;
out:
dev_err(&st->spi->dev, "Calibration failed\n");
return ret;
}
static int ad7793_setup(struct ad7793_state *st)
{
int i, ret = -1;
unsigned long long scale_uv;
u32 id;
/* reset the serial interface */
ret = spi_write(st->spi, (u8 *)&ret, sizeof(ret));
if (ret < 0)
goto out;
msleep(1); /* Wait for at least 500us */
/* write/read test for device presence */
ret = ad7793_read_reg(st, AD7793_REG_ID, &id, 1);
if (ret)
goto out;
id &= AD7793_ID_MASK;
if (!((id == AD7792_ID) || (id == AD7793_ID))) {
dev_err(&st->spi->dev, "device ID query failed\n");
goto out;
}
st->mode = (st->pdata->mode & ~AD7793_MODE_SEL(-1)) |
AD7793_MODE_SEL(AD7793_MODE_IDLE);
st->conf = st->pdata->conf & ~AD7793_CONF_CHAN(-1);
ret = ad7793_write_reg(st, AD7793_REG_MODE, sizeof(st->mode), st->mode);
if (ret)
goto out;
ret = ad7793_write_reg(st, AD7793_REG_CONF, sizeof(st->conf), st->conf);
if (ret)
goto out;
ret = ad7793_write_reg(st, AD7793_REG_IO,
sizeof(st->pdata->io), st->pdata->io);
if (ret)
goto out;
ret = ad7793_calibrate_all(st);
if (ret)
goto out;
/* Populate available ADC input ranges */
for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++) {
scale_uv = ((u64)st->int_vref_mv * 100000000)
>> (st->chip_info->channel[0].scan_type.realbits -
(!!(st->conf & AD7793_CONF_UNIPOLAR) ? 0 : 1));
scale_uv >>= i;
st->scale_avail[i][1] = do_div(scale_uv, 100000000) * 10;
st->scale_avail[i][0] = scale_uv;
}
return 0;
out:
dev_err(&st->spi->dev, "setup failed\n");
return ret;
}
static int ad7793_scan_from_ring(struct ad7793_state *st, unsigned ch, int *val)
{
struct iio_ring_buffer *ring = iio_priv_to_dev(st)->ring;
int ret;
s64 dat64[2];
u32 *dat32 = (u32 *)dat64;
if (!(ring->scan_mask & (1 << ch)))
return -EBUSY;
ret = ring->access->read_last(ring, (u8 *) &dat64);
if (ret)
return ret;
*val = *dat32;
return 0;
}
static int ad7793_ring_preenable(struct iio_dev *indio_dev)
{
struct ad7793_state *st = iio_priv(indio_dev);
struct iio_ring_buffer *ring = indio_dev->ring;
size_t d_size;
unsigned channel;
if (!ring->scan_count)
return -EINVAL;
channel = __ffs(ring->scan_mask);
d_size = ring->scan_count *
indio_dev->channels[0].scan_type.storagebits / 8;
if (ring->scan_timestamp) {
d_size += sizeof(s64);
if (d_size % sizeof(s64))
d_size += sizeof(s64) - (d_size % sizeof(s64));
}
if (indio_dev->ring->access->set_bytes_per_datum)
indio_dev->ring->access->set_bytes_per_datum(indio_dev->ring,
d_size);
st->mode = (st->mode & ~AD7793_MODE_SEL(-1)) |
AD7793_MODE_SEL(AD7793_MODE_CONT);
st->conf = (st->conf & ~AD7793_CONF_CHAN(-1)) |
AD7793_CONF_CHAN(indio_dev->channels[channel].address);
ad7793_write_reg(st, AD7793_REG_CONF, sizeof(st->conf), st->conf);
spi_bus_lock(st->spi->master);
__ad7793_write_reg(st, 1, 1, AD7793_REG_MODE,
sizeof(st->mode), st->mode);
st->irq_dis = false;
enable_irq(st->spi->irq);
return 0;
}
static int ad7793_ring_postdisable(struct iio_dev *indio_dev)
{
struct ad7793_state *st = iio_priv(indio_dev);
