KVM: x86/mmu: Handle page fault for private memory
Add support for resolving page faults on guest private memory for VMs that differentiate between "shared" and "private" memory. For such VMs, KVM_MEM_GUEST_MEMFD memslots can include both fd-based private memory and hva-based shared memory, and KVM needs to map in the "correct" variant, i.e. KVM needs to map the gfn shared/private as appropriate based on the current state of the gfn's KVM_MEMORY_ATTRIBUTE_PRIVATE flag. For AMD's SEV-SNP and Intel's TDX, the guest effectively gets to request shared vs. private via a bit in the guest page tables, i.e. what the guest wants may conflict with the current memory attributes. To support such "implicit" conversion requests, exit to user with KVM_EXIT_MEMORY_FAULT to forward the request to userspace. Add a new flag for memory faults, KVM_MEMORY_EXIT_FLAG_PRIVATE, to communicate whether the guest wants to map memory as shared vs. private. Like KVM_MEMORY_ATTRIBUTE_PRIVATE, use bit 3 for flagging private memory so that KVM can use bits 0-2 for capturing RWX behavior if/when userspace needs such information, e.g. a likely user of KVM_EXIT_MEMORY_FAULT is to exit on missing mappings when handling guest page fault VM-Exits. In that case, userspace will want to know RWX information in order to correctly/precisely resolve the fault. Note, private memory *must* be backed by guest_memfd, i.e. shared mappings always come from the host userspace page tables, and private mappings always come from a guest_memfd instance. Co-developed-by: Yu Zhang <yu.c.zhang@linux.intel.com> Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com> Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com> Co-developed-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Fuad Tabba <tabba@google.com> Tested-by: Fuad Tabba <tabba@google.com> Message-Id: <20231027182217.3615211-21-seanjc@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
parent
90b4fe1798
commit
8dd2eee9d5
@ -6952,6 +6952,7 @@ spec refer, https://github.com/riscv/riscv-sbi-doc.
|
||||
|
||||
/* KVM_EXIT_MEMORY_FAULT */
|
||||
struct {
|
||||
#define KVM_MEMORY_EXIT_FLAG_PRIVATE (1ULL << 3)
|
||||
__u64 flags;
|
||||
__u64 gpa;
|
||||
__u64 size;
|
||||
@ -6960,8 +6961,11 @@ spec refer, https://github.com/riscv/riscv-sbi-doc.
|
||||
KVM_EXIT_MEMORY_FAULT indicates the vCPU has encountered a memory fault that
|
||||
could not be resolved by KVM. The 'gpa' and 'size' (in bytes) describe the
|
||||
guest physical address range [gpa, gpa + size) of the fault. The 'flags' field
|
||||
describes properties of the faulting access that are likely pertinent.
|
||||
Currently, no flags are defined.
|
||||
describes properties of the faulting access that are likely pertinent:
|
||||
|
||||
- KVM_MEMORY_EXIT_FLAG_PRIVATE - When set, indicates the memory fault occurred
|
||||
on a private memory access. When clear, indicates the fault occurred on a
|
||||
shared access.
|
||||
|
||||
Note! KVM_EXIT_MEMORY_FAULT is unique among all KVM exit reasons in that it
|
||||
accompanies a return code of '-1', not '0'! errno will always be set to EFAULT
|
||||
|
@ -3147,9 +3147,9 @@ out:
|
||||
return level;
|
||||
}
|
||||
|
||||
int kvm_mmu_max_mapping_level(struct kvm *kvm,
|
||||
const struct kvm_memory_slot *slot, gfn_t gfn,
|
||||
int max_level)
|
||||
static int __kvm_mmu_max_mapping_level(struct kvm *kvm,
|
||||
const struct kvm_memory_slot *slot,
|
||||
gfn_t gfn, int max_level, bool is_private)
|
||||
{
|
||||
struct kvm_lpage_info *linfo;
|
||||
int host_level;
|
||||
@ -3161,6 +3161,9 @@ int kvm_mmu_max_mapping_level(struct kvm *kvm,
|
||||
break;
|
||||
}
|
||||
|
||||
if (is_private)
|
||||
return max_level;
|
||||
|
||||
if (max_level == PG_LEVEL_4K)
|
||||
return PG_LEVEL_4K;
|
||||
|
||||
@ -3168,6 +3171,16 @@ int kvm_mmu_max_mapping_level(struct kvm *kvm,
|
||||
return min(host_level, max_level);
|
||||
}
|
||||
|
||||
int kvm_mmu_max_mapping_level(struct kvm *kvm,
|
||||
const struct kvm_memory_slot *slot, gfn_t gfn,
|
||||
int max_level)
|
||||
{
|
||||
bool is_private = kvm_slot_can_be_private(slot) &&
|
||||
kvm_mem_is_private(kvm, gfn);
|
||||
|
||||
return __kvm_mmu_max_mapping_level(kvm, slot, gfn, max_level, is_private);
|
||||
}
|
||||
|
||||
void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
|
||||
{
|
||||
struct kvm_memory_slot *slot = fault->slot;
|
||||
@ -3188,8 +3201,9 @@ void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault
|
||||
* Enforce the iTLB multihit workaround after capturing the requested
|
||||
* level, which will be used to do precise, accurate accounting.
