staging: drop kpc2000 driver

It seems that the old developer is no longer with the company producing
this device, and the company has no plans on getting this out of the
staging directory at all, so let's drop the driver for now as it's
pretty much abandonded.

If someone want to support this and get it out of staging, we can easily
revert this change and bring it back.

Cc: Matt Sickler <matt.sickler@msk4.com>
Link: https://lore.kernel.org/r/20210610183153.2397760-1-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Greg Kroah-Hartman 2021-06-10 20:31:53 +02:00
parent c57f4f002b
commit 922a0524f7
20 changed files with 0 additions and 3714 deletions

View File

@ -98,8 +98,6 @@ source "drivers/staging/axis-fifo/Kconfig"
source "drivers/staging/fieldbus/Kconfig"
source "drivers/staging/kpc2000/Kconfig"
source "drivers/staging/qlge/Kconfig"
source "drivers/staging/wfx/Kconfig"

View File

@ -39,7 +39,6 @@ obj-$(CONFIG_DMA_RALINK) += ralink-gdma/
obj-$(CONFIG_SOC_MT7621) += mt7621-dts/
obj-$(CONFIG_XIL_AXIS_FIFO) += axis-fifo/
obj-$(CONFIG_FIELDBUS_DEV) += fieldbus/
obj-$(CONFIG_KPC2000) += kpc2000/
obj-$(CONFIG_QLGE) += qlge/
obj-$(CONFIG_WFX) += wfx/
obj-y += hikey9xx/

View File

@ -1,59 +0,0 @@
# SPDX-License-Identifier: GPL-2.0
config KPC2000
bool "Daktronics KPC Device support"
select MFD_CORE
depends on PCI
depends on UIO
help
Select this if you wish to use the Daktronics KPC PCI devices
If unsure, say N.
config KPC2000_CORE
tristate "Daktronics KPC PCI UIO device"
depends on KPC2000
help
Say Y here if you wish to support the Daktronics KPC PCI
device in UIO mode.
To compile this driver as a module, choose M here: the module
will be called kpc2000
If unsure, say N.
config KPC2000_SPI
tristate "Daktronics KPC SPI device"
depends on KPC2000 && SPI
help
Say Y here if you wish to support the Daktronics KPC PCI
device in SPI mode.
To compile this driver as a module, choose M here: the module
will be called kpc2000_spi
If unsure, say N.
config KPC2000_I2C
tristate "Daktronics KPC I2C device"
depends on KPC2000 && I2C
help
Say Y here if you wish to support the Daktronics KPC PCI
device in I2C mode.
To compile this driver as a module, choose M here: the module
will be called kpc2000_i2c
If unsure, say N.
config KPC2000_DMA
tristate "Daktronics KPC DMA controller"
depends on KPC2000
help
Say Y here if you wish to support the Daktronics DMA controller.
To compile this driver as a module, choose M here: the module
will be called kpc2000_dma
If unsure, say N.

View File

@ -1,6 +0,0 @@
# SPDX-License-Identifier: GPL-2.0
obj-$(CONFIG_KPC2000) += kpc2000/
obj-$(CONFIG_KPC2000_I2C) += kpc2000_i2c.o
obj-$(CONFIG_KPC2000_SPI) += kpc2000_spi.o
obj-$(CONFIG_KPC2000_DMA) += kpc_dma/

View File

@ -1,2 +0,0 @@
- the kpc_spi driver doesn't seem to let multiple transactions (to different instances of the core) happen in parallel...
- The kpc_i2c driver is a hot mess, it should probably be cleaned up a ton. It functions against current hardware though.

View File

@ -1,23 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0+ */
#ifndef KPC_H_
#define KPC_H_
/* ***** Driver Names ***** */
#define KP_DRIVER_NAME_KP2000 "kp2000"
#define KP_DRIVER_NAME_INVALID "kpc_invalid"
#define KP_DRIVER_NAME_DMA_CONTROLLER "kpc_nwl_dma"
#define KP_DRIVER_NAME_UIO "uio_pdrv_genirq"
#define KP_DRIVER_NAME_I2C "kpc_i2c"
#define KP_DRIVER_NAME_SPI "kpc_spi"
struct kpc_core_device_platdata {
u32 card_id;
u32 build_version;
u32 hardware_revision;
u64 ssid;
u64 ddna;
};
#define PCI_DEVICE_ID_DAKTRONICS_KADOKA_P2KR0 0x4b03
#endif /* KPC_H_ */

View File

@ -1,4 +0,0 @@
# SPDX-License-Identifier: GPL-2.0
obj-m := kpc2000.o
kpc2000-objs += core.o cell_probe.o

View File

@ -1,548 +0,0 @@
// SPDX-License-Identifier: GPL-2.0+
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/types.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/mfd/core.h>
#include <linux/platform_device.h>
#include <linux/ioport.h>
#include <linux/uio_driver.h>
#include "pcie.h"
/* Core (Resource) Table Layout:
* one Resource per record (8 bytes)
* 6 5 4 3 2 1 0
* 3210987654321098765432109876543210987654321098765432109876543210
* IIIIIIIIIIII Core Type [up to 4095 types]
* D S2C DMA Present
* DDD S2C DMA Channel Number [up to 8 channels]
* LLLLLLLLLLLLLLLL Register Count (64-bit registers) [up to 65535 registers]
* OOOOOOOOOOOOOOOO Core Offset (in 4kB blocks) [up to 65535 cores]
* D C2S DMA Present
* DDD C2S DMA Channel Number [up to 8 channels]
* II IRQ Count [0 to 3 IRQs per core]
* 1111111000
* IIIIIII IRQ Base Number [up to 128 IRQs per card]
* ___ Spare
*
*/
#define KPC_OLD_DMA_CH_NUM(present, channel) \
((present) ? (0x8 | ((channel) & 0x7)) : 0)
#define KPC_OLD_S2C_DMA_CH_NUM(cte) \
KPC_OLD_DMA_CH_NUM(cte.s2c_dma_present, cte.s2c_dma_channel_num)
#define KPC_OLD_C2S_DMA_CH_NUM(cte) \
KPC_OLD_DMA_CH_NUM(cte.c2s_dma_present, cte.c2s_dma_channel_num)
#define KP_CORE_ID_INVALID 0
#define KP_CORE_ID_I2C 3
#define KP_CORE_ID_SPI 5
struct core_table_entry {
u16 type;
u32 offset;
u32 length;
bool s2c_dma_present;
u8 s2c_dma_channel_num;
bool c2s_dma_present;
u8 c2s_dma_channel_num;
u8 irq_count;
u8 irq_base_num;
};
static
void parse_core_table_entry_v0(struct core_table_entry *cte, const u64 read_val)
{
cte->type = ((read_val & 0xFFF0000000000000UL) >> 52);
cte->offset = ((read_val & 0x00000000FFFF0000UL) >> 16) * 4096;
cte->length = ((read_val & 0x0000FFFF00000000UL) >> 32) * 8;
cte->s2c_dma_present = ((read_val & 0x0008000000000000UL) >> 51);
cte->s2c_dma_channel_num = ((read_val & 0x0007000000000000UL) >> 48);
cte->c2s_dma_present = ((read_val & 0x0000000000008000UL) >> 15);
cte->c2s_dma_channel_num = ((read_val & 0x0000000000007000UL) >> 12);
cte->irq_count = ((read_val & 0x0000000000000C00UL) >> 10);
cte->irq_base_num = ((read_val & 0x00000000000003F8UL) >> 3);
}
static
void dbg_cte(struct kp2000_device *pcard, struct core_table_entry *cte)
{
dev_dbg(&pcard->pdev->dev,
"CTE: type:%3d offset:%3d (%3d) length:%3d (%3d) s2c:%d c2s:%d irq_count:%d base_irq:%d\n",
cte->type,
cte->offset,
cte->offset / 4096,
cte->length,
cte->length / 8,
(cte->s2c_dma_present ? cte->s2c_dma_channel_num : -1),
(cte->c2s_dma_present ? cte->c2s_dma_channel_num : -1),
cte->irq_count,
cte->irq_base_num
);
}
static
void parse_core_table_entry(struct core_table_entry *cte, const u64 read_val, const u8 entry_rev)
{
switch (entry_rev) {
case 0:
parse_core_table_entry_v0(cte, read_val);
break;
default:
cte->type = 0;
break;
}
}
static int probe_core_basic(unsigned int core_num, struct kp2000_device *pcard,
char *name, const struct core_table_entry cte)
{
struct mfd_cell cell = { .id = core_num, .name = name };
struct resource resources[2];
struct kpc_core_device_platdata core_pdata = {
.card_id = pcard->card_id,
.build_version = pcard->build_version,
.hardware_revision = pcard->hardware_revision,
.ssid = pcard->ssid,
.ddna = pcard->ddna,
};
dev_dbg(&pcard->pdev->dev,
"Found Basic core: type = %02d dma = %02x / %02x offset = 0x%x length = 0x%x (%d regs)\n",
cte.type,
KPC_OLD_S2C_DMA_CH_NUM(cte),
KPC_OLD_C2S_DMA_CH_NUM(cte),
cte.offset,
cte.length,
cte.length / 8);
cell.platform_data = &core_pdata;
cell.pdata_size = sizeof(struct kpc_core_device_platdata);
cell.num_resources = 2;
memset(&resources, 0, sizeof(resources));
resources[0].start = cte.offset;
resources[0].end = cte.offset + (cte.length - 1);
resources[0].flags = IORESOURCE_MEM;
resources[1].start = pcard->pdev->irq;
resources[1].end = pcard->pdev->irq;
resources[1].flags = IORESOURCE_IRQ;
cell.resources = resources;
return mfd_add_devices(PCARD_TO_DEV(pcard), // parent
pcard->card_num * 100, // id
&cell, // struct mfd_cell *
1, // ndevs
&pcard->regs_base_resource,
0, // irq_base
NULL); // struct irq_domain *
}
struct kpc_uio_device {
struct list_head list;
struct kp2000_device *pcard;
struct device *dev;
struct uio_info uioinfo;
struct core_table_entry cte;
u16 core_num;
};
static ssize_t offset_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct kpc_uio_device *kudev = dev_get_drvdata(dev);
return sprintf(buf, "%u\n", kudev->cte.offset);
}
static DEVICE_ATTR_RO(offset);
static ssize_t size_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct kpc_uio_device *kudev = dev_get_drvdata(dev);
return sprintf(buf, "%u\n", kudev->cte.length);
}
static DEVICE_ATTR_RO(size);
static ssize_t type_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct kpc_uio_device *kudev = dev_get_drvdata(dev);
return sprintf(buf, "%u\n", kudev->cte.type);
}
static DEVICE_ATTR_RO(type);
static ssize_t s2c_dma_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct kpc_uio_device *kudev = dev_get_drvdata(dev);
if (!kudev->cte.s2c_dma_present)
return sprintf(buf, "%s", "not present\n");
return sprintf(buf, "%u\n", kudev->cte.s2c_dma_channel_num);
}
static DEVICE_ATTR_RO(s2c_dma);
static ssize_t c2s_dma_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct kpc_uio_device *kudev = dev_get_drvdata(dev);
if (!kudev->cte.c2s_dma_present)
return sprintf(buf, "%s", "not present\n");
return sprintf(buf, "%u\n", kudev->cte.c2s_dma_channel_num);
}
static DEVICE_ATTR_RO(c2s_dma);
static ssize_t irq_count_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct kpc_uio_device *kudev = dev_get_drvdata(dev);
return sprintf(buf, "%u\n", kudev->cte.irq_count);
}
static DEVICE_ATTR_RO(irq_count);
static ssize_t irq_base_num_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct kpc_uio_device *kudev = dev_get_drvdata(dev);
return sprintf(buf, "%u\n", kudev->cte.irq_base_num);
}
static DEVICE_ATTR_RO(irq_base_num);
static ssize_t core_num_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct kpc_uio_device *kudev = dev_get_drvdata(dev);
return sprintf(buf, "%u\n", kudev->core_num);
}
static DEVICE_ATTR_RO(core_num);
struct attribute *kpc_uio_class_attrs[] = {
&dev_attr_offset.attr,
&dev_attr_size.attr,
&dev_attr_type.attr,
&dev_attr_s2c_dma.attr,
&dev_attr_c2s_dma.attr,
&dev_attr_irq_count.attr,
&dev_attr_irq_base_num.attr,
&dev_attr_core_num.attr,
NULL,
};
static
int kp2000_check_uio_irq(struct kp2000_device *pcard, u32 irq_num)
{
u64 interrupt_active = readq(pcard->sysinfo_regs_base + REG_INTERRUPT_ACTIVE);
u64 interrupt_mask_inv = ~readq(pcard->sysinfo_regs_base + REG_INTERRUPT_MASK);
u64 irq_check_mask = BIT_ULL(irq_num);
if (interrupt_active & irq_check_mask) { // if it's active (interrupt pending)
if (interrupt_mask_inv & irq_check_mask) { // and if it's not masked off
return 1;
}
}
return 0;
}
static
irqreturn_t kuio_handler(int irq, struct uio_info *uioinfo)
{
struct kpc_uio_device *kudev = uioinfo->priv;
if (irq != kudev->pcard->pdev->irq)
return IRQ_NONE;
if (kp2000_check_uio_irq(kudev->pcard, kudev->cte.irq_base_num)) {
/* Clear the active flag */
writeq(BIT_ULL(kudev->cte.irq_base_num),
kudev->pcard->sysinfo_regs_base + REG_INTERRUPT_ACTIVE);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static
int kuio_irqcontrol(struct uio_info *uioinfo, s32 irq_on)
{
struct kpc_uio_device *kudev = uioinfo->priv;
struct kp2000_device *pcard = kudev->pcard;
u64 mask;
mutex_lock(&pcard->sem);
mask = readq(pcard->sysinfo_regs_base + REG_INTERRUPT_MASK);
if (irq_on)
mask &= ~(BIT_ULL(kudev->cte.irq_base_num));
else
mask |= BIT_ULL(kudev->cte.irq_base_num);
writeq(mask, pcard->sysinfo_regs_base + REG_INTERRUPT_MASK);
mutex_unlock(&pcard->sem);
return 0;
}
static int probe_core_uio(unsigned int core_num, struct kp2000_device *pcard,
char *name, const struct core_table_entry cte)
{
struct kpc_uio_device *kudev;
int rv;
dev_dbg(&pcard->pdev->dev,
"Found UIO core: type = %02d dma = %02x / %02x offset = 0x%x length = 0x%x (%d regs)\n",
cte.type,
KPC_OLD_S2C_DMA_CH_NUM(cte),
KPC_OLD_C2S_DMA_CH_NUM(cte),
cte.offset,
cte.length,
cte.length / 8);
kudev = kzalloc(sizeof(*kudev), GFP_KERNEL);
if (!kudev)
return -ENOMEM;
INIT_LIST_HEAD(&kudev->list);
kudev->pcard = pcard;
kudev->cte = cte;
kudev->core_num = core_num;
kudev->uioinfo.priv = kudev;
kudev->uioinfo.name = name;
kudev->uioinfo.version = "0.0";
if (cte.irq_count > 0) {
kudev->uioinfo.irq_flags = IRQF_SHARED;
kudev->uioinfo.irq = pcard->pdev->irq;
kudev->uioinfo.handler = kuio_handler;
kudev->uioinfo.irqcontrol = kuio_irqcontrol;
} else {
kudev->uioinfo.irq = 0;
}
kudev->uioinfo.mem[0].name = "uiomap";
kudev->uioinfo.mem[0].addr = pci_resource_start(pcard->pdev, REG_BAR) + cte.offset;
// Round up to nearest PAGE_SIZE boundary
kudev->uioinfo.mem[0].size = (cte.length + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
kudev->uioinfo.mem[0].memtype = UIO_MEM_PHYS;
kudev->dev = device_create(kpc_uio_class,
&pcard->pdev->dev, MKDEV(0, 0), kudev, "%s.%d.%d.%d",
kudev->uioinfo.name, pcard->card_num, cte.type, kudev->core_num);
if (IS_ERR(kudev->dev)) {
dev_err(&pcard->pdev->dev, "%s: device_create failed!\n",
__func__);
kfree(kudev);
return -ENODEV;
}
dev_set_drvdata(kudev->dev, kudev);
rv = uio_register_device(kudev->dev, &kudev->uioinfo);
if (rv) {
dev_err(&pcard->pdev->dev, "%s: failed uio_register_device: %d\n",
__func__, rv);
put_device(kudev->dev);
kfree(kudev);
return rv;
}
list_add_tail(&kudev->list, &pcard->uio_devices_list);
return 0;
}
static int create_dma_engine_core(struct kp2000_device *pcard,
size_t engine_regs_offset,
int engine_num, int irq_num)
{
struct mfd_cell cell = { .id = engine_num };
struct resource resources[2];
cell.platform_data = NULL;
cell.pdata_size = 0;
cell.name = KP_DRIVER_NAME_DMA_CONTROLLER;
cell.num_resources = 2;
memset(&resources, 0, sizeof(resources));
resources[0].start = engine_regs_offset;
resources[0].end = engine_regs_offset + (KPC_DMA_ENGINE_SIZE - 1);
resources[0].flags = IORESOURCE_MEM;
resources[1].start = irq_num;
resources[1].end = irq_num;
resources[1].flags = IORESOURCE_IRQ;
cell.resources = resources;
return mfd_add_devices(PCARD_TO_DEV(pcard), // parent
pcard->card_num * 100, // id
&cell, // struct mfd_cell *
1, // ndevs
&pcard->dma_base_resource,
0, // irq_base
NULL); // struct irq_domain *
}
static int kp2000_setup_dma_controller(struct kp2000_device *pcard)
{
int err;
unsigned int i;
u64 capabilities_reg;
// S2C Engines
for (i = 0 ; i < 32 ; i++) {
capabilities_reg = readq(pcard->dma_bar_base +
KPC_DMA_S2C_BASE_OFFSET +
(KPC_DMA_ENGINE_SIZE * i));
if (capabilities_reg & ENGINE_CAP_PRESENT_MASK) {
err = create_dma_engine_core(pcard, (KPC_DMA_S2C_BASE_OFFSET +
(KPC_DMA_ENGINE_SIZE * i)),
i, pcard->pdev->irq);
if (err)
goto err_out;
}
}
// C2S Engines
for (i = 0 ; i < 32 ; i++) {
capabilities_reg = readq(pcard->dma_bar_base +
KPC_DMA_C2S_BASE_OFFSET +
(KPC_DMA_ENGINE_SIZE * i));
if (capabilities_reg & ENGINE_CAP_PRESENT_MASK) {
err = create_dma_engine_core(pcard, (KPC_DMA_C2S_BASE_OFFSET +
(KPC_DMA_ENGINE_SIZE * i)),
32 + i, pcard->pdev->irq);
if (err)
goto err_out;
}
}
return 0;
err_out:
dev_err(&pcard->pdev->dev, "%s: failed to add a DMA Engine: %d\n",
__func__, err);
return err;
}
int kp2000_probe_cores(struct kp2000_device *pcard)
{
int err = 0;
int i;
int current_type_id;
u64 read_val;
unsigned int highest_core_id = 0;
struct core_table_entry cte;
err = kp2000_setup_dma_controller(pcard);
if (err)
return err;
INIT_LIST_HEAD(&pcard->uio_devices_list);
// First, iterate the core table looking for the highest CORE_ID
for (i = 0 ; i < pcard->core_table_length ; i++) {
read_val = readq(pcard->sysinfo_regs_base + ((pcard->core_table_offset + i) * 8));
parse_core_table_entry(&cte, read_val, pcard->core_table_rev);
dbg_cte(pcard, &cte);
if (cte.type > highest_core_id)
highest_core_id = cte.type;
if (cte.type == KP_CORE_ID_INVALID)
dev_info(&pcard->pdev->dev, "Found Invalid core: %016llx\n", read_val);
}
// Then, iterate over the possible core types.
for (current_type_id = 1 ; current_type_id <= highest_core_id ; current_type_id++) {
unsigned int core_num = 0;
/*
* Foreach core type, iterate the whole table and instantiate
* subdevices for each core.
* Yes, this is O(n*m) but the actual runtime is small enough
* that it's an acceptable tradeoff.
*/
for (i = 0 ; i < pcard->core_table_length ; i++) {
read_val = readq(pcard->sysinfo_regs_base +
((pcard->core_table_offset + i) * 8));
parse_core_table_entry(&cte, read_val, pcard->core_table_rev);
if (cte.type != current_type_id)
continue;
switch (cte.type) {
case KP_CORE_ID_I2C:
err = probe_core_basic(core_num, pcard,
KP_DRIVER_NAME_I2C, cte);
break;
case KP_CORE_ID_SPI:
err = probe_core_basic(core_num, pcard,
KP_DRIVER_NAME_SPI, cte);
break;
default:
err = probe_core_uio(core_num, pcard, "kpc_uio", cte);
break;
}
if (err) {
dev_err(&pcard->pdev->dev,
"%s: failed to add core %d: %d\n",
__func__, i, err);
goto error;
}
core_num++;
}
}
// Finally, instantiate a UIO device for the core_table.
cte.type = 0; // CORE_ID_BOARD_INFO
cte.offset = 0; // board info is always at the beginning
cte.length = 512 * 8;
cte.s2c_dma_present = false;
cte.s2c_dma_channel_num = 0;
cte.c2s_dma_present = false;
cte.c2s_dma_channel_num = 0;
cte.irq_count = 0;
cte.irq_base_num = 0;
err = probe_core_uio(0, pcard, "kpc_uio", cte);
if (err) {
dev_err(&pcard->pdev->dev, "%s: failed to add board_info core: %d\n",
__func__, err);
goto error;
}
return 0;
error:
kp2000_remove_cores(pcard);
mfd_remove_devices(PCARD_TO_DEV(pcard));
return err;
}
void kp2000_remove_cores(struct kp2000_device *pcard)
{
struct list_head *ptr;
struct list_head *next;
list_for_each_safe(ptr, next, &pcard->uio_devices_list) {
struct kpc_uio_device *kudev = list_entry(ptr, struct kpc_uio_device, list);
uio_unregister_device(&kudev->uioinfo);
device_unregister(kudev->dev);
list_del(&kudev->list);
kfree(kudev);
}
}