st->mode = (st->mode & ~AD7793_MODE_SEL(-1)) |
AD7793_MODE_SEL(AD7793_MODE_IDLE);
st->done = false;
wait_event_interruptible(st->wq_data_avail, st->done);
if (!st->irq_dis)
disable_irq_nosync(st->spi->irq);
__ad7793_write_reg(st, 1, 0, AD7793_REG_MODE,
sizeof(st->mode), st->mode);
return spi_bus_unlock(st->spi->master);
}
/**
* ad7793_trigger_handler() bh of trigger launched polling to ring buffer
**/
static irqreturn_t ad7793_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->private_data;
struct iio_ring_buffer *ring = indio_dev->ring;
struct ad7793_state *st = iio_priv(indio_dev);
s64 dat64[2];
s32 *dat32 = (s32 *)dat64;
if (ring->scan_count)
__ad7793_read_reg(st, 1, 1, AD7793_REG_DATA,
dat32,
indio_dev->channels[0].scan_type.realbits/8);
/* Guaranteed to be aligned with 8 byte boundary */
if (ring->scan_timestamp)
dat64[1] = pf->timestamp;
ring->access->store_to(ring, (u8 *)dat64, pf->timestamp);
iio_trigger_notify_done(indio_dev->trig);
st->irq_dis = false;
enable_irq(st->spi->irq);
return IRQ_HANDLED;
}
static const struct iio_ring_setup_ops ad7793_ring_setup_ops = {
.preenable = &ad7793_ring_preenable,
.postenable = &iio_triggered_ring_postenable,
.predisable = &iio_triggered_ring_predisable,
.postdisable = &ad7793_ring_postdisable,
};
static int ad7793_register_ring_funcs_and_init(struct iio_dev *indio_dev)
{
int ret;
indio_dev->ring = iio_sw_rb_allocate(indio_dev);
if (!indio_dev->ring) {
ret = -ENOMEM;
goto error_ret;
}
/* Effectively select the ring buffer implementation */
indio_dev->ring->access = &ring_sw_access_funcs;
indio_dev->pollfunc = iio_alloc_pollfunc(&iio_pollfunc_store_time,
&ad7793_trigger_handler,
IRQF_ONESHOT,
indio_dev,
"ad7793_consumer%d",
indio_dev->id);
if (indio_dev->pollfunc == NULL) {
ret = -ENOMEM;
goto error_deallocate_sw_rb;
}
/* Ring buffer functions - here trigger setup related */
indio_dev->ring->setup_ops = &ad7793_ring_setup_ops;
/* Flag that polled ring buffering is possible */
indio_dev->modes |= INDIO_RING_TRIGGERED;
return 0;
error_deallocate_sw_rb:
iio_sw_rb_free(indio_dev->ring);
error_ret:
return ret;
}
static void ad7793_ring_cleanup(struct iio_dev *indio_dev)
{
/* ensure that the trigger has been detached */
if (indio_dev->trig) {
iio_put_trigger(indio_dev->trig);
iio_trigger_dettach_poll_func(indio_dev->trig,
indio_dev->pollfunc);
}
iio_dealloc_pollfunc(indio_dev->pollfunc);
iio_sw_rb_free(indio_dev->ring);
}
/**
* ad7793_data_rdy_trig_poll() the event handler for the data rdy trig
**/
static irqreturn_t ad7793_data_rdy_trig_poll(int irq, void *private)
{
struct ad7793_state *st = iio_priv(private);
st->done = true;
wake_up_interruptible(&st->wq_data_avail);
disable_irq_nosync(irq);
st->irq_dis = true;
iio_trigger_poll(st->trig, iio_get_time_ns());
return IRQ_HANDLED;
}
static int ad7793_probe_trigger(struct iio_dev *indio_dev)
{
struct ad7793_state *st = iio_priv(indio_dev);
int ret;
st->trig = iio_allocate_trigger("%s-dev%d",
spi_get_device_id(st->spi)->name,