|
||||
*/
|
||||
fault->req_level = kvm_mmu_max_mapping_level(vcpu->kvm, slot,
|
||||
fault->gfn, fault->max_level);
|
||||
fault->req_level = __kvm_mmu_max_mapping_level(vcpu->kvm, slot,
|
||||
fault->gfn, fault->max_level,
|
||||
fault->is_private);
|
||||
if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
|
||||
return;
|
||||
|
||||
@ -4269,6 +4283,55 @@ void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
|
||||
kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true, NULL);
|
||||
}
|
||||
|
||||
static inline u8 kvm_max_level_for_order(int order)
|
||||
{
|
||||
BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G);
|
||||
|
||||
KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) &&
|
||||
order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) &&
|
||||
order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K));
|
||||
|
||||
if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G))
|
||||
return PG_LEVEL_1G;
|
||||
|
||||
if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
|
||||
return PG_LEVEL_2M;
|
||||
|
||||
return PG_LEVEL_4K;
|
||||
}
|
||||
|
||||
static void kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
|
||||
struct kvm_page_fault *fault)
|
||||
{
|
||||
kvm_prepare_memory_fault_exit(vcpu, fault->gfn << PAGE_SHIFT,
|
||||
PAGE_SIZE, fault->write, fault->exec,
|
||||
fault->is_private);
|
||||
}
|
||||
|
||||
static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu,
|
||||
struct kvm_page_fault *fault)
|
||||
{
|
||||
int max_order, r;
|
||||
|
||||
if (!kvm_slot_can_be_private(fault->slot)) {
|
||||
kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
|
||||
return -EFAULT;
|
||||
}
|
||||
|
||||
r = kvm_gmem_get_pfn(vcpu->kvm, fault->slot, fault->gfn, &fault->pfn,
|
||||
&max_order);
|
||||
if (r) {
|
||||
kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
|
||||
return r;
|
||||
}
|
||||
|
||||
fault->max_level = min(kvm_max_level_for_order(max_order),
|
||||
fault->max_level);
|
||||
fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY);
|
||||
|
||||
return RET_PF_CONTINUE;
|
||||
}
|
||||
|
||||
static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
|
||||
{
|
||||
struct kvm_memory_slot *slot = fault->slot;
|
||||
@ -4301,6 +4364,14 @@ static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault
|
||||
return RET_PF_EMULATE;
|
||||
}
|
||||
|
||||
if (fault->is_private != kvm_mem_is_private(vcpu->kvm, fault->gfn)) {
|
||||
kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
|
||||
return -EFAULT;
|
||||
}
|
||||
|
||||
if (fault->is_private)
|
||||
return kvm_faultin_pfn_private(vcpu, fault);
|
||||
|
||||
async = false;
|
||||
fault->pfn = __gfn_to_pfn_memslot(slot, fault->gfn, false, false, &async,
|
||||
fault->write, &fault->map_writable,
|
||||
@ -7188,6 +7259,26 @@ void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
|
||||
}
|
||||
|
||||
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
|
||||
bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
|
||||
struct kvm_gfn_range *range)
|
||||
{
|
||||
/*
|
||||
* Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only
|
||||
* supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM
|
||||
* can simply ignore such slots. But if userspace is making memory
|
||||
* PRIVATE, then KVM must prevent the guest from accessing the memory
|
||||
* as shared. And if userspace is making memory SHARED and this point
|
||||
* is reached, then at least one page within the range was previously
|
||||
* PRIVATE, i.e. the slot's possible hugepage ranges are changing.
|
||||
* Zapping SPTEs in this case ensures KVM will reassess whether or not
|
||||
* a hugepage can be used for affected ranges.
|
||||
*/
|
||||
if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
|
||||
return false;
|
||||
|
||||
return kvm_unmap_gfn_range(kvm, range);
|
||||
}
|
||||
|
||||
static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
|
||||
int level)
|
||||
{
|
||||
|
@ -201,6 +201,7 @@ struct kvm_page_fault {
|
||||
|
||||
/* Derived from mmu and global state. */
|
||||
const bool is_tdp;
|
||||
const bool is_private;
|
||||
const bool nx_huge_page_workaround_enabled;
|
||||
|
||||
/*
|
||||
|
@ -2357,14 +2357,18 @@ static inline void kvm_account_pgtable_pages(void *virt, int nr)
|
||||
#define KVM_DIRTY_RING_MAX_ENTRIES 65536
|
||||
|
||||
static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
|
||||
gpa_t gpa, gpa_t size)
|
||||
gpa_t gpa, gpa_t size,
|
||||
bool is_write, bool is_exec,
|
||||
bool is_private)
|
||||
{
|
||||
vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
|
||||
vcpu->run->memory_fault.gpa = gpa;
|
||||
vcpu->run->memory_fault.size = size;
|
||||
|
||||
/* Flags are not (yet) defined or communicated to userspace. */
|
||||
/* RWX flags are not (yet) defined or communicated to userspace. */
|
||||
vcpu->run->memory_fault.flags = 0;
|
||||
if (is_private)
|
||||
vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
|
||||
|
@ -535,6 +535,7 @@ struct kvm_run {
|
||||
} notify;
|
||||
/* KVM_EXIT_MEMORY_FAULT */
|
||||
struct {
|
||||
#define KVM_MEMORY_EXIT_FLAG_PRIVATE (1ULL << 3)
|
||||
__u64 flags;
|
||||
__u64 gpa;
|
||||
__u64 size;
|
||||
|
Loading…
Reference in New Issue
Block a user