View File

@ -1,565 +0,0 @@
// SPDX-License-Identifier: GPL-2.0+
#include <linux/kernel.h>
#include <linux/idr.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/types.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/cdev.h>
#include <linux/rwsem.h>
#include <linux/uaccess.h>
#include <linux/io.h>
#include <linux/mfd/core.h>
#include <linux/platform_device.h>
#include <linux/ioport.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/device.h>
#include <linux/sched.h>
#include <linux/jiffies.h>
#include "pcie.h"
#include "uapi.h"
static DEFINE_IDA(card_num_ida);
/*******************************************************
* SysFS Attributes
******************************************************/
static ssize_t ssid_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct kp2000_device *pcard = dev_get_drvdata(dev);
return sprintf(buf, "%016llx\n", pcard->ssid);
}
static DEVICE_ATTR_RO(ssid);
static ssize_t ddna_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct kp2000_device *pcard = dev_get_drvdata(dev);
return sprintf(buf, "%016llx\n", pcard->ddna);
}
static DEVICE_ATTR_RO(ddna);
static ssize_t card_id_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct kp2000_device *pcard = dev_get_drvdata(dev);
return sprintf(buf, "%08x\n", pcard->card_id);
}
static DEVICE_ATTR_RO(card_id);
static ssize_t hw_rev_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct kp2000_device *pcard = dev_get_drvdata(dev);
return sprintf(buf, "%08x\n", pcard->hardware_revision);
}
static DEVICE_ATTR_RO(hw_rev);
static ssize_t build_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct kp2000_device *pcard = dev_get_drvdata(dev);
return sprintf(buf, "%08x\n", pcard->build_version);
}
static DEVICE_ATTR_RO(build);
static ssize_t build_date_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct kp2000_device *pcard = dev_get_drvdata(dev);
return sprintf(buf, "%08x\n", pcard->build_datestamp);
}
static DEVICE_ATTR_RO(build_date);
static ssize_t build_time_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct kp2000_device *pcard = dev_get_drvdata(dev);
return sprintf(buf, "%08x\n", pcard->build_timestamp);
}
static DEVICE_ATTR_RO(build_time);
static ssize_t cpld_reg_show(struct device *dev, struct device_attribute *attr,
char *buf)
{
struct kp2000_device *pcard = dev_get_drvdata(dev);
u64 val;
val = readq(pcard->sysinfo_regs_base + REG_CPLD_CONFIG);
return sprintf(buf, "%016llx\n", val);
}
static DEVICE_ATTR_RO(cpld_reg);
static ssize_t cpld_reconfigure(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct kp2000_device *pcard = dev_get_drvdata(dev);
unsigned long wr_val;
int rv;
rv = kstrtoul(buf, 0, &wr_val);
if (rv < 0)
return rv;
if (wr_val > 7)
return -EINVAL;
wr_val = wr_val << 8;
wr_val |= 0x1; // Set the "Configure Go" bit
writeq(wr_val, pcard->sysinfo_regs_base + REG_CPLD_CONFIG);
return count;
}
static DEVICE_ATTR(cpld_reconfigure, 0220, NULL, cpld_reconfigure);
static ssize_t irq_mask_reg_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct kp2000_device *pcard = dev_get_drvdata(dev);
u64 val;
val = readq(pcard->sysinfo_regs_base + REG_INTERRUPT_MASK);
return sprintf(buf, "%016llx\n", val);
}
static DEVICE_ATTR_RO(irq_mask_reg);
static ssize_t irq_active_reg_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct kp2000_device *pcard = dev_get_drvdata(dev);
u64 val;
val = readq(pcard->sysinfo_regs_base + REG_INTERRUPT_ACTIVE);
return sprintf(buf, "%016llx\n", val);
}
static DEVICE_ATTR_RO(irq_active_reg);
static ssize_t pcie_error_count_reg_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct kp2000_device *pcard = dev_get_drvdata(dev);
u64 val;
val = readq(pcard->sysinfo_regs_base + REG_PCIE_ERROR_COUNT);
return sprintf(buf, "%016llx\n", val);
}
static DEVICE_ATTR_RO(pcie_error_count_reg);
static ssize_t core_table_offset_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct kp2000_device *pcard = dev_get_drvdata(dev);
return sprintf(buf, "%08x\n", pcard->core_table_offset);
}
static DEVICE_ATTR_RO(core_table_offset);
static ssize_t core_table_length_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct kp2000_device *pcard = dev_get_drvdata(dev);
return sprintf(buf, "%08x\n", pcard->core_table_length);
}
static DEVICE_ATTR_RO(core_table_length);
static const struct attribute *kp_attr_list[] = {
&dev_attr_ssid.attr,
&dev_attr_ddna.attr,
&dev_attr_card_id.attr,
&dev_attr_hw_rev.attr,
&dev_attr_build.attr,
&dev_attr_build_date.attr,
&dev_attr_build_time.attr,
&dev_attr_cpld_reg.attr,
&dev_attr_cpld_reconfigure.attr,
&dev_attr_irq_mask_reg.attr,
&dev_attr_irq_active_reg.attr,
&dev_attr_pcie_error_count_reg.attr,
&dev_attr_core_table_offset.attr,
&dev_attr_core_table_length.attr,
NULL,
};
/*******************************************************
* Functions
******************************************************/
static void wait_and_read_ssid(struct kp2000_device *pcard)
{
u64 read_val = readq(pcard->sysinfo_regs_base + REG_FPGA_SSID);
unsigned long timeout;
if (read_val & 0x8000000000000000UL) {
pcard->ssid = read_val;
return;
}
timeout = jiffies + (HZ * 2);
do {
read_val = readq(pcard->sysinfo_regs_base + REG_FPGA_SSID);
if (read_val & 0x8000000000000000UL) {
pcard->ssid = read_val;
return;
}
cpu_relax();
//schedule();
} while (time_before(jiffies, timeout));
dev_notice(&pcard->pdev->dev, "SSID didn't show up!\n");
// Timed out waiting for the SSID to show up, stick all zeros in the
// value
pcard->ssid = 0;
}
static int read_system_regs(struct kp2000_device *pcard)
{
u64 read_val;
read_val = readq(pcard->sysinfo_regs_base + REG_MAGIC_NUMBER);
if (read_val != KP2000_MAGIC_VALUE) {
dev_err(&pcard->pdev->dev,
"Invalid magic! Got: 0x%016llx Want: 0x%016llx\n",
read_val, KP2000_MAGIC_VALUE);
return -EILSEQ;
}
read_val = readq(pcard->sysinfo_regs_base + REG_CARD_ID_AND_BUILD);
pcard->card_id = (read_val & 0xFFFFFFFF00000000UL) >> 32;
pcard->build_version = (read_val & 0x00000000FFFFFFFFUL) >> 0;
read_val = readq(pcard->sysinfo_regs_base + REG_DATE_AND_TIME_STAMPS);
pcard->build_datestamp = (read_val & 0xFFFFFFFF00000000UL) >> 32;
pcard->build_timestamp = (read_val & 0x00000000FFFFFFFFUL) >> 0;
read_val = readq(pcard->sysinfo_regs_base + REG_CORE_TABLE_OFFSET);
pcard->core_table_length = (read_val & 0xFFFFFFFF00000000UL) >> 32;
pcard->core_table_offset = (read_val & 0x00000000FFFFFFFFUL) >> 0;
wait_and_read_ssid(pcard);
read_val = readq(pcard->sysinfo_regs_base + REG_FPGA_HW_ID);
pcard->core_table_rev = (read_val & 0x0000000000000F00) >> 8;
pcard->hardware_revision = (read_val & 0x000000000000001F);
read_val = readq(pcard->sysinfo_regs_base + REG_FPGA_DDNA);
pcard->ddna = read_val;
dev_info(&pcard->pdev->dev,
"system_regs: %08x %08x %08x %08x %02x %d %d %016llx %016llx\n",
pcard->card_id,
pcard->build_version,
pcard->build_datestamp,
pcard->build_timestamp,
pcard->hardware_revision,
pcard->core_table_rev,
pcard->core_table_length,
pcard->ssid,
pcard->ddna);
if (pcard->core_table_rev > 1) {
dev_err(&pcard->pdev->dev,
"core table entry revision is higher than we can deal with, cannot continue with this card!\n");
return 1;
}
return 0;
}
static irqreturn_t kp2000_irq_handler(int irq, void *dev_id)
{
struct kp2000_device *pcard = dev_id;
writel(KPC_DMA_CARD_IRQ_ENABLE |
KPC_DMA_CARD_USER_INTERRUPT_MODE |
KPC_DMA_CARD_USER_INTERRUPT_ACTIVE,
pcard->dma_common_regs);
return IRQ_HANDLED;
}
static int kp2000_pcie_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
int err = 0;
struct kp2000_device *pcard;
unsigned long reg_bar_phys_addr;
unsigned long reg_bar_phys_len;
unsigned long dma_bar_phys_addr;
unsigned long dma_bar_phys_len;
u16 regval;
pcard = kzalloc(sizeof(*pcard), GFP_KERNEL);
if (!pcard)
return -ENOMEM;
dev_dbg(&pdev->dev, "probe: allocated struct kp2000_device @ %p\n",
pcard);
err = ida_simple_get(&card_num_ida, 1, INT_MAX, GFP_KERNEL);
if (err < 0) {
dev_err(&pdev->dev, "probe: failed to get card number (%d)\n",
err);
goto err_free_pcard;
}
pcard->card_num = err;
scnprintf(pcard->name, 16, "kpcard%u", pcard->card_num);
mutex_init(&pcard->sem);
mutex_lock(&pcard->sem);
pcard->pdev = pdev;
pci_set_drvdata(pdev, pcard);
err = pci_enable_device(pcard->pdev);
if (err) {
dev_err(&pcard->pdev->dev,
"probe: failed to enable PCIE2000 PCIe device (%d)\n",
err);
goto err_remove_ida;
}
/* Setup the Register BAR */
reg_bar_phys_addr = pci_resource_start(pcard->pdev, REG_BAR);
reg_bar_phys_len = pci_resource_len(pcard->pdev, REG_BAR);
pcard->regs_bar_base = ioremap(reg_bar_phys_addr, PAGE_SIZE);
if (!pcard->regs_bar_base) {
dev_err(&pcard->pdev->dev,
"probe: REG_BAR could not remap memory to virtual space\n");
err = -ENODEV;
goto err_disable_device;
}
dev_dbg(&pcard->pdev->dev,
"probe: REG_BAR virt hardware address start [%p]\n",
pcard->regs_bar_base);
err = pci_request_region(pcard->pdev, REG_BAR, KP_DRIVER_NAME_KP2000);
if (err) {
dev_err(&pcard->pdev->dev,
"probe: failed to acquire PCI region (%d)\n",
err);
err = -ENODEV;
goto err_unmap_regs;
}
pcard->regs_base_resource.start = reg_bar_phys_addr;
pcard->regs_base_resource.end = reg_bar_phys_addr +
reg_bar_phys_len - 1;
pcard->regs_base_resource.flags = IORESOURCE_MEM;
/* Setup the DMA BAR */
dma_bar_phys_addr = pci_resource_start(pcard->pdev, DMA_BAR);
dma_bar_phys_len = pci_resource_len(pcard->pdev, DMA_BAR);
pcard->dma_bar_base = ioremap(dma_bar_phys_addr,
dma_bar_phys_len);
if (!pcard->dma_bar_base) {
dev_err(&pcard->pdev->dev,
"probe: DMA_BAR could not remap memory to virtual space\n");
err = -ENODEV;
goto err_release_regs;
}
dev_dbg(&pcard->pdev->dev,
"probe: DMA_BAR virt hardware address start [%p]\n",
pcard->dma_bar_base);
pcard->dma_common_regs = pcard->dma_bar_base + KPC_DMA_COMMON_OFFSET;
err = pci_request_region(pcard->pdev, DMA_BAR, "kp2000_pcie");
if (err) {
dev_err(&pcard->pdev->dev,
"probe: failed to acquire PCI region (%d)\n", err);
err = -ENODEV;
goto err_unmap_dma;
}
pcard->dma_base_resource.start = dma_bar_phys_addr;
pcard->dma_base_resource.end = dma_bar_phys_addr +
dma_bar_phys_len - 1;
pcard->dma_base_resource.flags = IORESOURCE_MEM;
/* Read System Regs */
pcard->sysinfo_regs_base = pcard->regs_bar_base;
err = read_system_regs(pcard);
if (err)
goto err_release_dma;
// Disable all "user" interrupts because they're not used yet.
writeq(0xFFFFFFFFFFFFFFFFUL,
pcard->sysinfo_regs_base + REG_INTERRUPT_MASK);
// let the card master PCIe
pci_set_master(pcard->pdev);
// enable IO and mem if not already done
pci_read_config_word(pcard->pdev, PCI_COMMAND, &regval);
regval |= (PCI_COMMAND_IO | PCI_COMMAND_MEMORY);
pci_write_config_word(pcard->pdev, PCI_COMMAND, regval);
// Clear relaxed ordering bit
pcie_capability_clear_and_set_word(pcard->pdev, PCI_EXP_DEVCTL,
PCI_EXP_DEVCTL_RELAX_EN, 0);
// Set Max_Payload_Size and Max_Read_Request_Size
regval = (0x0) << 5; // Max_Payload_Size = 128 B
pcie_capability_clear_and_set_word(pcard->pdev, PCI_EXP_DEVCTL,
PCI_EXP_DEVCTL_PAYLOAD, regval);
regval = (0x0) << 12; // Max_Read_Request_Size = 128 B
pcie_capability_clear_and_set_word(pcard->pdev, PCI_EXP_DEVCTL,
PCI_EXP_DEVCTL_READRQ, regval);
// Enable error reporting for: Correctable Errors, Non-Fatal Errors,
// Fatal Errors, Unsupported Requests
pcie_capability_clear_and_set_word(pcard->pdev, PCI_EXP_DEVCTL, 0,
PCI_EXP_DEVCTL_CERE |
PCI_EXP_DEVCTL_NFERE |
PCI_EXP_DEVCTL_FERE |
PCI_EXP_DEVCTL_URRE);
err = dma_set_mask(PCARD_TO_DEV(pcard), DMA_BIT_MASK(64));
if (err) {
dev_err(&pcard->pdev->dev,
"CANNOT use DMA mask %0llx\n", DMA_BIT_MASK(64));
goto err_release_dma;
}
dev_dbg(&pcard->pdev->dev,
"Using DMA mask %0llx\n", dma_get_mask(PCARD_TO_DEV(pcard)));
err = pci_enable_msi(pcard->pdev);
if (err < 0)
goto err_release_dma;
err = request_irq(pcard->pdev->irq, kp2000_irq_handler, IRQF_SHARED,
pcard->name, pcard);
if (err) {
dev_err(&pcard->pdev->dev,
"%s: failed to request_irq: %d\n", __func__, err);
goto err_disable_msi;
}
err = sysfs_create_files(&pdev->dev.kobj, kp_attr_list);
if (err) {
dev_err(&pdev->dev, "Failed to add sysfs files: %d\n", err);
goto err_free_irq;
}
err = kp2000_probe_cores(pcard);
if (err)
goto err_remove_sysfs;
/* Enable IRQs in HW */
writel(KPC_DMA_CARD_IRQ_ENABLE | KPC_DMA_CARD_USER_INTERRUPT_MODE,
pcard->dma_common_regs);
mutex_unlock(&pcard->sem);
return 0;
err_remove_sysfs:
sysfs_remove_files(&pdev->dev.kobj, kp_attr_list);
err_free_irq:
free_irq(pcard->pdev->irq, pcard);
err_disable_msi:
pci_disable_msi(pcard->pdev);
err_release_dma:
pci_release_region(pdev, DMA_BAR);
err_unmap_dma:
iounmap(pcard->dma_bar_base);
err_release_regs:
pci_release_region(pdev, REG_BAR);
err_unmap_regs:
iounmap(pcard->regs_bar_base);
err_disable_device:
pci_disable_device(pcard->pdev);
err_remove_ida:
mutex_unlock(&pcard->sem);
ida_simple_remove(&card_num_ida, pcard->card_num);
err_free_pcard:
kfree(pcard);
return err;
}
static void kp2000_pcie_remove(struct pci_dev *pdev)
{
struct kp2000_device *pcard = pci_get_drvdata(pdev);
if (!pcard)
return;
mutex_lock(&pcard->sem);
kp2000_remove_cores(pcard);
mfd_remove_devices(PCARD_TO_DEV(pcard));
sysfs_remove_files(&pdev->dev.kobj, kp_attr_list);
free_irq(pcard->pdev->irq, pcard);
pci_disable_msi(pcard->pdev);
if (pcard->dma_bar_base) {
iounmap(pcard->dma_bar_base);
pci_release_region(pdev, DMA_BAR);
pcard->dma_bar_base = NULL;
}
if (pcard->regs_bar_base) {
iounmap(pcard->regs_bar_base);
pci_release_region(pdev, REG_BAR);
pcard->regs_bar_base = NULL;
}
pci_disable_device(pcard->pdev);
pci_set_drvdata(pdev, NULL);
mutex_unlock(&pcard->sem);
ida_simple_remove(&card_num_ida, pcard->card_num);
kfree(pcard);
}
struct class *kpc_uio_class;
ATTRIBUTE_GROUPS(kpc_uio_class);
static const struct pci_device_id kp2000_pci_device_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_DAKTRONICS, PCI_DEVICE_ID_DAKTRONICS) },
{ PCI_DEVICE(PCI_VENDOR_ID_DAKTRONICS, PCI_DEVICE_ID_DAKTRONICS_KADOKA_P2KR0) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, kp2000_pci_device_ids);
static struct pci_driver kp2000_driver_inst = {
.name = "kp2000_pcie",
.id_table = kp2000_pci_device_ids,
.probe = kp2000_pcie_probe,
.remove = kp2000_pcie_remove,
};
static int __init kp2000_pcie_init(void)
{
kpc_uio_class = class_create(THIS_MODULE, "kpc_uio");
if (IS_ERR(kpc_uio_class))
return PTR_ERR(kpc_uio_class);
kpc_uio_class->dev_groups = kpc_uio_class_groups;
return pci_register_driver(&kp2000_driver_inst);
}
module_init(kp2000_pcie_init);
static void __exit kp2000_pcie_exit(void)
{
pci_unregister_driver(&kp2000_driver_inst);
class_destroy(kpc_uio_class);
ida_destroy(&card_num_ida);
}
module_exit(kp2000_pcie_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Lee.Brooke@Daktronics.com, Matt.Sickler@Daktronics.com");
MODULE_SOFTDEP("pre: uio post: kpc_nwl_dma kpc_i2c kpc_spi");