indio_dev->id);
if (st->trig == NULL) {
ret = -ENOMEM;
goto error_ret;
}
ret = request_irq(st->spi->irq,
ad7793_data_rdy_trig_poll,
IRQF_TRIGGER_LOW,
spi_get_device_id(st->spi)->name,
indio_dev);
if (ret)
goto error_free_trig;
disable_irq_nosync(st->spi->irq);
st->irq_dis = true;
st->trig->dev.parent = &st->spi->dev;
st->trig->owner = THIS_MODULE;
st->trig->private_data = indio_dev;
ret = iio_trigger_register(st->trig);
/* select default trigger */
indio_dev->trig = st->trig;
if (ret)
goto error_free_irq;
return 0;
error_free_irq:
free_irq(st->spi->irq, indio_dev);
error_free_trig:
iio_free_trigger(st->trig);
error_ret:
return ret;
}
static void ad7793_remove_trigger(struct iio_dev *indio_dev)
{
struct ad7793_state *st = iio_priv(indio_dev);
iio_trigger_unregister(st->trig);
free_irq(st->spi->irq, indio_dev);
iio_free_trigger(st->trig);
}
static const u16 sample_freq_avail[16] = {0, 470, 242, 123, 62, 50, 39, 33, 19,
17, 16, 12, 10, 8, 6, 4};
static ssize_t ad7793_read_frequency(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct ad7793_state *st = iio_priv(indio_dev);
return sprintf(buf, "%d\n",
sample_freq_avail[AD7793_MODE_RATE(st->mode)]);
}
static ssize_t ad7793_write_frequency(struct device *dev,
struct device_attribute *attr,
const char *buf,
size_t len)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct ad7793_state *st = iio_priv(indio_dev);
long lval;
int i, ret;
mutex_lock(&indio_dev->mlock);
if (iio_ring_enabled(indio_dev)) {
mutex_unlock(&indio_dev->mlock);
return -EBUSY;
}
mutex_unlock(&indio_dev->mlock);
ret = strict_strtol(buf, 10, &lval);
if (ret)
return ret;
ret = -EINVAL;
for (i = 0; i < ARRAY_SIZE(sample_freq_avail); i++)
if (lval == sample_freq_avail[i]) {
mutex_lock(&indio_dev->mlock);
st->mode &= ~AD7793_MODE_RATE(-1);
st->mode |= AD7793_MODE_RATE(i);
ad7793_write_reg(st, AD7793_REG_MODE,
sizeof(st->mode), st->mode);
mutex_unlock(&indio_dev->mlock);
ret = 0;
}
return ret ? ret : len;
}
static IIO_DEV_ATTR_SAMP_FREQ(S_IWUSR | S_IRUGO,
ad7793_read_frequency,
ad7793_write_frequency);
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
"470 242 123 62 50 39 33 19 17 16 12 10 8 6 4");
static ssize_t ad7793_show_scale_available(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct ad7793_state *st = iio_priv(indio_dev);
int i, len = 0;
for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
len += sprintf(buf + len, "%d.%09u ", st->scale_avail[i][0],
st->scale_avail[i][1]);
len += sprintf(buf + len, "\n");
return len;
}
static IIO_DEVICE_ATTR_NAMED(in_m_in_scale_available, in-in_scale_available,
S_IRUGO, ad7793_show_scale_available, NULL, 0);
static struct attribute *ad7793_attributes[] = {
&iio_dev_attr_sampling_frequency.dev_attr.attr,
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
&iio_dev_attr_in_m_in_scale_available.dev_attr.attr,
NULL
};
static const struct attribute_group ad7793_attribute_group = {
.attrs = ad7793_attributes,
};
