Merge series "spi-bcm-qspi spcr3 enahancements" from Kamal Dasu <kdasu.kdev@gmail.com>:

This change set feature enahancements for spcr3 transfer modes as well as
adds support for half-duplex 3-wire mode transfer.

Kamal Dasu (3):
  spi: bcm-qspi: Add mspi spcr3 32/64-bits xfer mode
  spi: bcm-qspi: clear MSPI spifie interrupt during probe
  spi: bcm-qspi: add support for 3-wire mode for half duplex transfer

 drivers/spi/spi-bcm-qspi.c | 262 +++++++++++++++++++++++++++++--------
 1 file changed, 208 insertions(+), 54 deletions(-)

--
2.17.1
This commit is contained in:
Mark Brown 2021-10-11 14:38:29 +01:00
commit 923f508f9e
No known key found for this signature in database
GPG Key ID: 24D68B725D5487D0

View File

@ -83,6 +83,9 @@
/* MSPI register offsets */ /* MSPI register offsets */
#define MSPI_SPCR0_LSB 0x000 #define MSPI_SPCR0_LSB 0x000
#define MSPI_SPCR0_MSB 0x004 #define MSPI_SPCR0_MSB 0x004
#define MSPI_SPCR0_MSB_CPHA BIT(0)
#define MSPI_SPCR0_MSB_CPOL BIT(1)
#define MSPI_SPCR0_MSB_BITS_SHIFT 0x2
#define MSPI_SPCR1_LSB 0x008 #define MSPI_SPCR1_LSB 0x008
#define MSPI_SPCR1_MSB 0x00c #define MSPI_SPCR1_MSB 0x00c
#define MSPI_NEWQP 0x010 #define MSPI_NEWQP 0x010
@ -100,8 +103,10 @@
#define MSPI_MASTER_BIT BIT(7) #define MSPI_MASTER_BIT BIT(7)
#define MSPI_NUM_CDRAM 16 #define MSPI_NUM_CDRAM 16
#define MSPI_CDRAM_OUTP BIT(8)
#define MSPI_CDRAM_CONT_BIT BIT(7) #define MSPI_CDRAM_CONT_BIT BIT(7)
#define MSPI_CDRAM_BITSE_BIT BIT(6) #define MSPI_CDRAM_BITSE_BIT BIT(6)
#define MSPI_CDRAM_DT_BIT BIT(5)
#define MSPI_CDRAM_PCS 0xf #define MSPI_CDRAM_PCS 0xf
#define MSPI_SPCR2_SPE BIT(6) #define MSPI_SPCR2_SPE BIT(6)
@ -114,6 +119,14 @@
~(BIT(10) | BIT(11))) ~(BIT(10) | BIT(11)))
#define MSPI_SPCR3_SYSCLKSEL_108 (MSPI_SPCR3_SYSCLKSEL_MASK & \ #define MSPI_SPCR3_SYSCLKSEL_108 (MSPI_SPCR3_SYSCLKSEL_MASK & \
BIT(11)) BIT(11))
#define MSPI_SPCR3_TXRXDAM_MASK GENMASK(4, 2)
#define MSPI_SPCR3_DAM_8BYTE 0
#define MSPI_SPCR3_DAM_16BYTE (BIT(2) | BIT(4))
#define MSPI_SPCR3_DAM_32BYTE (BIT(3) | BIT(5))
#define MSPI_SPCR3_HALFDUPLEX BIT(6)
#define MSPI_SPCR3_HDOUTTYPE BIT(7)
#define MSPI_SPCR3_DATA_REG_SZ BIT(8)
#define MSPI_SPCR3_CPHARX BIT(9)
#define MSPI_MSPI_STATUS_SPIF BIT(0) #define MSPI_MSPI_STATUS_SPIF BIT(0)
@ -153,6 +166,14 @@
#define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM | \ #define TRANS_STATUS_BREAK_DESELECT (TRANS_STATUS_BREAK_EOM | \
TRANS_STATUS_BREAK_CS_CHANGE) TRANS_STATUS_BREAK_CS_CHANGE)
/*
* Used for writing and reading data in the right order
* to TXRAM and RXRAM when used as 32-bit registers respectively
*/
#define swap4bytes(__val) \
((((__val) >> 24) & 0x000000FF) | (((__val) >> 8) & 0x0000FF00) | \
(((__val) << 8) & 0x00FF0000) | (((__val) << 24) & 0xFF000000))
struct bcm_qspi_parms { struct bcm_qspi_parms {
u32 speed_hz; u32 speed_hz;
u8 mode; u8 mode;