View File

@ -1,23 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0+ */
#ifndef KPC_DMA_COMMON_DEFS_H_
#define KPC_DMA_COMMON_DEFS_H_
#define KPC_DMA_COMMON_OFFSET 0x4000
#define KPC_DMA_S2C_BASE_OFFSET 0x0000
#define KPC_DMA_C2S_BASE_OFFSET 0x2000
#define KPC_DMA_ENGINE_SIZE 0x0100
#define ENGINE_CAP_PRESENT_MASK 0x1
#define KPC_DMA_CARD_IRQ_ENABLE BIT(0)
#define KPC_DMA_CARD_IRQ_ACTIVE BIT(1)
#define KPC_DMA_CARD_IRQ_PENDING BIT(2)
#define KPC_DMA_CARD_IRQ_MSI BIT(3)
#define KPC_DMA_CARD_USER_INTERRUPT_MODE BIT(4)
#define KPC_DMA_CARD_USER_INTERRUPT_ACTIVE BIT(5)
#define KPC_DMA_CARD_IRQ_MSIX_MODE BIT(6)
#define KPC_DMA_CARD_MAX_PAYLOAD_SIZE_MASK 0x0700
#define KPC_DMA_CARD_MAX_READ_REQUEST_SIZE_MASK 0x7000
#define KPC_DMA_CARD_S2C_INTERRUPT_STATUS_MASK 0x00FF0000
#define KPC_DMA_CARD_C2S_INTERRUPT_STATUS_MASK 0xFF000000
#endif /* KPC_DMA_COMMON_DEFS_H_ */

View File

@ -1,90 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0+ */
#ifndef KP2000_PCIE_H
#define KP2000_PCIE_H
#include <linux/types.h>
#include <linux/pci.h>
#include "../kpc.h"
#include "dma_common_defs.h"
/* System Register Map (BAR 1, Start Addr 0)
*
* BAR Size:
* 1048576 (0x100000) bytes = 131072 (0x20000) registers = 256 pages (4K)
*
* 6 5 4 3 2 1 0
* 3210987654321098765432109876543210987654321098765432109876543210
* 0 <--------------------------- MAGIC ---------------------------->
* 1 <----------- Card ID ---------><----------- Revision ---------->
* 2 <--------- Date Stamp --------><--------- Time Stamp ---------->
* 3 <-------- Core Tbl Len -------><-------- Core Tbl Offset ------>
* 4 <---------------------------- SSID ---------------------------->
* 5 < HWID >
* 6 <------------------------- FPGA DDNA -------------------------->
* 7 <------------------------ CPLD Config ------------------------->
* 8 <----------------------- IRQ Mask Flags ----------------------->
* 9 <---------------------- IRQ Active Flags ---------------------->
*/
#define REG_WIDTH 8
#define REG_MAGIC_NUMBER (0 * REG_WIDTH)
#define REG_CARD_ID_AND_BUILD (1 * REG_WIDTH)
#define REG_DATE_AND_TIME_STAMPS (2 * REG_WIDTH)
#define REG_CORE_TABLE_OFFSET (3 * REG_WIDTH)
#define REG_FPGA_SSID (4 * REG_WIDTH)
#define REG_FPGA_HW_ID (5 * REG_WIDTH)
#define REG_FPGA_DDNA (6 * REG_WIDTH)
#define REG_CPLD_CONFIG (7 * REG_WIDTH)
#define REG_INTERRUPT_MASK (8 * REG_WIDTH)
#define REG_INTERRUPT_ACTIVE (9 * REG_WIDTH)
#define REG_PCIE_ERROR_COUNT (10 * REG_WIDTH)
#define KP2000_MAGIC_VALUE 0x196C61482231894DULL
#define PCI_VENDOR_ID_DAKTRONICS 0x1c33
#define PCI_DEVICE_ID_DAKTRONICS 0x6021
#define DMA_BAR 0
#define REG_BAR 1
struct kp2000_device {
struct pci_dev *pdev;
char name[16];
unsigned int card_num;
struct mutex sem;
void __iomem *sysinfo_regs_base;
void __iomem *regs_bar_base;
struct resource regs_base_resource;
void __iomem *dma_bar_base;
void __iomem *dma_common_regs;
struct resource dma_base_resource;
// "System Registers"
u32 card_id;
u32 build_version;
u32 build_datestamp;
u32 build_timestamp;
u32 core_table_offset;
u32 core_table_length;
u8 core_table_rev;
u8 hardware_revision;
u64 ssid;
u64 ddna;
// IRQ stuff
unsigned int irq;
struct list_head uio_devices_list;
};
extern struct class *kpc_uio_class;
extern struct attribute *kpc_uio_class_attrs[];
int kp2000_probe_cores(struct kp2000_device *pcard);
void kp2000_remove_cores(struct kp2000_device *pcard);
// Define this quick little macro because the expression is used frequently
#define PCARD_TO_DEV(pcard) (&(pcard->pdev->dev))
#endif /* KP2000_PCIE_H */

View File

@ -1,22 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0+ */
#ifndef KP2000_CDEV_UAPI_H_
#define KP2000_CDEV_UAPI_H_
#include <linux/types.h>
#include <linux/ioctl.h>
struct kp2000_regs {
__u32 card_id;
__u32 build_version;
__u32 build_datestamp;
__u32 build_timestamp;
__u32 hw_rev;
__u64 ssid;
__u64 ddna;
__u64 cpld_reg;
};
#define KP2000_IOCTL_GET_CPLD_REG _IOR('k', 9, __u32)
#define KP2000_IOCTL_GET_PCIE_ERROR_REG _IOR('k', 11, __u32)
#define KP2000_IOCTL_GET_EVERYTHING _IOR('k', 8, struct kp2000_regs*)
#endif /* KP2000_CDEV_UAPI_H_ */