static int ad7793_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long m)
{
struct ad7793_state *st = iio_priv(indio_dev);
int ret, smpl = 0;
unsigned long long scale_uv;
bool unipolar = !!(st->conf & AD7793_CONF_UNIPOLAR);
switch (m) {
case 0:
mutex_lock(&indio_dev->mlock);
if (iio_ring_enabled(indio_dev))
ret = ad7793_scan_from_ring(st,
chan->scan_index, &smpl);
else
ret = ad7793_read(st, chan->address,
chan->scan_type.realbits / 8, &smpl);
mutex_unlock(&indio_dev->mlock);
if (ret < 0)
return ret;
*val = (smpl >> chan->scan_type.shift) &
((1 << (chan->scan_type.realbits)) - 1);
if (!unipolar)
*val -= (1 << (chan->scan_type.realbits - 1));
return IIO_VAL_INT;
case (1 << IIO_CHAN_INFO_SCALE_SHARED):
*val = st->scale_avail[(st->conf >> 8) & 0x7][0];
*val2 = st->scale_avail[(st->conf >> 8) & 0x7][1];
return IIO_VAL_INT_PLUS_NANO;
case (1 << IIO_CHAN_INFO_SCALE_SEPARATE):
switch (chan->type) {
case IIO_IN:
/* 1170mV / 2^23 * 6 */
scale_uv = (1170ULL * 100000000ULL * 6ULL)
>> (chan->scan_type.realbits -
(unipolar ? 0 : 1));
break;
case IIO_TEMP:
/* Always uses unity gain and internal ref */
scale_uv = (2500ULL * 100000000ULL)
>> (chan->scan_type.realbits -
(unipolar ? 0 : 1));
break;
default:
return -EINVAL;
}
*val2 = do_div(scale_uv, 100000000) * 10;
*val = scale_uv;
return IIO_VAL_INT_PLUS_NANO;
}
return -EINVAL;
}
static int ad7793_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val,
int val2,
long mask)
{
struct ad7793_state *st = iio_priv(indio_dev);
int ret, i;
unsigned int tmp;
mutex_lock(&indio_dev->mlock);
if (iio_ring_enabled(indio_dev)) {
mutex_unlock(&indio_dev->mlock);
return -EBUSY;
}
switch (mask) {
case (1 << IIO_CHAN_INFO_SCALE_SHARED):
ret = -EINVAL;
for (i = 0; i < ARRAY_SIZE(st->scale_avail); i++)
if (val2 == st->scale_avail[i][1]) {
tmp = st->conf;
st->conf &= ~AD7793_CONF_GAIN(-1);
st->conf |= AD7793_CONF_GAIN(i);
if (tmp != st->conf) {
ad7793_write_reg(st, AD7793_REG_CONF,
sizeof(st->conf),
st->conf);
ad7793_calibrate_all(st);
}
ret = 0;
}
default:
ret = -EINVAL;
}
mutex_unlock(&indio_dev->mlock);
return ret;
}
static int ad7793_validate_trigger(struct iio_dev *indio_dev,
struct iio_trigger *trig)
{
if (indio_dev->trig != trig)
return -EINVAL;
return 0;
}
static int ad7793_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
long mask)
{
return IIO_VAL_INT_PLUS_NANO;
}
static const struct iio_info ad7793_info = {
.read_raw = &ad7793_read_raw,
.write_raw = &ad7793_write_raw,
.write_raw_get_fmt = &ad7793_write_raw_get_fmt,
.attrs = &ad7793_attribute_group,
.validate_trigger = ad7793_validate_trigger,
.driver_module = THIS_MODULE,
};
static const struct ad7793_chip_info ad7793_chip_info_tbl[] = {
[ID_AD7793] = {
.channel[0] = IIO_CHAN(IIO_IN_DIFF, 0, 1, 0, NULL, 0, 0,
(1 << IIO_CHAN_INFO_SCALE_SHARED),
AD7793_CH_AIN1P_AIN1M,
0, IIO_ST('s', 24, 32, 0), 0),
.channel[1] = IIO_CHAN(IIO_IN_DIFF, 0, 1, 0, NULL, 1, 1,
(1 << IIO_CHAN_INFO_SCALE_SHARED),
AD7793_CH_AIN2P_AIN2M,
1, IIO_ST('s', 24, 32, 0), 0),