@ -261,7 +282,7 @@ static inline bool bcm_qspi_has_sysclk_108(struct bcm_qspi *qspi)
static inline int bcm_qspi_spbr_min(struct bcm_qspi *qspi) static inline int bcm_qspi_spbr_min(struct bcm_qspi *qspi)
{ {
if (bcm_qspi_has_fastbr(qspi)) if (bcm_qspi_has_fastbr(qspi))
return 1; return (bcm_qspi_has_sysclk_108(qspi) ? 4 : 1);
else else
return 8; return 8;
} }
@ -571,23 +592,23 @@ static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
{ {
u32 spcr, spbr = 0; u32 spcr, spbr = 0;
if (xp->speed_hz)
spbr = qspi->base_clk / (2 * xp->speed_hz);
spcr = clamp_val(spbr, bcm_qspi_spbr_min(qspi), QSPI_SPBR_MAX);
bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
if (!qspi->mspi_maj_rev) if (!qspi->mspi_maj_rev)
/* legacy controller */ /* legacy controller */
spcr = MSPI_MASTER_BIT; spcr = MSPI_MASTER_BIT;
else else
spcr = 0; spcr = 0;
/* for 16 bit the data should be zero */ /*
if (xp->bits_per_word != 16) * Bits per transfer. BITS determines the number of data bits
spcr |= xp->bits_per_word << 2; * transferred if the command control bit (BITSE of a
spcr |= xp->mode & 3; * CDRAM Register) is equal to 1.
* If CDRAM BITSE is equal to 0, 8 data bits are transferred
* regardless
*/
if (xp->bits_per_word != 16 && xp->bits_per_word != 64)
spcr |= xp->bits_per_word << MSPI_SPCR0_MSB_BITS_SHIFT;
spcr |= xp->mode & (MSPI_SPCR0_MSB_CPHA | MSPI_SPCR0_MSB_CPOL);
bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr); bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
if (bcm_qspi_has_fastbr(qspi)) { if (bcm_qspi_has_fastbr(qspi)) {
@ -596,17 +617,44 @@ static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
/* enable fastbr */ /* enable fastbr */
spcr |= MSPI_SPCR3_FASTBR; spcr |= MSPI_SPCR3_FASTBR;
if (xp->mode & SPI_3WIRE)
spcr |= MSPI_SPCR3_HALFDUPLEX | MSPI_SPCR3_HDOUTTYPE;
if (bcm_qspi_has_sysclk_108(qspi)) { if (bcm_qspi_has_sysclk_108(qspi)) {
/* SYSCLK_108 */ /* SYSCLK_108 */
spcr |= MSPI_SPCR3_SYSCLKSEL_108; spcr |= MSPI_SPCR3_SYSCLKSEL_108;
qspi->base_clk = MSPI_BASE_FREQ * 4; qspi->base_clk = MSPI_BASE_FREQ * 4;
/* Change spbr as we changed sysclk */
bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, 4);
} }
if (xp->bits_per_word > 16) {
/* data_reg_size 1 (64bit) */
spcr |= MSPI_SPCR3_DATA_REG_SZ;
/* TxRx RAM data access mode 2 for 32B and set fastdt */
spcr |= MSPI_SPCR3_DAM_32BYTE | MSPI_SPCR3_FASTDT;
/*
* Set length of delay after transfer
* DTL from 0(256) to 1
*/
bcm_qspi_write(qspi, MSPI, MSPI_SPCR1_LSB, 1);
} else {
/* data_reg_size[8] = 0 */
spcr &= ~(MSPI_SPCR3_DATA_REG_SZ);
/*
* TxRx RAM access mode 8B
* and disable fastdt
*/
spcr &= ~(MSPI_SPCR3_DAM_32BYTE);
}
bcm_qspi_write(qspi, MSPI, MSPI_SPCR3, spcr); bcm_qspi_write(qspi, MSPI, MSPI_SPCR3, spcr);
} }
if (xp->speed_hz)
spbr = qspi->base_clk / (2 * xp->speed_hz);