View File

@ -1,731 +0,0 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* KPC2000 i2c driver
*
* Adapted i2c-i801.c for use with Kadoka hardware.
*
* Copyright (C) 1998 - 2002
* Frodo Looijaard <frodol@dds.nl>,
* Philip Edelbrock <phil@netroedge.com>,
* Mark D. Studebaker <mdsxyz123@yahoo.com>
* Copyright (C) 2007 - 2012
* Jean Delvare <khali@linux-fr.org>
* Copyright (C) 2010 Intel Corporation
* David Woodhouse <dwmw2@infradead.org>
* Copyright (C) 2014-2018 Daktronics
* Matt Sickler <matt.sickler@daktronics.com>,
* Jordon Hofer <jordon.hofer@daktronics.com>
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/io.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/fs.h>
#include <linux/delay.h>
#include <linux/i2c.h>
#include "kpc.h"
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Matt.Sickler@Daktronics.com");
struct kpc_i2c {
unsigned long smba;
struct i2c_adapter adapter;
unsigned int features;
};
/*****************************
*** Part 1 - i2c Handlers ***
*****************************/
#define REG_SIZE 8
/* I801 SMBus address offsets */
#define SMBHSTSTS(p) ((0 * REG_SIZE) + (p)->smba)
#define SMBHSTCNT(p) ((2 * REG_SIZE) + (p)->smba)
#define SMBHSTCMD(p) ((3 * REG_SIZE) + (p)->smba)
#define SMBHSTADD(p) ((4 * REG_SIZE) + (p)->smba)
#define SMBHSTDAT0(p) ((5 * REG_SIZE) + (p)->smba)
#define SMBHSTDAT1(p) ((6 * REG_SIZE) + (p)->smba)
#define SMBBLKDAT(p) ((7 * REG_SIZE) + (p)->smba)
#define SMBPEC(p) ((8 * REG_SIZE) + (p)->smba) /* ICH3 and later */
#define SMBAUXSTS(p) ((12 * REG_SIZE) + (p)->smba) /* ICH4 and later */
#define SMBAUXCTL(p) ((13 * REG_SIZE) + (p)->smba) /* ICH4 and later */
/* PCI Address Constants */
#define SMBBAR 4
#define SMBHSTCFG 0x040
/* Host configuration bits for SMBHSTCFG */
#define SMBHSTCFG_HST_EN 1
#define SMBHSTCFG_SMB_SMI_EN 2
#define SMBHSTCFG_I2C_EN 4
/* Auxiliary control register bits, ICH4+ only */
#define SMBAUXCTL_CRC 1
#define SMBAUXCTL_E32B 2
/* kill bit for SMBHSTCNT */
#define SMBHSTCNT_KILL 2
/* Other settings */
#define MAX_RETRIES 400
#define ENABLE_INT9 0 /* set to 0x01 to enable - untested */
/* I801 command constants */
#define I801_QUICK 0x00
#define I801_BYTE 0x04
#define I801_BYTE_DATA 0x08
#define I801_WORD_DATA 0x0C
#define I801_PROC_CALL 0x10 /* unimplemented */
#define I801_BLOCK_DATA 0x14
#define I801_I2C_BLOCK_DATA 0x18 /* ICH5 and later */
#define I801_BLOCK_LAST 0x34
#define I801_I2C_BLOCK_LAST 0x38 /* ICH5 and later */
#define I801_START 0x40
#define I801_PEC_EN 0x80 /* ICH3 and later */
/* I801 Hosts Status register bits */
#define SMBHSTSTS_BYTE_DONE 0x80
#define SMBHSTSTS_INUSE_STS 0x40
#define SMBHSTSTS_SMBALERT_STS 0x20
#define SMBHSTSTS_FAILED 0x10
#define SMBHSTSTS_BUS_ERR 0x08
#define SMBHSTSTS_DEV_ERR 0x04
#define SMBHSTSTS_INTR 0x02
#define SMBHSTSTS_HOST_BUSY 0x01
#define STATUS_FLAGS (SMBHSTSTS_BYTE_DONE | SMBHSTSTS_FAILED | \
SMBHSTSTS_BUS_ERR | SMBHSTSTS_DEV_ERR | SMBHSTSTS_INTR)
/* Older devices have their ID defined in <linux/pci_ids.h> */
#define PCI_DEVICE_ID_INTEL_COUGARPOINT_SMBUS 0x1c22
#define PCI_DEVICE_ID_INTEL_PATSBURG_SMBUS 0x1d22
/* Patsburg also has three 'Integrated Device Function' SMBus controllers */
#define PCI_DEVICE_ID_INTEL_PATSBURG_SMBUS_IDF0 0x1d70
#define PCI_DEVICE_ID_INTEL_PATSBURG_SMBUS_IDF1 0x1d71
#define PCI_DEVICE_ID_INTEL_PATSBURG_SMBUS_IDF2 0x1d72
#define PCI_DEVICE_ID_INTEL_PANTHERPOINT_SMBUS 0x1e22
#define PCI_DEVICE_ID_INTEL_DH89XXCC_SMBUS 0x2330
#define PCI_DEVICE_ID_INTEL_5_3400_SERIES_SMBUS 0x3b30
#define PCI_DEVICE_ID_INTEL_LYNXPOINT_SMBUS 0x8c22
#define PCI_DEVICE_ID_INTEL_LYNXPOINT_LP_SMBUS 0x9c22
#define FEATURE_SMBUS_PEC BIT(0)
#define FEATURE_BLOCK_BUFFER BIT(1)
#define FEATURE_BLOCK_PROC BIT(2)
#define FEATURE_I2C_BLOCK_READ BIT(3)
/* Not really a feature, but it's convenient to handle it as such */
#define FEATURE_IDF BIT(15)
// FIXME!
#undef inb_p
#define inb_p(a) readq((void __iomem *)a)
#undef outb_p
#define outb_p(d, a) writeq(d, (void __iomem *)a)
/* Make sure the SMBus host is ready to start transmitting.
* Return 0 if it is, -EBUSY if it is not.
*/
static int i801_check_pre(struct kpc_i2c *priv)
{
int status;
status = inb_p(SMBHSTSTS(priv));
if (status & SMBHSTSTS_HOST_BUSY) {
dev_err(&priv->adapter.dev,
"SMBus is busy, can't use it! (status=%x)\n", status);
return -EBUSY;
}
status &= STATUS_FLAGS;
if (status) {
outb_p(status, SMBHSTSTS(priv));
status = inb_p(SMBHSTSTS(priv)) & STATUS_FLAGS;
if (status) {
dev_err(&priv->adapter.dev,
"Failed clearing status flags (%02x)\n", status);
return -EBUSY;
}
}
return 0;
}
/* Convert the status register to an error code, and clear it. */
static int i801_check_post(struct kpc_i2c *priv, int status, int timeout)
{
int result = 0;
/* If the SMBus is still busy, we give up */
if (timeout) {
dev_err(&priv->adapter.dev, "Transaction timeout\n");
/* try to stop the current command */
dev_dbg(&priv->adapter.dev,
"Terminating the current operation\n");
outb_p(inb_p(SMBHSTCNT(priv)) | SMBHSTCNT_KILL,
SMBHSTCNT(priv));
usleep_range(1000, 2000);
outb_p(inb_p(SMBHSTCNT(priv)) & (~SMBHSTCNT_KILL),
SMBHSTCNT(priv));
/* Check if it worked */
status = inb_p(SMBHSTSTS(priv));
if ((status & SMBHSTSTS_HOST_BUSY) ||
!(status & SMBHSTSTS_FAILED))
dev_err(&priv->adapter.dev,
"Failed terminating the transaction\n");
outb_p(STATUS_FLAGS, SMBHSTSTS(priv));
return -ETIMEDOUT;
}
if (status & SMBHSTSTS_FAILED) {
result = -EIO;
dev_err(&priv->adapter.dev, "Transaction failed\n");
}
if (status & SMBHSTSTS_DEV_ERR) {
result = -ENXIO;
dev_dbg(&priv->adapter.dev, "No response\n");
}
if (status & SMBHSTSTS_BUS_ERR) {
result = -EAGAIN;
dev_dbg(&priv->adapter.dev, "Lost arbitration\n");
}
if (result) {
/* Clear error flags */
outb_p(status & STATUS_FLAGS, SMBHSTSTS(priv));
status = inb_p(SMBHSTSTS(priv)) & STATUS_FLAGS;
if (status)
dev_warn(&priv->adapter.dev,
"Failed clearing status flags at end of transaction (%02x)\n",
status);
}
return result;
}
static int i801_transaction(struct kpc_i2c *priv, int xact)
{
int status;
int result;
int timeout = 0;
result = i801_check_pre(priv);
if (result < 0)
return result;
/* the current contents of SMBHSTCNT can be overwritten, since PEC,
* INTREN, SMBSCMD are passed in xact
*/
outb_p(xact | I801_START, SMBHSTCNT(priv));
/* We will always wait for a fraction of a second! */
do {
usleep_range(250, 500);
status = inb_p(SMBHSTSTS(priv));
} while ((status & SMBHSTSTS_HOST_BUSY) && (timeout++ < MAX_RETRIES));
result = i801_check_post(priv, status, timeout > MAX_RETRIES);
if (result < 0)
return result;
outb_p(SMBHSTSTS_INTR, SMBHSTSTS(priv));
return 0;
}
/* wait for INTR bit as advised by Intel */
static void i801_wait_hwpec(struct kpc_i2c *priv)
{
int timeout = 0;
int status;
do {
usleep_range(250, 500);
status = inb_p(SMBHSTSTS(priv));
} while ((!(status & SMBHSTSTS_INTR)) && (timeout++ < MAX_RETRIES));
if (timeout > MAX_RETRIES)
dev_dbg(&priv->adapter.dev, "PEC Timeout!\n");
outb_p(status, SMBHSTSTS(priv));
}
static int i801_block_transaction_by_block(struct kpc_i2c *priv,
union i2c_smbus_data *data,
char read_write, int hwpec)
{
int i, len;
int status;
inb_p(SMBHSTCNT(priv)); /* reset the data buffer index */
/* Use 32-byte buffer to process this transaction */
if (read_write == I2C_SMBUS_WRITE) {
len = data->block[0];
outb_p(len, SMBHSTDAT0(priv));
for (i = 0; i < len; i++)
outb_p(data->block[i + 1], SMBBLKDAT(priv));
}
status = i801_transaction(priv,
I801_BLOCK_DATA | ENABLE_INT9 | I801_PEC_EN * hwpec);
if (status)
return status;
if (read_write == I2C_SMBUS_READ) {
len = inb_p(SMBHSTDAT0(priv));
if (len < 1 || len > I2C_SMBUS_BLOCK_MAX)
return -EPROTO;
data->block[0] = len;
for (i = 0; i < len; i++)
data->block[i + 1] = inb_p(SMBBLKDAT(priv));
}
return 0;
}
static int i801_block_transaction_byte_by_byte(struct kpc_i2c *priv,
union i2c_smbus_data *data,
char read_write, int command,
int hwpec)
{
int i, len;
int smbcmd;
int status;
int result;
int timeout;
result = i801_check_pre(priv);
if (result < 0)
return result;
len = data->block[0];
if (read_write == I2C_SMBUS_WRITE) {
outb_p(len, SMBHSTDAT0(priv));
outb_p(data->block[1], SMBBLKDAT(priv));
}
for (i = 1; i <= len; i++) {
if (i == len && read_write == I2C_SMBUS_READ) {
if (command == I2C_SMBUS_I2C_BLOCK_DATA)
smbcmd = I801_I2C_BLOCK_LAST;
else
smbcmd = I801_BLOCK_LAST;
} else {
if (command == I2C_SMBUS_I2C_BLOCK_DATA &&
read_write == I2C_SMBUS_READ)
smbcmd = I801_I2C_BLOCK_DATA;
else
smbcmd = I801_BLOCK_DATA;
}
outb_p(smbcmd | ENABLE_INT9, SMBHSTCNT(priv));
if (i == 1)
outb_p(inb(SMBHSTCNT(priv)) | I801_START,
SMBHSTCNT(priv));
/* We will always wait for a fraction of a second! */
timeout = 0;
do {
usleep_range(250, 500);
status = inb_p(SMBHSTSTS(priv));
} while (!(status & SMBHSTSTS_BYTE_DONE) &&
(timeout++ < MAX_RETRIES));
result = i801_check_post(priv, status, timeout > MAX_RETRIES);
if (result < 0)
return result;
if (i == 1 && read_write == I2C_SMBUS_READ &&
command != I2C_SMBUS_I2C_BLOCK_DATA) {
len = inb_p(SMBHSTDAT0(priv));
if (len < 1 || len > I2C_SMBUS_BLOCK_MAX) {
dev_err(&priv->adapter.dev,
"Illegal SMBus block read size %d\n",
len);
/* Recover */
while (inb_p(SMBHSTSTS(priv)) &
SMBHSTSTS_HOST_BUSY)
outb_p(SMBHSTSTS_BYTE_DONE,
SMBHSTSTS(priv));
outb_p(SMBHSTSTS_INTR,
SMBHSTSTS(priv));
return -EPROTO;
}
data->block[0] = len;
}
/* Retrieve/store value in SMBBLKDAT */
if (read_write == I2C_SMBUS_READ)
data->block[i] = inb_p(SMBBLKDAT(priv));
if (read_write == I2C_SMBUS_WRITE && i + 1 <= len)
outb_p(data->block[i + 1], SMBBLKDAT(priv));
/* signals SMBBLKDAT ready */
outb_p(SMBHSTSTS_BYTE_DONE | SMBHSTSTS_INTR, SMBHSTSTS(priv));
}
return 0;
}
static int i801_set_block_buffer_mode(struct kpc_i2c *priv)
{
outb_p(inb_p(SMBAUXCTL(priv)) | SMBAUXCTL_E32B, SMBAUXCTL(priv));
if ((inb_p(SMBAUXCTL(priv)) & SMBAUXCTL_E32B) == 0)
return -EIO;
return 0;
}
/* Block transaction function */