.channel[2] = IIO_CHAN(IIO_IN_DIFF, 0, 1, 0, NULL, 2, 2,
(1 << IIO_CHAN_INFO_SCALE_SHARED),
AD7793_CH_AIN3P_AIN3M,
2, IIO_ST('s', 24, 32, 0), 0),
.channel[3] = IIO_CHAN(IIO_IN_DIFF, 0, 1, 0, "shorted", 0, 0,
(1 << IIO_CHAN_INFO_SCALE_SHARED),
AD7793_CH_AIN1M_AIN1M,
3, IIO_ST('s', 24, 32, 0), 0),
.channel[4] = IIO_CHAN(IIO_TEMP, 0, 1, 0, NULL, 0, 0,
(1 << IIO_CHAN_INFO_SCALE_SEPARATE),
AD7793_CH_TEMP,
4, IIO_ST('s', 24, 32, 0), 0),
.channel[5] = IIO_CHAN(IIO_IN, 0, 1, 0, "supply", 4, 0,
(1 << IIO_CHAN_INFO_SCALE_SEPARATE),
AD7793_CH_AVDD_MONITOR,
5, IIO_ST('s', 24, 32, 0), 0),
.channel[6] = IIO_CHAN_SOFT_TIMESTAMP(6),
},
[ID_AD7792] = {
.channel[0] = IIO_CHAN(IIO_IN_DIFF, 0, 1, 0, NULL, 0, 0,
(1 << IIO_CHAN_INFO_SCALE_SHARED),
AD7793_CH_AIN1P_AIN1M,
0, IIO_ST('s', 16, 32, 0), 0),
.channel[1] = IIO_CHAN(IIO_IN_DIFF, 0, 1, 0, NULL, 1, 1,
(1 << IIO_CHAN_INFO_SCALE_SHARED),
AD7793_CH_AIN2P_AIN2M,
1, IIO_ST('s', 16, 32, 0), 0),
.channel[2] = IIO_CHAN(IIO_IN_DIFF, 0, 1, 0, NULL, 2, 2,
(1 << IIO_CHAN_INFO_SCALE_SHARED),
AD7793_CH_AIN3P_AIN3M,
2, IIO_ST('s', 16, 32, 0), 0),
.channel[3] = IIO_CHAN(IIO_IN_DIFF, 0, 1, 0, "shorted", 0, 0,
(1 << IIO_CHAN_INFO_SCALE_SHARED),
AD7793_CH_AIN1M_AIN1M,
3, IIO_ST('s', 16, 32, 0), 0),
.channel[4] = IIO_CHAN(IIO_TEMP, 0, 1, 0, NULL, 0, 0,
(1 << IIO_CHAN_INFO_SCALE_SEPARATE),
AD7793_CH_TEMP,
4, IIO_ST('s', 16, 32, 0), 0),
.channel[5] = IIO_CHAN(IIO_IN, 0, 1, 0, "supply", 4, 0,
(1 << IIO_CHAN_INFO_SCALE_SEPARATE),
AD7793_CH_AVDD_MONITOR,
5, IIO_ST('s', 16, 32, 0), 0),
.channel[6] = IIO_CHAN_SOFT_TIMESTAMP(6),
},
};
static int __devinit ad7793_probe(struct spi_device *spi)
{
struct ad7793_platform_data *pdata = spi->dev.platform_data;
struct ad7793_state *st;
struct iio_dev *indio_dev;
int ret, i, voltage_uv = 0, regdone = 0;
if (!pdata) {
dev_err(&spi->dev, "no platform data?\n");
return -ENODEV;
}
if (!spi->irq) {
dev_err(&spi->dev, "no IRQ?\n");
return -ENODEV;
}
indio_dev = iio_allocate_device(sizeof(*st));
if (indio_dev == NULL)
return -ENOMEM;
st = iio_priv(indio_dev);
st->reg = regulator_get(&spi->dev, "vcc");
if (!IS_ERR(st->reg)) {
ret = regulator_enable(st->reg);
if (ret)
goto error_put_reg;
voltage_uv = regulator_get_voltage(st->reg);
}
st->chip_info =
&ad7793_chip_info_tbl[spi_get_device_id(spi)->driver_data];
st->pdata = pdata;
if (pdata && pdata->vref_mv)
st->int_vref_mv = pdata->vref_mv;
else if (voltage_uv)
st->int_vref_mv = voltage_uv / 1000;
else
st->int_vref_mv = 2500; /* Build-in ref */
spi_set_drvdata(spi, indio_dev);
st->spi = spi;
indio_dev->dev.parent = &spi->dev;
indio_dev->name = spi_get_device_id(spi)->name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = st->chip_info->channel;
indio_dev->available_scan_masks = st->available_scan_masks;
indio_dev->num_channels = 7;
indio_dev->info = &ad7793_info;
for (i = 0; i < indio_dev->num_channels; i++)
st->available_scan_masks[i] = (1 << i) | (1 <<
indio_dev->channels[indio_dev->num_channels - 1].