spbr = clamp_val(spbr, bcm_qspi_spbr_min(qspi), QSPI_SPBR_MAX);
bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spbr);
qspi->last_parms = *xp; qspi->last_parms = *xp;
} }
@ -627,7 +675,7 @@ static int bcm_qspi_setup(struct spi_device *spi)
{ {
struct bcm_qspi_parms *xp; struct bcm_qspi_parms *xp;
if (spi->bits_per_word > 16) if (spi->bits_per_word > 64)
return -EINVAL; return -EINVAL;
xp = spi_get_ctldata(spi); xp = spi_get_ctldata(spi);
@ -666,8 +714,12 @@ static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
/* count the last transferred bytes */ /* count the last transferred bytes */
if (qt->trans->bits_per_word <= 8) if (qt->trans->bits_per_word <= 8)
qt->byte++; qt->byte++;
else else if (qt->trans->bits_per_word <= 16)
qt->byte += 2; qt->byte += 2;
else if (qt->trans->bits_per_word <= 32)
qt->byte += 4;
else if (qt->trans->bits_per_word <= 64)
qt->byte += 8;
if (qt->byte >= qt->trans->len) { if (qt->byte >= qt->trans->len) {
/* we're at the end of the spi_transfer */ /* we're at the end of the spi_transfer */
@ -710,6 +762,33 @@ static inline u16 read_rxram_slot_u16(struct bcm_qspi *qspi, int slot)
((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8); ((bcm_qspi_read(qspi, MSPI, msb_offset) & 0xff) << 8);
} }
static inline u32 read_rxram_slot_u32(struct bcm_qspi *qspi, int slot)
{
u32 reg_offset = MSPI_RXRAM;
u32 offset = reg_offset + (slot << 3);
u32 val;
val = bcm_qspi_read(qspi, MSPI, offset);
val = swap4bytes(val);
return val;
}
static inline u64 read_rxram_slot_u64(struct bcm_qspi *qspi, int slot)
{
u32 reg_offset = MSPI_RXRAM;
u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
u32 msb_offset = reg_offset + (slot << 3);
u32 msb, lsb;
msb = bcm_qspi_read(qspi, MSPI, msb_offset);
msb = swap4bytes(msb);
lsb = bcm_qspi_read(qspi, MSPI, lsb_offset);
lsb = swap4bytes(lsb);
return ((u64)msb << 32 | lsb);
}
static void read_from_hw(struct bcm_qspi *qspi, int slots) static void read_from_hw(struct bcm_qspi *qspi, int slots)
{ {
struct qspi_trans tp; struct qspi_trans tp;
@ -733,7 +812,7 @@ static void read_from_hw(struct bcm_qspi *qspi, int slots)
buf[tp.byte] = read_rxram_slot_u8(qspi, slot); buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
dev_dbg(&qspi->pdev->dev, "RD %02x\n", dev_dbg(&qspi->pdev->dev, "RD %02x\n",
buf ? buf[tp.byte] : 0x0); buf ? buf[tp.byte] : 0x0);
} else { } else if (tp.trans->bits_per_word <= 16) {
u16 *buf = tp.trans->rx_buf; u16 *buf = tp.trans->rx_buf;
if (buf) if (buf)
@ -741,6 +820,25 @@ static void read_from_hw(struct bcm_qspi *qspi, int slots)
slot); slot);
dev_dbg(&qspi->pdev->dev, "RD %04x\n", dev_dbg(&qspi->pdev->dev, "RD %04x\n",
buf ? buf[tp.byte / 2] : 0x0); buf ? buf[tp.byte / 2] : 0x0);
} else if (tp.trans->bits_per_word <= 32) {
u32 *buf = tp.trans->rx_buf;
if (buf)
buf[tp.byte / 4] = read_rxram_slot_u32(qspi,
slot);