static int i801_block_transaction(struct kpc_i2c *priv,
union i2c_smbus_data *data, char read_write,
int command, int hwpec)
{
int result = 0;
//unsigned char hostc;
if (command == I2C_SMBUS_I2C_BLOCK_DATA) {
if (read_write == I2C_SMBUS_WRITE) {
/* set I2C_EN bit in configuration register */
//TODO: Figure out the right thing to do here...
//pci_read_config_byte(priv->pci_dev, SMBHSTCFG, &hostc);
//pci_write_config_byte(priv->pci_dev, SMBHSTCFG, hostc | SMBHSTCFG_I2C_EN);
} else if (!(priv->features & FEATURE_I2C_BLOCK_READ)) {
dev_err(&priv->adapter.dev,
"I2C block read is unsupported!\n");
return -EOPNOTSUPP;
}
}
if (read_write == I2C_SMBUS_WRITE ||
command == I2C_SMBUS_I2C_BLOCK_DATA) {
if (data->block[0] < 1)
data->block[0] = 1;
if (data->block[0] > I2C_SMBUS_BLOCK_MAX)
data->block[0] = I2C_SMBUS_BLOCK_MAX;
} else {
data->block[0] = 32; /* max for SMBus block reads */
}
/* Experience has shown that the block buffer can only be used for
* SMBus (not I2C) block transactions, even though the datasheet
* doesn't mention this limitation.
*/
if ((priv->features & FEATURE_BLOCK_BUFFER) &&
command != I2C_SMBUS_I2C_BLOCK_DATA &&
i801_set_block_buffer_mode(priv) == 0) {
result = i801_block_transaction_by_block(priv, data,
read_write, hwpec);
} else {
result = i801_block_transaction_byte_by_byte(priv, data,
read_write,
command, hwpec);
}
if (result == 0 && hwpec)
i801_wait_hwpec(priv);
if (command == I2C_SMBUS_I2C_BLOCK_DATA &&
read_write == I2C_SMBUS_WRITE) {
/* restore saved configuration register value */
//TODO: Figure out the right thing to do here...
//pci_write_config_byte(priv->pci_dev, SMBHSTCFG, hostc);
}
return result;
}
/* Return negative errno on error. */
static s32 i801_access(struct i2c_adapter *adap, u16 addr,
unsigned short flags, char read_write, u8 command,
int size, union i2c_smbus_data *data)
{
int hwpec;
int block = 0;
int ret, xact = 0;
struct kpc_i2c *priv = i2c_get_adapdata(adap);
hwpec = (priv->features & FEATURE_SMBUS_PEC) &&
(flags & I2C_CLIENT_PEC) &&
size != I2C_SMBUS_QUICK && size != I2C_SMBUS_I2C_BLOCK_DATA;
switch (size) {
case I2C_SMBUS_QUICK:
dev_dbg(&priv->adapter.dev, " [acc] SMBUS_QUICK\n");
outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
SMBHSTADD(priv));
xact = I801_QUICK;
break;
case I2C_SMBUS_BYTE:
dev_dbg(&priv->adapter.dev, " [acc] SMBUS_BYTE\n");
outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
SMBHSTADD(priv));
if (read_write == I2C_SMBUS_WRITE)
outb_p(command, SMBHSTCMD(priv));
xact = I801_BYTE;
break;
case I2C_SMBUS_BYTE_DATA:
dev_dbg(&priv->adapter.dev, " [acc] SMBUS_BYTE_DATA\n");
outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
SMBHSTADD(priv));
outb_p(command, SMBHSTCMD(priv));
if (read_write == I2C_SMBUS_WRITE)
outb_p(data->byte, SMBHSTDAT0(priv));
xact = I801_BYTE_DATA;
break;
case I2C_SMBUS_WORD_DATA:
dev_dbg(&priv->adapter.dev, " [acc] SMBUS_WORD_DATA\n");
outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
SMBHSTADD(priv));
outb_p(command, SMBHSTCMD(priv));
if (read_write == I2C_SMBUS_WRITE) {
outb_p(data->word & 0xff, SMBHSTDAT0(priv));
outb_p((data->word & 0xff00) >> 8, SMBHSTDAT1(priv));
}
xact = I801_WORD_DATA;
break;
case I2C_SMBUS_BLOCK_DATA:
dev_dbg(&priv->adapter.dev, " [acc] SMBUS_BLOCK_DATA\n");
outb_p(((addr & 0x7f) << 1) | (read_write & 0x01),
SMBHSTADD(priv));
outb_p(command, SMBHSTCMD(priv));
block = 1;
break;
case I2C_SMBUS_I2C_BLOCK_DATA:
dev_dbg(&priv->adapter.dev, " [acc] SMBUS_I2C_BLOCK_DATA\n");
/* NB: page 240 of ICH5 datasheet shows that the R/#W
* bit should be cleared here, even when reading
*/
outb_p((addr & 0x7f) << 1, SMBHSTADD(priv));
if (read_write == I2C_SMBUS_READ) {
/* NB: page 240 of ICH5 datasheet also shows
* that DATA1 is the cmd field when reading
*/
outb_p(command, SMBHSTDAT1(priv));
} else {
outb_p(command, SMBHSTCMD(priv));
}
block = 1;
break;
default:
dev_dbg(&priv->adapter.dev,
" [acc] Unsupported transaction %d\n", size);
return -EOPNOTSUPP;
}
if (hwpec) { /* enable/disable hardware PEC */
dev_dbg(&priv->adapter.dev, " [acc] hwpec: yes\n");
outb_p(inb_p(SMBAUXCTL(priv)) | SMBAUXCTL_CRC, SMBAUXCTL(priv));
} else {
dev_dbg(&priv->adapter.dev, " [acc] hwpec: no\n");
outb_p(inb_p(SMBAUXCTL(priv)) &
(~SMBAUXCTL_CRC), SMBAUXCTL(priv));
}
if (block) {
dev_dbg(&priv->adapter.dev, " [acc] block: yes\n");
ret = i801_block_transaction(priv, data, read_write, size,
hwpec);
} else {
dev_dbg(&priv->adapter.dev, " [acc] block: no\n");
ret = i801_transaction(priv, xact | ENABLE_INT9);
}
/* Some BIOSes don't like it when PEC is enabled at reboot or resume
* time, so we forcibly disable it after every transaction. Turn off
* E32B for the same reason.
*/
if (hwpec || block) {
dev_dbg(&priv->adapter.dev, " [acc] hwpec || block\n");
outb_p(inb_p(SMBAUXCTL(priv)) & ~(SMBAUXCTL_CRC |
SMBAUXCTL_E32B), SMBAUXCTL(priv));
}
if (block) {
dev_dbg(&priv->adapter.dev, " [acc] block\n");
return ret;
}
if (ret) {
dev_dbg(&priv->adapter.dev, " [acc] ret %d\n", ret);
return ret;
}
if ((read_write == I2C_SMBUS_WRITE) || (xact == I801_QUICK)) {
dev_dbg(&priv->adapter.dev,
" [acc] I2C_SMBUS_WRITE || I801_QUICK -> ret 0\n");
return 0;
}
switch (xact & 0x7f) {
case I801_BYTE: /* Result put in SMBHSTDAT0 */
case I801_BYTE_DATA:
dev_dbg(&priv->adapter.dev,
" [acc] I801_BYTE or I801_BYTE_DATA\n");
data->byte = inb_p(SMBHSTDAT0(priv));
break;
case I801_WORD_DATA:
dev_dbg(&priv->adapter.dev, " [acc] I801_WORD_DATA\n");
data->word = inb_p(SMBHSTDAT0(priv)) +
(inb_p(SMBHSTDAT1(priv)) << 8);
break;
}
return 0;
}
#define enable_flag(x) (x)
#define disable_flag(x) 0
#define enable_flag_if(x, cond) ((cond) ? (x) : 0)
static u32 i801_func(struct i2c_adapter *adapter)
{
struct kpc_i2c *priv = i2c_get_adapdata(adapter);
/* original settings
* u32 f = I2C_FUNC_SMBUS_QUICK | I2C_FUNC_SMBUS_BYTE |
* I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA |
* I2C_FUNC_SMBUS_BLOCK_DATA | I2C_FUNC_SMBUS_WRITE_I2C_BLOCK |
* ((priv->features & FEATURE_SMBUS_PEC) ? I2C_FUNC_SMBUS_PEC : 0) |
* ((priv->features & FEATURE_I2C_BLOCK_READ) ?
* I2C_FUNC_SMBUS_READ_I2C_BLOCK : 0);
*/
// http://lxr.free-electrons.com/source/include/uapi/linux/i2c.h#L85
u32 f =
enable_flag(I2C_FUNC_I2C) | /* 0x00000001(I enabled this one) */
disable_flag(I2C_FUNC_10BIT_ADDR) | /* 0x00000002 */
disable_flag(I2C_FUNC_PROTOCOL_MANGLING) | /* 0x00000004 */
enable_flag_if(I2C_FUNC_SMBUS_PEC,
priv->features & FEATURE_SMBUS_PEC) |
/* 0x00000008 */
disable_flag(I2C_FUNC_SMBUS_BLOCK_PROC_CALL) | /* 0x00008000 */
enable_flag(I2C_FUNC_SMBUS_QUICK) | /* 0x00010000 */
disable_flag(I2C_FUNC_SMBUS_READ_BYTE) | /* 0x00020000 */
disable_flag(I2C_FUNC_SMBUS_WRITE_BYTE) | /* 0x00040000 */
disable_flag(I2C_FUNC_SMBUS_READ_BYTE_DATA) | /* 0x00080000 */
disable_flag(I2C_FUNC_SMBUS_WRITE_BYTE_DATA) | /* 0x00100000 */
disable_flag(I2C_FUNC_SMBUS_READ_WORD_DATA) | /* 0x00200000 */
disable_flag(I2C_FUNC_SMBUS_WRITE_WORD_DATA) | /* 0x00400000 */
disable_flag(I2C_FUNC_SMBUS_PROC_CALL) | /* 0x00800000 */
disable_flag(I2C_FUNC_SMBUS_READ_BLOCK_DATA) | /* 0x01000000 */
disable_flag(I2C_FUNC_SMBUS_WRITE_BLOCK_DATA) | /* 0x02000000 */
enable_flag_if(I2C_FUNC_SMBUS_READ_I2C_BLOCK,
priv->features & FEATURE_I2C_BLOCK_READ) |
/* 0x04000000 */
enable_flag(I2C_FUNC_SMBUS_WRITE_I2C_BLOCK) | /* 0x08000000 */
enable_flag(I2C_FUNC_SMBUS_BYTE) | /* _READ_BYTE _WRITE_BYTE */
enable_flag(I2C_FUNC_SMBUS_BYTE_DATA) | /* _READ_BYTE_DATA
* _WRITE_BYTE_DATA
*/
enable_flag(I2C_FUNC_SMBUS_WORD_DATA) | /* _READ_WORD_DATA
* _WRITE_WORD_DATA
*/
enable_flag(I2C_FUNC_SMBUS_BLOCK_DATA) | /* _READ_BLOCK_DATA
* _WRITE_BLOCK_DATA
*/
disable_flag(I2C_FUNC_SMBUS_I2C_BLOCK) | /* _READ_I2C_BLOCK
* _WRITE_I2C_BLOCK
*/
disable_flag(I2C_FUNC_SMBUS_EMUL); /* _QUICK _BYTE
* _BYTE_DATA _WORD_DATA
* _PROC_CALL
* _WRITE_BLOCK_DATA
* _I2C_BLOCK _PEC
*/
return f;
}
#undef enable_flag
#undef disable_flag
#undef enable_flag_if
static const struct i2c_algorithm smbus_algorithm = {
.smbus_xfer = i801_access,
.functionality = i801_func,
};
/********************************
*** Part 2 - Driver Handlers ***
********************************/
static int kpc_i2c_probe(struct platform_device *pldev)
{
int err;
struct kpc_i2c *priv;
struct resource *res;
priv = devm_kzalloc(&pldev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
i2c_set_adapdata(&priv->adapter, priv);
priv->adapter.owner = THIS_MODULE;
priv->adapter.class = I2C_CLASS_HWMON | I2C_CLASS_SPD;
priv->adapter.algo = &smbus_algorithm;
res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
if (!res)
return -ENXIO;
priv->smba = (unsigned long)devm_ioremap(&pldev->dev,
res->start,
resource_size(res));
if (!priv->smba)
return -ENOMEM;
platform_set_drvdata(pldev, priv);
priv->features |= FEATURE_IDF;
priv->features |= FEATURE_I2C_BLOCK_READ;
priv->features |= FEATURE_SMBUS_PEC;
priv->features |= FEATURE_BLOCK_BUFFER;
//init_MUTEX(&lddata->sem);
/* set up the sysfs linkage to our parent device */
priv->adapter.dev.parent = &pldev->dev;
/* Retry up to 3 times on lost arbitration */
priv->adapter.retries = 3;
snprintf(priv->adapter.name, sizeof(priv->adapter.name),
"Fake SMBus I801 adapter");
err = i2c_add_adapter(&priv->adapter);
if (err) {
dev_err(&priv->adapter.dev, "Failed to add SMBus adapter\n");
return err;
}
return 0;
}
static int kpc_i2c_remove(struct platform_device *pldev)
{
struct kpc_i2c *lddev;
lddev = (struct kpc_i2c *)platform_get_drvdata(pldev);
i2c_del_adapter(&lddev->adapter);
//TODO: Figure out the right thing to do here...
//pci_write_config_byte(dev, SMBHSTCFG, priv->original_hstcfg);
//pci_release_region(dev, SMBBAR);
//pci_set_drvdata(dev, NULL);
//cdev_del(&lddev->cdev);
return 0;
}
static struct platform_driver kpc_i2c_driver = {
.probe = kpc_i2c_probe,
.remove = kpc_i2c_remove,
.driver = {
.name = KP_DRIVER_NAME_I2C,
},
};
module_platform_driver(kpc_i2c_driver);