scan_index);
init_waitqueue_head(&st->wq_data_avail);
ret = ad7793_register_ring_funcs_and_init(indio_dev);
if (ret)
goto error_disable_reg;
ret = iio_device_register(indio_dev);
if (ret)
goto error_unreg_ring;
regdone = 1;
ret = ad7793_probe_trigger(indio_dev);
if (ret)
goto error_unreg_ring;
ret = iio_ring_buffer_register_ex(indio_dev->ring, 0,
indio_dev->channels,
indio_dev->num_channels);
if (ret)
goto error_remove_trigger;
ret = ad7793_setup(st);
if (ret)
goto error_uninitialize_ring;
return 0;
error_uninitialize_ring:
iio_ring_buffer_unregister(indio_dev->ring);
error_remove_trigger:
ad7793_remove_trigger(indio_dev);
error_unreg_ring:
ad7793_ring_cleanup(indio_dev);
error_disable_reg:
if (!IS_ERR(st->reg))
regulator_disable(st->reg);
error_put_reg:
if (!IS_ERR(st->reg))
regulator_put(st->reg);
if (regdone)
iio_device_unregister(indio_dev);
else
iio_free_device(indio_dev);
return ret;
}
static int ad7793_remove(struct spi_device *spi)
{
struct iio_dev *indio_dev = spi_get_drvdata(spi);
struct ad7793_state *st = iio_priv(indio_dev);
iio_ring_buffer_unregister(indio_dev->ring);
ad7793_remove_trigger(indio_dev);
ad7793_ring_cleanup(indio_dev);
if (!IS_ERR(st->reg)) {
regulator_disable(st->reg);
regulator_put(st->reg);
}
iio_device_unregister(indio_dev);
return 0;
}
static const struct spi_device_id ad7793_id[] = {
{"ad7792", ID_AD7792},
{"ad7793", ID_AD7793},
{}
};
static struct spi_driver ad7793_driver = {
.driver = {
.name = "ad7793",
.bus = &spi_bus_type,
.owner = THIS_MODULE,
},
.probe = ad7793_probe,
.remove = __devexit_p(ad7793_remove),
.id_table = ad7793_id,
};
static int __init ad7793_init(void)
{
return spi_register_driver(&ad7793_driver);
}
module_init(ad7793_init);
static void __exit ad7793_exit(void)
{
spi_unregister_driver(&ad7793_driver);
}
module_exit(ad7793_exit);
MODULE_AUTHOR("Michael Hennerich <hennerich@blackfin.uclinux.org>");
MODULE_DESCRIPTION("Analog Devices AD7792/3 ADC");
MODULE_LICENSE("GPL v2");

View File

@ -0,0 +1,107 @@
/*
* AD7792/AD7793 SPI ADC driver
*
* Copyright 2011 Analog Devices Inc.
*
* Licensed under the GPL-2.
*/
#ifndef IIO_ADC_AD7793_H_
#define IIO_ADC_AD7793_H_
/*
* TODO: struct ad7793_platform_data needs to go into include/linux/iio
*/
/* Registers */
#define AD7793_REG_COMM 0 /* Communications Register (WO, 8-bit) */
#define AD7793_REG_STAT 0 /* Status Register (RO, 8-bit) */
#define AD7793_REG_MODE 1 /* Mode Register (RW, 16-bit */
#define AD7793_REG_CONF 2 /* Configuration Register (RW, 16-bit) */
#define AD7793_REG_DATA 3 /* Data Register (RO, 16-/24-bit) */
#define AD7793_REG_ID 4 /* ID Register (RO, 8-bit) */
#define AD7793_REG_IO 5 /* IO Register (RO, 8-bit) */
#define AD7793_REG_OFFSET 6 /* Offset Register (RW, 16-bit
* (AD7792)/24-bit (AD7793)) */
#define AD7793_REG_FULLSALE 7 /* Full-Scale Register
* (RW, 16-bit (AD7792)/24-bit (AD7793)) */
/* Communications Register Bit Designations (AD7793_REG_COMM) */
#define AD7793_COMM_WEN (1 << 7) /* Write Enable */
#define AD7793_COMM_WRITE (0 << 6) /* Write Operation */
#define AD7793_COMM_READ (1 << 6) /* Read Operation */
#define AD7793_COMM_ADDR(x) (((x) & 0x7) << 3) /* Register Address */
#define AD7793_COMM_CREAD (1 << 2) /* Continuous Read of Data Register */