View File

@ -1,517 +0,0 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* KP2000 SPI controller driver
*
* Copyright (C) 2014-2018 Daktronics
* Author: Matt Sickler <matt.sickler@daktronics.com>
* Very loosely based on spi-omap2-mcspi.c
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/err.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/gcd.h>
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>
#include <linux/mtd/partitions.h>
#include "kpc.h"
static struct mtd_partition p2kr0_spi0_parts[] = {
{ .name = "SLOT_0", .size = 7798784, .offset = 0, },
{ .name = "SLOT_1", .size = 7798784, .offset = MTDPART_OFS_NXTBLK},
{ .name = "SLOT_2", .size = 7798784, .offset = MTDPART_OFS_NXTBLK},
{ .name = "SLOT_3", .size = 7798784, .offset = MTDPART_OFS_NXTBLK},
{ .name = "CS0_EXTRA", .size = MTDPART_SIZ_FULL, .offset = MTDPART_OFS_NXTBLK},
};
static struct mtd_partition p2kr0_spi1_parts[] = {
{ .name = "SLOT_4", .size = 7798784, .offset = 0, },
{ .name = "SLOT_5", .size = 7798784, .offset = MTDPART_OFS_NXTBLK},
{ .name = "SLOT_6", .size = 7798784, .offset = MTDPART_OFS_NXTBLK},
{ .name = "SLOT_7", .size = 7798784, .offset = MTDPART_OFS_NXTBLK},
{ .name = "CS1_EXTRA", .size = MTDPART_SIZ_FULL, .offset = MTDPART_OFS_NXTBLK},
};
static struct flash_platform_data p2kr0_spi0_pdata = {
.name = "SPI0",
.nr_parts = ARRAY_SIZE(p2kr0_spi0_parts),
.parts = p2kr0_spi0_parts,
};
static struct flash_platform_data p2kr0_spi1_pdata = {
.name = "SPI1",
.nr_parts = ARRAY_SIZE(p2kr0_spi1_parts),
.parts = p2kr0_spi1_parts,
};
static struct spi_board_info p2kr0_board_info[] = {
{
.modalias = "n25q256a11",
.bus_num = 1,
.chip_select = 0,
.mode = SPI_MODE_0,
.platform_data = &p2kr0_spi0_pdata
},
{
.modalias = "n25q256a11",
.bus_num = 1,
.chip_select = 1,
.mode = SPI_MODE_0,
.platform_data = &p2kr0_spi1_pdata
},
};
/***************
* SPI Defines *
***************/
#define KP_SPI_REG_CONFIG 0x0 /* 0x00 */
#define KP_SPI_REG_STATUS 0x1 /* 0x08 */
#define KP_SPI_REG_FFCTRL 0x2 /* 0x10 */
#define KP_SPI_REG_TXDATA 0x3 /* 0x18 */
#define KP_SPI_REG_RXDATA 0x4 /* 0x20 */
#define KP_SPI_CLK 48000000
#define KP_SPI_MAX_FIFODEPTH 64
#define KP_SPI_MAX_FIFOWCNT 0xFFFF
#define KP_SPI_REG_CONFIG_TRM_TXRX 0
#define KP_SPI_REG_CONFIG_TRM_RX 1
#define KP_SPI_REG_CONFIG_TRM_TX 2
#define KP_SPI_REG_STATUS_RXS 0x01
#define KP_SPI_REG_STATUS_TXS 0x02
#define KP_SPI_REG_STATUS_EOT 0x04
#define KP_SPI_REG_STATUS_TXFFE 0x10
#define KP_SPI_REG_STATUS_TXFFF 0x20
#define KP_SPI_REG_STATUS_RXFFE 0x40
#define KP_SPI_REG_STATUS_RXFFF 0x80
/******************
* SPI Structures *
******************/
struct kp_spi {
struct spi_master *master;
u64 __iomem *base;
struct device *dev;
};
struct kp_spi_controller_state {
void __iomem *base;
s64 conf_cache;
};
union kp_spi_config {
/* use this to access individual elements */
struct __packed spi_config_bitfield {
unsigned int pha : 1; /* spim_clk Phase */
unsigned int pol : 1; /* spim_clk Polarity */
unsigned int epol : 1; /* spim_csx Polarity */
unsigned int dpe : 1; /* Transmission Enable */
unsigned int wl : 5; /* Word Length */
unsigned int : 3;
unsigned int trm : 2; /* TxRx Mode */
unsigned int cs : 4; /* Chip Select */
unsigned int wcnt : 7; /* Word Count */
unsigned int ffen : 1; /* FIFO Enable */
unsigned int spi_en : 1; /* SPI Enable */
unsigned int : 5;
} bitfield;
/* use this to grab the whole register */
u32 reg;
};
union kp_spi_status {
struct __packed spi_status_bitfield {
unsigned int rx : 1; /* Rx Status */
unsigned int tx : 1; /* Tx Status */
unsigned int eo : 1; /* End of Transfer */
unsigned int : 1;
unsigned int txffe : 1; /* Tx FIFO Empty */
unsigned int txfff : 1; /* Tx FIFO Full */
unsigned int rxffe : 1; /* Rx FIFO Empty */
unsigned int rxfff : 1; /* Rx FIFO Full */
unsigned int : 24;
} bitfield;
u32 reg;
};
union kp_spi_ffctrl {
struct __packed spi_ffctrl_bitfield {
unsigned int ffstart : 1; /* FIFO Start */
unsigned int : 31;
} bitfield;
u32 reg;
};
/***************
* SPI Helpers *
***************/
static inline u64
kp_spi_read_reg(struct kp_spi_controller_state *cs, int idx)
{
u64 __iomem *addr = cs->base;
addr += idx;
if ((idx == KP_SPI_REG_CONFIG) && (cs->conf_cache >= 0))
return cs->conf_cache;
return readq(addr);
}
static inline void
kp_spi_write_reg(struct kp_spi_controller_state *cs, int idx, u64 val)
{
u64 __iomem *addr = cs->base;
addr += idx;
writeq(val, addr);
if (idx == KP_SPI_REG_CONFIG)
cs->conf_cache = val;
}
static int
kp_spi_wait_for_reg_bit(struct kp_spi_controller_state *cs, int idx,
unsigned long bit)
{
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(1000);
while (!(kp_spi_read_reg(cs, idx) & bit)) {
if (time_after(jiffies, timeout)) {
if (!(kp_spi_read_reg(cs, idx) & bit))
return -ETIMEDOUT;
else
return 0;
}
cpu_relax();
}
return 0;
}
static unsigned
kp_spi_txrx_pio(struct spi_device *spidev, struct spi_transfer *transfer)
{
struct kp_spi_controller_state *cs = spidev->controller_state;
unsigned int count = transfer->len;
unsigned int c = count;
int i;
int res;
u8 *rx = transfer->rx_buf;
const u8 *tx = transfer->tx_buf;
int processed = 0;
if (tx) {
for (i = 0 ; i < c ; i++) {
char val = *tx++;
res = kp_spi_wait_for_reg_bit(cs, KP_SPI_REG_STATUS,
KP_SPI_REG_STATUS_TXS);
if (res < 0)
goto out;
kp_spi_write_reg(cs, KP_SPI_REG_TXDATA, val);
processed++;
}
} else if (rx) {
for (i = 0 ; i < c ; i++) {
char test = 0;
kp_spi_write_reg(cs, KP_SPI_REG_TXDATA, 0x00);
res = kp_spi_wait_for_reg_bit(cs, KP_SPI_REG_STATUS,
KP_SPI_REG_STATUS_RXS);
if (res < 0)
goto out;
test = kp_spi_read_reg(cs, KP_SPI_REG_RXDATA);
*rx++ = test;
processed++;
}
}
if (kp_spi_wait_for_reg_bit(cs, KP_SPI_REG_STATUS,
KP_SPI_REG_STATUS_EOT) < 0) {
//TODO: Figure out how to abort transaction??
//Ths has never happened in practice though...
}
out:
return processed;
}
/*****************
* SPI Functions *
*****************/
static int
kp_spi_setup(struct spi_device *spidev)
{
union kp_spi_config sc;
struct kp_spi *kpspi = spi_master_get_devdata(spidev->master);
struct kp_spi_controller_state *cs;
/* setup controller state */
cs = spidev->controller_state;
if (!cs) {
cs = kzalloc(sizeof(*cs), GFP_KERNEL);
if (!cs)
return -ENOMEM;
cs->base = kpspi->base;
cs->conf_cache = -1;
spidev->controller_state = cs;
}
/* set config register */
sc.bitfield.wl = spidev->bits_per_word - 1;
sc.bitfield.cs = spidev->chip_select;
sc.bitfield.spi_en = 0;
sc.bitfield.trm = 0;
sc.bitfield.ffen = 0;
kp_spi_write_reg(spidev->controller_state, KP_SPI_REG_CONFIG, sc.reg);
return 0;
}
static int
kp_spi_transfer_one_message(struct spi_master *master, struct spi_message *m)
{
struct kp_spi_controller_state *cs;
struct spi_device *spidev;
struct kp_spi *kpspi;
struct spi_transfer *transfer;
union kp_spi_config sc;
int status = 0;
spidev = m->spi;
kpspi = spi_master_get_devdata(master);
m->actual_length = 0;
m->status = 0;
cs = spidev->controller_state;
/* reject invalid messages and transfers */
if (list_empty(&m->transfers))
return -EINVAL;
/* validate input */
list_for_each_entry(transfer, &m->transfers, transfer_list) {
const void *tx_buf = transfer->tx_buf;
void *rx_buf = transfer->rx_buf;
unsigned int len = transfer->len;
if (transfer->speed_hz > KP_SPI_CLK ||
(len && !(rx_buf || tx_buf))) {
dev_dbg(kpspi->dev, " transfer: %d Hz, %d %s%s, %d bpw\n",
transfer->speed_hz,
len,
tx_buf ? "tx" : "",
rx_buf ? "rx" : "",
transfer->bits_per_word);
dev_dbg(kpspi->dev, " transfer -EINVAL\n");
return -EINVAL;
}
if (transfer->speed_hz &&
transfer->speed_hz < (KP_SPI_CLK >> 15)) {
dev_dbg(kpspi->dev, "speed_hz %d below minimum %d Hz\n",
transfer->speed_hz,
KP_SPI_CLK >> 15);
dev_dbg(kpspi->dev, " speed_hz -EINVAL\n");
return -EINVAL;
}
}
/* assert chip select to start the sequence*/
sc.reg = kp_spi_read_reg(cs, KP_SPI_REG_CONFIG);
sc.bitfield.spi_en = 1;
kp_spi_write_reg(cs, KP_SPI_REG_CONFIG, sc.reg);
/* work */
if (kp_spi_wait_for_reg_bit(cs, KP_SPI_REG_STATUS,
KP_SPI_REG_STATUS_EOT) < 0) {
dev_info(kpspi->dev, "EOT timed out\n");
goto out;
}
/* do the transfers for this message */
list_for_each_entry(transfer, &m->transfers, transfer_list) {
if (!transfer->tx_buf && !transfer->rx_buf &&
transfer->len) {
status = -EINVAL;
goto error;
}
/* transfer */
if (transfer->len) {
unsigned int word_len = spidev->bits_per_word;
unsigned int count;
/* set up the transfer... */
sc.reg = kp_spi_read_reg(cs, KP_SPI_REG_CONFIG);
/* ...direction */
if (transfer->tx_buf)
sc.bitfield.trm = KP_SPI_REG_CONFIG_TRM_TX;
else if (transfer->rx_buf)
sc.bitfield.trm = KP_SPI_REG_CONFIG_TRM_RX;
/* ...word length */
if (transfer->bits_per_word)
word_len = transfer->bits_per_word;
sc.bitfield.wl = word_len - 1;
/* ...chip select */
sc.bitfield.cs = spidev->chip_select;
/* ...and write the new settings */
kp_spi_write_reg(cs, KP_SPI_REG_CONFIG, sc.reg);
/* do the transfer */
count = kp_spi_txrx_pio(spidev, transfer);
m->actual_length += count;
if (count != transfer->len) {
status = -EIO;
goto error;
}
}
if (transfer->delay.value)
ndelay(spi_delay_to_ns(&transfer->delay, transfer));
}
/* de-assert chip select to end the sequence */
sc.reg = kp_spi_read_reg(cs, KP_SPI_REG_CONFIG);
sc.bitfield.spi_en = 0;
kp_spi_write_reg(cs, KP_SPI_REG_CONFIG, sc.reg);
out:
/* done work */
spi_finalize_current_message(master);
return 0;
error:
m->status = status;
return status;
}
static void
kp_spi_cleanup(struct spi_device *spidev)
{
struct kp_spi_controller_state *cs = spidev->controller_state;
kfree(cs);
}
/******************
* Probe / Remove *
******************/
static int
kp_spi_probe(struct platform_device *pldev)
{
struct kpc_core_device_platdata *drvdata;
struct spi_master *master;
struct kp_spi *kpspi;
struct resource *r;
int status = 0;
int i;
drvdata = pldev->dev.platform_data;
if (!drvdata) {
dev_err(&pldev->dev, "%s: platform_data is NULL\n", __func__);
return -ENODEV;
}
master = spi_alloc_master(&pldev->dev, sizeof(struct kp_spi));
if (!master) {
dev_err(&pldev->dev, "%s: master allocation failed\n",
__func__);
return -ENOMEM;
}
/* set up the spi functions */
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
master->bits_per_word_mask = (unsigned int)SPI_BPW_RANGE_MASK(4, 32);
master->setup = kp_spi_setup;
master->transfer_one_message = kp_spi_transfer_one_message;
master->cleanup = kp_spi_cleanup;
platform_set_drvdata(pldev, master);
kpspi = spi_master_get_devdata(master);
kpspi->master = master;
kpspi->dev = &pldev->dev;
master->num_chipselect = 4;
if (pldev->id != -1)
master->bus_num = pldev->id;
r = platform_get_resource(pldev, IORESOURCE_MEM, 0);
if (!r) {
dev_err(&pldev->dev, "%s: Unable to get platform resources\n",
__func__);
status = -ENODEV;
goto free_master;
}
kpspi->base = devm_ioremap(&pldev->dev, r->start,
resource_size(r));
status = spi_register_master(master);
if (status < 0) {
dev_err(&pldev->dev, "Unable to register SPI device\n");
goto free_master;
}
/* register the slave boards */
#define NEW_SPI_DEVICE_FROM_BOARD_INFO_TABLE(table) \
for (i = 0 ; i < ARRAY_SIZE(table) ; i++) { \
spi_new_device(master, &table[i]); \
}
switch ((drvdata->card_id & 0xFFFF0000) >> 16) {
case PCI_DEVICE_ID_DAKTRONICS_KADOKA_P2KR0:
NEW_SPI_DEVICE_FROM_BOARD_INFO_TABLE(p2kr0_board_info);
break;
default:
dev_err(&pldev->dev, "Unknown hardware, cant know what partition table to use!\n");
goto free_master;
}
return status;
free_master:
spi_master_put(master);
return status;
}
static int
kp_spi_remove(struct platform_device *pldev)
{
struct spi_master *master = platform_get_drvdata(pldev);
spi_unregister_master(master);
return 0;
}
static struct platform_driver kp_spi_driver = {
.driver = {
.name = KP_DRIVER_NAME_SPI,
},
.probe = kp_spi_probe,
.remove = kp_spi_remove,
};
module_platform_driver(kp_spi_driver);
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:kp_spi");

View File

@ -1,6 +0,0 @@
# SPDX-License-Identifier: GPL-2.0
obj-m := kpc_dma.o
kpc_dma-objs += dma.o
kpc_dma-objs += fileops.o
kpc_dma-objs += kpc_dma_driver.o

View File

@ -1,270 +0,0 @@
// SPDX-License-Identifier: GPL-2.0+
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/io.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/fs.h>
#include <linux/rwsem.h>
#include "kpc_dma_driver.h"
/********** IRQ Handlers **********/
static
irqreturn_t ndd_irq_handler(int irq, void *dev_id)
{
struct kpc_dma_device *ldev = (struct kpc_dma_device *)dev_id;
if ((GetEngineControl(ldev) & ENG_CTL_IRQ_ACTIVE) ||
(ldev->desc_completed->MyDMAAddr != GetEngineCompletePtr(ldev)))
schedule_work(&ldev->irq_work);
return IRQ_HANDLED;
}
static
void ndd_irq_worker(struct work_struct *ws)
{
struct kpc_dma_descriptor *cur;
struct kpc_dma_device *eng = container_of(ws, struct kpc_dma_device, irq_work);
lock_engine(eng);
if (GetEngineCompletePtr(eng) == 0)
goto out;
if (eng->desc_completed->MyDMAAddr == GetEngineCompletePtr(eng))
goto out;
cur = eng->desc_completed;
do {
cur = cur->Next;
dev_dbg(&eng->pldev->dev, "Handling completed descriptor %p (acd = %p)\n",
cur, cur->acd);
BUG_ON(cur == eng->desc_next); // Ordering failure.
if (cur->DescControlFlags & DMA_DESC_CTL_SOP) {
eng->accumulated_bytes = 0;
eng->accumulated_flags = 0;
}
eng->accumulated_bytes += cur->DescByteCount;
if (cur->DescStatusFlags & DMA_DESC_STS_ERROR)
eng->accumulated_flags |= ACD_FLAG_ENG_ACCUM_ERROR;
if (cur->DescStatusFlags & DMA_DESC_STS_SHORT)
eng->accumulated_flags |= ACD_FLAG_ENG_ACCUM_SHORT;
if (cur->DescControlFlags & DMA_DESC_CTL_EOP) {
if (cur->acd)
transfer_complete_cb(cur->acd, eng->accumulated_bytes,
eng->accumulated_flags | ACD_FLAG_DONE);
}
eng->desc_completed = cur;
} while (cur->MyDMAAddr != GetEngineCompletePtr(eng));
out:
SetClearEngineControl(eng, ENG_CTL_IRQ_ACTIVE, 0);
unlock_engine(eng);
}
/********** DMA Engine Init/Teardown **********/
void start_dma_engine(struct kpc_dma_device *eng)
{
eng->desc_next = eng->desc_pool_first;
eng->desc_completed = eng->desc_pool_last;
// Setup the engine pointer registers
SetEngineNextPtr(eng, eng->desc_pool_first);
SetEngineSWPtr(eng, eng->desc_pool_first);
ClearEngineCompletePtr(eng);
WriteEngineControl(eng, ENG_CTL_DMA_ENABLE | ENG_CTL_IRQ_ENABLE);
}
int setup_dma_engine(struct kpc_dma_device *eng, u32 desc_cnt)
{
u32 caps;
struct kpc_dma_descriptor *cur;
struct kpc_dma_descriptor *next;
dma_addr_t next_handle;
dma_addr_t head_handle;
unsigned int i;
int rv;
caps = GetEngineCapabilities(eng);
if (WARN(!(caps & ENG_CAP_PRESENT), "%s() called for DMA Engine at %p which isn't present in hardware!\n", __func__, eng))
return -ENXIO;
if (caps & ENG_CAP_DIRECTION)
eng->dir = DMA_FROM_DEVICE;
else
eng->dir = DMA_TO_DEVICE;
eng->desc_pool_cnt = desc_cnt;
eng->desc_pool = dma_pool_create("KPC DMA Descriptors", &eng->pldev->dev,
sizeof(struct kpc_dma_descriptor),
DMA_DESC_ALIGNMENT, 4096);
eng->desc_pool_first = dma_pool_alloc(eng->desc_pool, GFP_KERNEL | GFP_DMA, &head_handle);
if (!eng->desc_pool_first) {
dev_err(&eng->pldev->dev, "%s: couldn't allocate desc_pool_first!\n", __func__);
dma_pool_destroy(eng->desc_pool);
return -ENOMEM;
}
eng->desc_pool_first->MyDMAAddr = head_handle;
clear_desc(eng->desc_pool_first);
cur = eng->desc_pool_first;
for (i = 1 ; i < eng->desc_pool_cnt ; i++) {
next = dma_pool_alloc(eng->desc_pool, GFP_KERNEL | GFP_DMA, &next_handle);
if (!next)
goto done_alloc;
clear_desc(next);
next->MyDMAAddr = next_handle;
cur->DescNextDescPtr = next_handle;
cur->Next = next;
cur = next;
}
done_alloc:
// Link the last descriptor back to the first, so it's a circular linked list
cur->Next = eng->desc_pool_first;
cur->DescNextDescPtr = eng->desc_pool_first->MyDMAAddr;
eng->desc_pool_last = cur;
eng->desc_completed = eng->desc_pool_last;
// Setup work queue
INIT_WORK(&eng->irq_work, ndd_irq_worker);
// Grab IRQ line
rv = request_irq(eng->irq, ndd_irq_handler, IRQF_SHARED,
KP_DRIVER_NAME_DMA_CONTROLLER, eng);
if (rv) {
dev_err(&eng->pldev->dev, "%s: failed to request_irq: %d\n", __func__, rv);
return rv;
}
// Turn on the engine!
start_dma_engine(eng);
unlock_engine(eng);
return 0;
}
void stop_dma_engine(struct kpc_dma_device *eng)
{
unsigned long timeout;
// Disable the descriptor engine
WriteEngineControl(eng, 0);
// Wait for descriptor engine to finish current operaion
timeout = jiffies + (HZ / 2);
while (GetEngineControl(eng) & ENG_CTL_DMA_RUNNING) {
if (time_after(jiffies, timeout)) {
dev_crit(&eng->pldev->dev, "DMA_RUNNING still asserted!\n");
break;
}
}
// Request a reset
WriteEngineControl(eng, ENG_CTL_DMA_RESET_REQUEST);
// Wait for reset request to be processed
timeout = jiffies + (HZ / 2);
while (GetEngineControl(eng) & (ENG_CTL_DMA_RUNNING | ENG_CTL_DMA_RESET_REQUEST)) {
if (time_after(jiffies, timeout)) {
dev_crit(&eng->pldev->dev, "ENG_CTL_DMA_RESET_REQUEST still asserted!\n");
break;
}
}
// Request a reset
WriteEngineControl(eng, ENG_CTL_DMA_RESET);
// And wait for reset to complete
timeout = jiffies + (HZ / 2);
while (GetEngineControl(eng) & ENG_CTL_DMA_RESET) {
if (time_after(jiffies, timeout)) {
dev_crit(&eng->pldev->dev, "DMA_RESET still asserted!\n");
break;
}
}
// Clear any persistent bits just to make sure there is no residue from the reset
SetClearEngineControl(eng, (ENG_CTL_IRQ_ACTIVE | ENG_CTL_DESC_COMPLETE |
ENG_CTL_DESC_ALIGN_ERR | ENG_CTL_DESC_FETCH_ERR |
ENG_CTL_SW_ABORT_ERR | ENG_CTL_DESC_CHAIN_END |
ENG_CTL_DMA_WAITING_PERSIST), 0);
// Reset performance counters
// Completely disable the engine
WriteEngineControl(eng, 0);
}
void destroy_dma_engine(struct kpc_dma_device *eng)
{
struct kpc_dma_descriptor *cur;
dma_addr_t cur_handle;
unsigned int i;
stop_dma_engine(eng);
cur = eng->desc_pool_first;
cur_handle = eng->desc_pool_first->MyDMAAddr;
for (i = 0 ; i < eng->desc_pool_cnt ; i++) {
struct kpc_dma_descriptor *next = cur->Next;
dma_addr_t next_handle = cur->DescNextDescPtr;
dma_pool_free(eng->desc_pool, cur, cur_handle);
cur_handle = next_handle;
cur = next;
}
dma_pool_destroy(eng->desc_pool);
free_irq(eng->irq, eng);
}
/********** Helper Functions **********/
int count_descriptors_available(struct kpc_dma_device *eng)
{
u32 count = 0;
struct kpc_dma_descriptor *cur = eng->desc_next;
while (cur != eng->desc_completed) {
BUG_ON(!cur);
count++;
cur = cur->Next;
}
return count;
}
void clear_desc(struct kpc_dma_descriptor *desc)
{
if (!desc)
return;
desc->DescByteCount = 0;
desc->DescStatusErrorFlags = 0;
desc->DescStatusFlags = 0;
desc->DescUserControlLS = 0;
desc->DescUserControlMS = 0;
desc->DescCardAddrLS = 0;
desc->DescBufferByteCount = 0;
desc->DescCardAddrMS = 0;
desc->DescControlFlags = 0;
desc->DescSystemAddrLS = 0;
desc->DescSystemAddrMS = 0;
desc->acd = NULL;
}

View File

@ -1,363 +0,0 @@
// SPDX-License-Identifier: GPL-2.0+
#include <linux/module.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/kernel.h> /* printk() */
#include <linux/slab.h> /* kmalloc() */
#include <linux/fs.h> /* everything... */
#include <linux/errno.h> /* error codes */
#include <linux/types.h> /* size_t */
#include <linux/cdev.h>
#include <linux/uaccess.h> /* copy_*_user */
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include "kpc_dma_driver.h"
#include "uapi.h"
/********** Helper Functions **********/
static inline
unsigned int count_pages(unsigned long iov_base, size_t iov_len)
{
unsigned long first = (iov_base & PAGE_MASK) >> PAGE_SHIFT;
unsigned long last = ((iov_base + iov_len - 1) & PAGE_MASK) >> PAGE_SHIFT;
return last - first + 1;
}
static inline
unsigned int count_parts_for_sge(struct scatterlist *sg)
{
return DIV_ROUND_UP(sg_dma_len(sg), 0x80000);
}
/********** Transfer Helpers **********/
static int kpc_dma_transfer(struct dev_private_data *priv,
unsigned long iov_base, size_t iov_len)
{
unsigned int i = 0;
int rv = 0, nr_pages = 0;
struct kpc_dma_device *ldev;
struct aio_cb_data *acd;
DECLARE_COMPLETION_ONSTACK(done);
u32 desc_needed = 0;
struct scatterlist *sg;
u32 num_descrs_avail;
struct kpc_dma_descriptor *desc;
unsigned int pcnt;
unsigned int p;
u64 card_addr;
u64 dma_addr;
u64 user_ctl;
ldev = priv->ldev;
acd = kzalloc(sizeof(*acd), GFP_KERNEL);
if (!acd) {
dev_err(&priv->ldev->pldev->dev, "Couldn't kmalloc space for the aio data\n");
return -ENOMEM;
}
memset(acd, 0x66, sizeof(struct aio_cb_data));
acd->priv = priv;
acd->ldev = priv->ldev;
acd->cpl = &done;
acd->flags = 0;
acd->len = iov_len;
acd->page_count = count_pages(iov_base, iov_len);
// Allocate an array of page pointers
acd->user_pages = kcalloc(acd->page_count, sizeof(struct page *),
GFP_KERNEL);
if (!acd->user_pages) {
dev_err(&priv->ldev->pldev->dev, "Couldn't kmalloc space for the page pointers\n");
rv = -ENOMEM;
goto err_alloc_userpages;
}
// Lock the user buffer pages in memory, and hold on to the page pointers (for the sglist)
mmap_read_lock(current->mm); /* get memory map semaphore */
rv = pin_user_pages(iov_base, acd->page_count, FOLL_TOUCH | FOLL_WRITE,
acd->user_pages, NULL);
mmap_read_unlock(current->mm); /* release the semaphore */
if (rv != acd->page_count) {
nr_pages = rv;
if (rv > 0)
rv = -EFAULT;
dev_err(&priv->ldev->pldev->dev, "Couldn't pin_user_pages (%d)\n", rv);
goto unpin_pages;
}
nr_pages = acd->page_count;
// Allocate and setup the sg_table (scatterlist entries)
rv = sg_alloc_table_from_pages(&acd->sgt, acd->user_pages, acd->page_count,
iov_base & (PAGE_SIZE - 1), iov_len, GFP_KERNEL);
if (rv) {
dev_err(&priv->ldev->pldev->dev, "Couldn't alloc sg_table (%d)\n", rv);
goto unpin_pages;
}
// Setup the DMA mapping for all the sg entries
acd->mapped_entry_count = dma_map_sg(&ldev->pldev->dev, acd->sgt.sgl, acd->sgt.nents,
ldev->dir);
if (acd->mapped_entry_count <= 0) {
dev_err(&priv->ldev->pldev->dev, "Couldn't dma_map_sg (%d)\n",
acd->mapped_entry_count);
goto free_table;
}
// Calculate how many descriptors are actually needed for this transfer.
for_each_sg(acd->sgt.sgl, sg, acd->mapped_entry_count, i) {
desc_needed += count_parts_for_sge(sg);
}
lock_engine(ldev);
// Figoure out how many descriptors are available and return an error if there aren't enough
num_descrs_avail = count_descriptors_available(ldev);
dev_dbg(&priv->ldev->pldev->dev,
" mapped_entry_count = %d num_descrs_needed = %d num_descrs_avail = %d\n",
acd->mapped_entry_count, desc_needed, num_descrs_avail);
if (desc_needed >= ldev->desc_pool_cnt) {
dev_warn(&priv->ldev->pldev->dev,
" mapped_entry_count = %d num_descrs_needed = %d num_descrs_avail = %d TOO MANY to ever complete!\n",
acd->mapped_entry_count, desc_needed, num_descrs_avail);
rv = -EAGAIN;
goto err_descr_too_many;
}
if (desc_needed > num_descrs_avail) {
dev_warn(&priv->ldev->pldev->dev,
" mapped_entry_count = %d num_descrs_needed = %d num_descrs_avail = %d Too many to complete right now.\n",
acd->mapped_entry_count, desc_needed, num_descrs_avail);
rv = -EMSGSIZE;
goto err_descr_too_many;
}
// Loop through all the sg table entries and fill out a descriptor for each one.
desc = ldev->desc_next;
card_addr = acd->priv->card_addr;
for_each_sg(acd->sgt.sgl, sg, acd->mapped_entry_count, i) {
pcnt = count_parts_for_sge(sg);
for (p = 0 ; p < pcnt ; p++) {
// Fill out the descriptor
BUG_ON(!desc);
clear_desc(desc);
if (p != pcnt - 1)
desc->DescByteCount = 0x80000;
else
desc->DescByteCount = sg_dma_len(sg) - (p * 0x80000);
desc->DescBufferByteCount = desc->DescByteCount;
desc->DescControlFlags |= DMA_DESC_CTL_IRQONERR;
if (i == 0 && p == 0)
desc->DescControlFlags |= DMA_DESC_CTL_SOP;
if (i == acd->mapped_entry_count - 1 && p == pcnt - 1)
desc->DescControlFlags |= DMA_DESC_CTL_EOP | DMA_DESC_CTL_IRQONDONE;
desc->DescCardAddrLS = (card_addr & 0xFFFFFFFF);
desc->DescCardAddrMS = (card_addr >> 32) & 0xF;
card_addr += desc->DescByteCount;
dma_addr = sg_dma_address(sg) + (p * 0x80000);
desc->DescSystemAddrLS = (dma_addr & 0x00000000FFFFFFFFUL) >> 0;
desc->DescSystemAddrMS = (dma_addr & 0xFFFFFFFF00000000UL) >> 32;
user_ctl = acd->priv->user_ctl;
if (i == acd->mapped_entry_count - 1 && p == pcnt - 1)
user_ctl = acd->priv->user_ctl_last;
desc->DescUserControlLS = (user_ctl & 0x00000000FFFFFFFFUL) >> 0;
desc->DescUserControlMS = (user_ctl & 0xFFFFFFFF00000000UL) >> 32;
if (i == acd->mapped_entry_count - 1 && p == pcnt - 1)
desc->acd = acd;
dev_dbg(&priv->ldev->pldev->dev, " Filled descriptor %p (acd = %p)\n",
desc, desc->acd);
ldev->desc_next = desc->Next;
desc = desc->Next;
}
}
// Send the filled descriptors off to the hardware to process!
SetEngineSWPtr(ldev, ldev->desc_next);
unlock_engine(ldev);
rv = wait_for_completion_interruptible(&done);
/*
* If the user aborted (rv == -ERESTARTSYS), we're no longer responsible
* for cleaning up the acd
*/
if (rv == -ERESTARTSYS)
acd->cpl = NULL;
if (rv == 0) {
rv = acd->len;
kfree(acd);
}
return rv;
err_descr_too_many:
unlock_engine(ldev);
dma_unmap_sg(&ldev->pldev->dev, acd->sgt.sgl, acd->sgt.nents, ldev->dir);
free_table:
sg_free_table(&acd->sgt);
unpin_pages:
if (nr_pages > 0)
unpin_user_pages(acd->user_pages, nr_pages);
kfree(acd->user_pages);
err_alloc_userpages:
kfree(acd);
dev_dbg(&priv->ldev->pldev->dev, "%s returning with error %d\n", __func__, rv);
return rv;
}
void transfer_complete_cb(struct aio_cb_data *acd, size_t xfr_count, u32 flags)
{
unsigned int i;
BUG_ON(!acd);
BUG_ON(!acd->user_pages);
BUG_ON(!acd->sgt.sgl);
BUG_ON(!acd->ldev);
BUG_ON(!acd->ldev->pldev);
dma_unmap_sg(&acd->ldev->pldev->dev, acd->sgt.sgl, acd->sgt.nents, acd->ldev->dir);
for (i = 0 ; i < acd->page_count ; i++) {
if (!PageReserved(acd->user_pages[i]))
set_page_dirty_lock(acd->user_pages[i]);
}
unpin_user_pages(acd->user_pages, acd->page_count);
sg_free_table(&acd->sgt);
kfree(acd->user_pages);
acd->flags = flags;
if (acd->cpl) {
complete(acd->cpl);
} else {
/*
* There's no completion, so we're responsible for cleaning up
* the acd
*/
kfree(acd);
}
}
/********** Fileops **********/
static
int kpc_dma_open(struct inode *inode, struct file *filp)
{
struct dev_private_data *priv;
struct kpc_dma_device *ldev = kpc_dma_lookup_device(iminor(inode));
if (!ldev)
return -ENODEV;
if (!atomic_dec_and_test(&ldev->open_count)) {
atomic_inc(&ldev->open_count);
return -EBUSY; /* already open */
}
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->ldev = ldev;
filp->private_data = priv;
return 0;
}
static
int kpc_dma_close(struct inode *inode, struct file *filp)
{
struct kpc_dma_descriptor *cur;
struct dev_private_data *priv = (struct dev_private_data *)filp->private_data;
struct kpc_dma_device *eng = priv->ldev;
lock_engine(eng);
stop_dma_engine(eng);
cur = eng->desc_completed->Next;
while (cur != eng->desc_next) {
dev_dbg(&eng->pldev->dev, "Aborting descriptor %p (acd = %p)\n", cur, cur->acd);
if (cur->DescControlFlags & DMA_DESC_CTL_EOP) {
if (cur->acd)
transfer_complete_cb(cur->acd, 0, ACD_FLAG_ABORT);
}
clear_desc(cur);
eng->desc_completed = cur;
cur = cur->Next;
}
start_dma_engine(eng);
unlock_engine(eng);
atomic_inc(&priv->ldev->open_count); /* release the device */
kfree(priv);
return 0;
}
static
ssize_t kpc_dma_read(struct file *filp, char __user *user_buf, size_t count, loff_t *ppos)
{
struct dev_private_data *priv = (struct dev_private_data *)filp->private_data;
if (priv->ldev->dir != DMA_FROM_DEVICE)
return -EMEDIUMTYPE;
return kpc_dma_transfer(priv, (unsigned long)user_buf, count);
}
static
ssize_t kpc_dma_write(struct file *filp, const char __user *user_buf, size_t count, loff_t *ppos)
{
struct dev_private_data *priv = (struct dev_private_data *)filp->private_data;
if (priv->ldev->dir != DMA_TO_DEVICE)
return -EMEDIUMTYPE;
return kpc_dma_transfer(priv, (unsigned long)user_buf, count);
}
static
long kpc_dma_ioctl(struct file *filp, unsigned int ioctl_num, unsigned long ioctl_param)
{
struct dev_private_data *priv = (struct dev_private_data *)filp->private_data;
switch (ioctl_num) {
case KND_IOCTL_SET_CARD_ADDR:
priv->card_addr = ioctl_param; return priv->card_addr;
case KND_IOCTL_SET_USER_CTL:
priv->user_ctl = ioctl_param; return priv->user_ctl;
case KND_IOCTL_SET_USER_CTL_LAST:
priv->user_ctl_last = ioctl_param; return priv->user_ctl_last;
case KND_IOCTL_GET_USER_STS:
return priv->user_sts;
}
return -ENOTTY;
}
const struct file_operations kpc_dma_fops = {
.owner = THIS_MODULE,
.open = kpc_dma_open,
.release = kpc_dma_close,
.read = kpc_dma_read,
.write = kpc_dma_write,
.unlocked_ioctl = kpc_dma_ioctl,
};