/* Status Register Bit Designations (AD7793_REG_STAT) */
#define AD7793_STAT_RDY (1 << 7) /* Ready */
#define AD7793_STAT_ERR (1 << 6) /* Error (Overrange, Underrange) */
#define AD7793_STAT_CH3 (1 << 2) /* Channel 3 */
#define AD7793_STAT_CH2 (1 << 1) /* Channel 2 */
#define AD7793_STAT_CH1 (1 << 0) /* Channel 1 */
/* Mode Register Bit Designations (AD7793_REG_MODE) */
#define AD7793_MODE_SEL(x) (((x) & 0x7) << 13) /* Operation Mode Select */
#define AD7793_MODE_CLKSRC(x) (((x) & 0x3) << 6) /* ADC Clock Source Select */
#define AD7793_MODE_RATE(x) ((x) & 0xF) /* Filter Update Rate Select */
#define AD7793_MODE_CONT 0 /* Continuous Conversion Mode */
#define AD7793_MODE_SINGLE 1 /* Single Conversion Mode */
#define AD7793_MODE_IDLE 2 /* Idle Mode */
#define AD7793_MODE_PWRDN 3 /* Power-Down Mode */
#define AD7793_MODE_CAL_INT_ZERO 4 /* Internal Zero-Scale Calibration */
#define AD7793_MODE_CAL_INT_FULL 5 /* Internal Full-Scale Calibration */
#define AD7793_MODE_CAL_SYS_ZERO 6 /* System Zero-Scale Calibration */
#define AD7793_MODE_CAL_SYS_FULL 7 /* System Full-Scale Calibration */
#define AD7793_CLK_INT 0 /* Internal 64 kHz Clock not
* available at the CLK pin */
#define AD7793_CLK_INT_CO 1 /* Internal 64 kHz Clock available
* at the CLK pin */
#define AD7793_CLK_EXT 2 /* External 64 kHz Clock */
#define AD7793_CLK_EXT_DIV2 3 /* External Clock divided by 2 */
/* Configuration Register Bit Designations (AD7793_REG_CONF) */
#define AD7793_CONF_VBIAS(x) (((x) & 0x3) << 14) /* Bias Voltage
* Generator Enable */
#define AD7793_CONF_BO_EN (1 << 13) /* Burnout Current Enable */
#define AD7793_CONF_UNIPOLAR (1 << 12) /* Unipolar/Bipolar Enable */
#define AD7793_CONF_BOOST (1 << 11) /* Boost Enable */
#define AD7793_CONF_GAIN(x) (((x) & 0x7) << 8) /* Gain Select */
#define AD7793_CONF_REFSEL (1 << 7) /* INT/EXT Reference Select */
#define AD7793_CONF_BUF (1 << 4) /* Buffered Mode Enable */
#define AD7793_CONF_CHAN(x) ((x) & 0x7) /* Channel select */
#define AD7793_CH_AIN1P_AIN1M 0 /* AIN1(+) - AIN1(-) */
#define AD7793_CH_AIN2P_AIN2M 1 /* AIN2(+) - AIN2(-) */
#define AD7793_CH_AIN3P_AIN3M 2 /* AIN3(+) - AIN3(-) */
#define AD7793_CH_AIN1M_AIN1M 3 /* AIN1(-) - AIN1(-) */
#define AD7793_CH_TEMP 6 /* Temp Sensor */
#define AD7793_CH_AVDD_MONITOR 7 /* AVDD Monitor */
/* ID Register Bit Designations (AD7793_REG_ID) */
#define AD7792_ID 0xA
#define AD7793_ID 0xB
#define AD7793_ID_MASK 0xF
/* IO (Excitation Current Sources) Register Bit Designations (AD7793_REG_IO) */
#define AD7793_IO_IEXC1_IOUT1_IEXC2_IOUT2 0 /* IEXC1 connect to IOUT1,
* IEXC2 connect to IOUT2 */
#define AD7793_IO_IEXC1_IOUT2_IEXC2_IOUT1 1 /* IEXC1 connect to IOUT2,
* IEXC2 connect to IOUT1 */
#define AD7793_IO_IEXC1_IEXC2_IOUT1 2 /* Both current sources
* IEXC1,2 connect to IOUT1 */
#define AD7793_IO_IEXC1_IEXC2_IOUT2 3 /* Both current sources
* IEXC1,2 connect to IOUT2 */
#define AD7793_IO_IXCEN_10uA (1 << 0) /* Excitation Current 10uA */
#define AD7793_IO_IXCEN_210uA (2 << 0) /* Excitation Current 210uA */
#define AD7793_IO_IXCEN_1mA (3 << 0) /* Excitation Current 1mA */
struct ad7793_platform_data {
u16 vref_mv;
u16 mode;
u16 conf;
u8 io;
};
#endif /* IIO_ADC_AD7793_H_ */