View File

@ -1,249 +0,0 @@
// SPDX-License-Identifier: GPL-2.0+
#include <linux/init.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/io.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/fs.h>
#include <linux/rwsem.h>
#include "kpc_dma_driver.h"
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Matt.Sickler@daktronics.com");
#define KPC_DMA_CHAR_MAJOR UNNAMED_MAJOR
#define KPC_DMA_NUM_MINORS BIT(MINORBITS)
static DEFINE_MUTEX(kpc_dma_mtx);
static int assigned_major_num;
static LIST_HEAD(kpc_dma_list);
/********** kpc_dma_list list management **********/
struct kpc_dma_device *kpc_dma_lookup_device(int minor)
{
struct kpc_dma_device *c;
mutex_lock(&kpc_dma_mtx);
list_for_each_entry(c, &kpc_dma_list, list) {
if (c->pldev->id == minor)
goto out;
}
c = NULL; // not-found case
out:
mutex_unlock(&kpc_dma_mtx);
return c;
}
static void kpc_dma_add_device(struct kpc_dma_device *ldev)
{
mutex_lock(&kpc_dma_mtx);
list_add(&ldev->list, &kpc_dma_list);
mutex_unlock(&kpc_dma_mtx);
}
static void kpc_dma_del_device(struct kpc_dma_device *ldev)
{
mutex_lock(&kpc_dma_mtx);
list_del(&ldev->list);
mutex_unlock(&kpc_dma_mtx);
}
/********** SysFS Attributes **********/
static ssize_t engine_regs_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct kpc_dma_device *ldev;
struct platform_device *pldev = to_platform_device(dev);
if (!pldev)
return 0;
ldev = platform_get_drvdata(pldev);
if (!ldev)
return 0;
return scnprintf(buf, PAGE_SIZE,
"EngineControlStatus = 0x%08x\n"
"RegNextDescPtr = 0x%08x\n"
"RegSWDescPtr = 0x%08x\n"
"RegCompletedDescPtr = 0x%08x\n"
"desc_pool_first = %p\n"
"desc_pool_last = %p\n"
"desc_next = %p\n"
"desc_completed = %p\n",
readl(ldev->eng_regs + 1),
readl(ldev->eng_regs + 2),
readl(ldev->eng_regs + 3),
readl(ldev->eng_regs + 4),
ldev->desc_pool_first,
ldev->desc_pool_last,
ldev->desc_next,
ldev->desc_completed
);
}
static DEVICE_ATTR_RO(engine_regs);
static const struct attribute *ndd_attr_list[] = {
&dev_attr_engine_regs.attr,
NULL,
};
static struct class *kpc_dma_class;
/********** Platform Driver Functions **********/
static
int kpc_dma_probe(struct platform_device *pldev)
{
struct resource *r = NULL;
int rv = 0;
dev_t dev;
struct kpc_dma_device *ldev = kzalloc(sizeof(*ldev), GFP_KERNEL);
if (!ldev) {
dev_err(&pldev->dev, "%s: unable to kzalloc space for kpc_dma_device\n", __func__);
rv = -ENOMEM;
goto err_rv;
}
INIT_LIST_HEAD(&ldev->list);
ldev->pldev = pldev;
platform_set_drvdata(pldev, ldev);
atomic_set(&ldev->open_count, 1);
mutex_init(&ldev->sem);
lock_engine(ldev);
// Get Engine regs resource
r = platform_get_resource(pldev, IORESOURCE_MEM, 0);
if (!r) {
dev_err(&ldev->pldev->dev, "%s: didn't get the engine regs resource!\n", __func__);
rv = -ENXIO;
goto err_kfree;
}
ldev->eng_regs = ioremap(r->start, resource_size(r));
if (!ldev->eng_regs) {
dev_err(&ldev->pldev->dev, "%s: failed to ioremap engine regs!\n", __func__);
rv = -ENXIO;
goto err_kfree;
}
r = platform_get_resource(pldev, IORESOURCE_IRQ, 0);
if (!r) {
dev_err(&ldev->pldev->dev, "%s: didn't get the IRQ resource!\n", __func__);
rv = -ENXIO;
goto err_kfree;
}
ldev->irq = r->start;
// Setup miscdev struct
dev = MKDEV(assigned_major_num, pldev->id);
ldev->kpc_dma_dev = device_create(kpc_dma_class, &pldev->dev, dev, ldev,
"kpc_dma%d", pldev->id);
if (IS_ERR(ldev->kpc_dma_dev)) {
rv = PTR_ERR(ldev->kpc_dma_dev);
dev_err(&ldev->pldev->dev, "%s: device_create failed: %d\n", __func__, rv);
goto err_kfree;
}
// Setup the DMA engine
rv = setup_dma_engine(ldev, 30);
if (rv) {
dev_err(&ldev->pldev->dev, "%s: failed to setup_dma_engine: %d\n", __func__, rv);
goto err_misc_dereg;
}
// Setup the sysfs files
rv = sysfs_create_files(&(ldev->pldev->dev.kobj), ndd_attr_list);
if (rv) {
dev_err(&ldev->pldev->dev, "%s: Failed to add sysfs files: %d\n", __func__, rv);
goto err_destroy_eng;
}
kpc_dma_add_device(ldev);
return 0;
err_destroy_eng:
destroy_dma_engine(ldev);
err_misc_dereg:
device_destroy(kpc_dma_class, dev);
err_kfree:
kfree(ldev);
err_rv:
return rv;
}
static
int kpc_dma_remove(struct platform_device *pldev)
{
struct kpc_dma_device *ldev = platform_get_drvdata(pldev);
if (!ldev)
return -ENXIO;
lock_engine(ldev);
sysfs_remove_files(&(ldev->pldev->dev.kobj), ndd_attr_list);
destroy_dma_engine(ldev);
kpc_dma_del_device(ldev);
device_destroy(kpc_dma_class, MKDEV(assigned_major_num, ldev->pldev->id));
kfree(ldev);
return 0;
}
/********** Driver Functions **********/
static struct platform_driver kpc_dma_plat_driver_i = {
.probe = kpc_dma_probe,
.remove = kpc_dma_remove,
.driver = {
.name = KP_DRIVER_NAME_DMA_CONTROLLER,
},
};
static
int __init kpc_dma_driver_init(void)
{
int err;
err = __register_chrdev(KPC_DMA_CHAR_MAJOR, 0, KPC_DMA_NUM_MINORS,
"kpc_dma", &kpc_dma_fops);
if (err < 0) {
pr_err("Can't allocate a major number (%d) for kpc_dma (err = %d)\n",
KPC_DMA_CHAR_MAJOR, err);
goto fail_chrdev_register;
}
assigned_major_num = err;
kpc_dma_class = class_create(THIS_MODULE, "kpc_dma");
err = PTR_ERR(kpc_dma_class);
if (IS_ERR(kpc_dma_class)) {
pr_err("Can't create class kpc_dma (err = %d)\n", err);
goto fail_class_create;
}
err = platform_driver_register(&kpc_dma_plat_driver_i);
if (err) {
pr_err("Can't register platform driver for kpc_dma (err = %d)\n", err);
goto fail_platdriver_register;
}
return err;
fail_platdriver_register:
class_destroy(kpc_dma_class);
fail_class_create:
__unregister_chrdev(KPC_DMA_CHAR_MAJOR, 0, KPC_DMA_NUM_MINORS, "kpc_dma");
fail_chrdev_register:
return err;
}
module_init(kpc_dma_driver_init);
static
void __exit kpc_dma_driver_exit(void)
{
platform_driver_unregister(&kpc_dma_plat_driver_i);
class_destroy(kpc_dma_class);
__unregister_chrdev(KPC_DMA_CHAR_MAJOR, 0, KPC_DMA_NUM_MINORS, "kpc_dma");
}
module_exit(kpc_dma_driver_exit);

View File

@ -1,222 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0+ */
#ifndef KPC_DMA_DRIVER_H
#define KPC_DMA_DRIVER_H
#include <linux/platform_device.h>
#include <linux/cdev.h>
#include <linux/kfifo.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/sched.h>
#include <linux/miscdevice.h>
#include <linux/rwsem.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/workqueue.h>
#include <linux/bitops.h>
#include "../kpc.h"
struct kp2000_device;
struct kpc_dma_device {
struct list_head list;
struct platform_device *pldev;
u32 __iomem *eng_regs;
struct device *kpc_dma_dev;
struct kobject kobj;
char name[16];
int dir; // DMA_FROM_DEVICE || DMA_TO_DEVICE
struct mutex sem;
unsigned int irq;
struct work_struct irq_work;
atomic_t open_count;
size_t accumulated_bytes;
u32 accumulated_flags;
// Descriptor "Pool" housekeeping
u32 desc_pool_cnt;
struct dma_pool *desc_pool;
struct kpc_dma_descriptor *desc_pool_first;
struct kpc_dma_descriptor *desc_pool_last;
struct kpc_dma_descriptor *desc_next;
struct kpc_dma_descriptor *desc_completed;
};
struct dev_private_data {
struct kpc_dma_device *ldev;
u64 card_addr;
u64 user_ctl;
u64 user_ctl_last;
u64 user_sts;
};
struct kpc_dma_device *kpc_dma_lookup_device(int minor);
extern const struct file_operations kpc_dma_fops;
#define ENG_CAP_PRESENT 0x00000001
#define ENG_CAP_DIRECTION 0x00000002
#define ENG_CAP_TYPE_MASK 0x000000F0
#define ENG_CAP_NUMBER_MASK 0x0000FF00
#define ENG_CAP_CARD_ADDR_SIZE_MASK 0x007F0000
#define ENG_CAP_DESC_MAX_BYTE_CNT_MASK 0x3F000000
#define ENG_CAP_PERF_SCALE_MASK 0xC0000000
#define ENG_CTL_IRQ_ENABLE BIT(0)
#define ENG_CTL_IRQ_ACTIVE BIT(1)
#define ENG_CTL_DESC_COMPLETE BIT(2)
#define ENG_CTL_DESC_ALIGN_ERR BIT(3)
#define ENG_CTL_DESC_FETCH_ERR BIT(4)
#define ENG_CTL_SW_ABORT_ERR BIT(5)
#define ENG_CTL_DESC_CHAIN_END BIT(7)
#define ENG_CTL_DMA_ENABLE BIT(8)
#define ENG_CTL_DMA_RUNNING BIT(10)
#define ENG_CTL_DMA_WAITING BIT(11)
#define ENG_CTL_DMA_WAITING_PERSIST BIT(12)
#define ENG_CTL_DMA_RESET_REQUEST BIT(14)
#define ENG_CTL_DMA_RESET BIT(15)
#define ENG_CTL_DESC_FETCH_ERR_CLASS_MASK 0x700000
struct aio_cb_data {
struct dev_private_data *priv;
struct kpc_dma_device *ldev;
struct completion *cpl;
unsigned char flags;
size_t len;
unsigned int page_count;
struct page **user_pages;
struct sg_table sgt;
int mapped_entry_count;
};
#define ACD_FLAG_DONE 0
#define ACD_FLAG_ABORT 1
#define ACD_FLAG_ENG_ACCUM_ERROR 4
#define ACD_FLAG_ENG_ACCUM_SHORT 5
struct kpc_dma_descriptor {
struct {
volatile u32 DescByteCount :20;
volatile u32 DescStatusErrorFlags :4;
volatile u32 DescStatusFlags :8;
};
volatile u32 DescUserControlLS;
volatile u32 DescUserControlMS;
volatile u32 DescCardAddrLS;
struct {
volatile u32 DescBufferByteCount :20;
volatile u32 DescCardAddrMS :4;
volatile u32 DescControlFlags :8;
};
volatile u32 DescSystemAddrLS;
volatile u32 DescSystemAddrMS;
volatile u32 DescNextDescPtr;
dma_addr_t MyDMAAddr;
struct kpc_dma_descriptor *Next;
struct aio_cb_data *acd;
} __attribute__((packed));
// DescControlFlags:
#define DMA_DESC_CTL_SOP BIT(7)
#define DMA_DESC_CTL_EOP BIT(6)
#define DMA_DESC_CTL_AFIFO BIT(2)
#define DMA_DESC_CTL_IRQONERR BIT(1)
#define DMA_DESC_CTL_IRQONDONE BIT(0)
// DescStatusFlags:
#define DMA_DESC_STS_SOP BIT(7)
#define DMA_DESC_STS_EOP BIT(6)
#define DMA_DESC_STS_ERROR BIT(4)
#define DMA_DESC_STS_USMSZ BIT(3)
#define DMA_DESC_STS_USLSZ BIT(2)
#define DMA_DESC_STS_SHORT BIT(1)
#define DMA_DESC_STS_COMPLETE BIT(0)
// DescStatusErrorFlags:
#define DMA_DESC_ESTS_ECRC BIT(2)
#define DMA_DESC_ESTS_POISON BIT(1)
#define DMA_DESC_ESTS_UNSUCCESSFUL BIT(0)
#define DMA_DESC_ALIGNMENT 0x20
static inline
u32 GetEngineCapabilities(struct kpc_dma_device *eng)
{
return readl(eng->eng_regs + 0);
}
static inline
void WriteEngineControl(struct kpc_dma_device *eng, u32 value)
{
writel(value, eng->eng_regs + 1);
}
static inline
u32 GetEngineControl(struct kpc_dma_device *eng)
{
return readl(eng->eng_regs + 1);
}
static inline
void SetClearEngineControl(struct kpc_dma_device *eng, u32 set_bits, u32 clear_bits)
{
u32 val = GetEngineControl(eng);
val |= set_bits;
val &= ~clear_bits;
WriteEngineControl(eng, val);
}
static inline
void SetEngineNextPtr(struct kpc_dma_device *eng, struct kpc_dma_descriptor *desc)
{
writel(desc->MyDMAAddr, eng->eng_regs + 2);
}
static inline
void SetEngineSWPtr(struct kpc_dma_device *eng, struct kpc_dma_descriptor *desc)
{
writel(desc->MyDMAAddr, eng->eng_regs + 3);
}
static inline
void ClearEngineCompletePtr(struct kpc_dma_device *eng)
{
writel(0, eng->eng_regs + 4);
}
static inline
u32 GetEngineCompletePtr(struct kpc_dma_device *eng)
{
return readl(eng->eng_regs + 4);
}
static inline
void lock_engine(struct kpc_dma_device *eng)
{
BUG_ON(!eng);
mutex_lock(&eng->sem);
}
static inline
void unlock_engine(struct kpc_dma_device *eng)
{
BUG_ON(!eng);
mutex_unlock(&eng->sem);
}
/// Shared Functions
void start_dma_engine(struct kpc_dma_device *eng);
int setup_dma_engine(struct kpc_dma_device *eng, u32 desc_cnt);
void stop_dma_engine(struct kpc_dma_device *eng);
void destroy_dma_engine(struct kpc_dma_device *eng);
void clear_desc(struct kpc_dma_descriptor *desc);
int count_descriptors_available(struct kpc_dma_device *eng);
void transfer_complete_cb(struct aio_cb_data *acd, size_t xfr_count, u32 flags);
#endif /* KPC_DMA_DRIVER_H */

View File

@ -1,11 +0,0 @@
/* SPDX-License-Identifier: GPL-2.0+ */
#ifndef KPC_DMA_DRIVER_UAPI_H_
#define KPC_DMA_DRIVER_UAPI_H_
#include <linux/ioctl.h>
#define KND_IOCTL_SET_CARD_ADDR _IOW('k', 1, __u32)
#define KND_IOCTL_SET_USER_CTL _IOW('k', 2, __u64)
#define KND_IOCTL_SET_USER_CTL_LAST _IOW('k', 4, __u64)
#define KND_IOCTL_GET_USER_STS _IOR('k', 3, __u64)
#endif /* KPC_DMA_DRIVER_UAPI_H_ */