dev_dbg(&qspi->pdev->dev, "RD %08x\n",
buf ? buf[tp.byte / 4] : 0x0);
} else if (tp.trans->bits_per_word <= 64) {
u64 *buf = tp.trans->rx_buf;
if (buf)
buf[tp.byte / 8] = read_rxram_slot_u64(qspi,
slot);
dev_dbg(&qspi->pdev->dev, "RD %llx\n",
buf ? buf[tp.byte / 8] : 0x0);
} }
update_qspi_trans_byte_count(qspi, &tp, update_qspi_trans_byte_count(qspi, &tp,
@ -770,6 +868,28 @@ static inline void write_txram_slot_u16(struct bcm_qspi *qspi, int slot,
bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff)); bcm_qspi_write(qspi, MSPI, lsb_offset, (val & 0xff));
} }
static inline void write_txram_slot_u32(struct bcm_qspi *qspi, int slot,
u32 val)
{
u32 reg_offset = MSPI_TXRAM;
u32 msb_offset = reg_offset + (slot << 3);
bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(val));
}
static inline void write_txram_slot_u64(struct bcm_qspi *qspi, int slot,
u64 val)
{
u32 reg_offset = MSPI_TXRAM;
u32 msb_offset = reg_offset + (slot << 3);
u32 lsb_offset = reg_offset + (slot << 3) + 0x4;
u32 msb = upper_32_bits(val);
u32 lsb = lower_32_bits(val);
bcm_qspi_write(qspi, MSPI, msb_offset, swap4bytes(msb));
bcm_qspi_write(qspi, MSPI, lsb_offset, swap4bytes(lsb));
}
static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot) static inline u32 read_cdram_slot(struct bcm_qspi *qspi, int slot)
{ {
return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2)); return bcm_qspi_read(qspi, MSPI, MSPI_CDRAM + (slot << 2));
@ -793,20 +913,43 @@ static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
/* Run until end of transfer or reached the max data */ /* Run until end of transfer or reached the max data */
while (!tstatus && slot < MSPI_NUM_CDRAM) { while (!tstatus && slot < MSPI_NUM_CDRAM) {
mspi_cdram = MSPI_CDRAM_CONT_BIT;
if (tp.trans->bits_per_word <= 8) { if (tp.trans->bits_per_word <= 8) {
const u8 *buf = tp.trans->tx_buf; const u8 *buf = tp.trans->tx_buf;
u8 val = buf ? buf[tp.byte] : 0x00; u8 val = buf ? buf[tp.byte] : 0x00;
write_txram_slot_u8(qspi, slot, val); write_txram_slot_u8(qspi, slot, val);
dev_dbg(&qspi->pdev->dev, "WR %02x\n", val); dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
} else { } else if (tp.trans->bits_per_word <= 16) {
const u16 *buf = tp.trans->tx_buf; const u16 *buf = tp.trans->tx_buf;
u16 val = buf ? buf[tp.byte / 2] : 0x0000; u16 val = buf ? buf[tp.byte / 2] : 0x0000;
write_txram_slot_u16(qspi, slot, val); write_txram_slot_u16(qspi, slot, val);
dev_dbg(&qspi->pdev->dev, "WR %04x\n", val); dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
} else if (tp.trans->bits_per_word <= 32) {
const u32 *buf = tp.trans->tx_buf;
u32 val = buf ? buf[tp.byte/4] : 0x0;
write_txram_slot_u32(qspi, slot, val);
dev_dbg(&qspi->pdev->dev, "WR %08x\n", val);
} else if (tp.trans->bits_per_word <= 64) {
const u64 *buf = tp.trans->tx_buf;
u64 val = (buf ? buf[tp.byte/8] : 0x0);
/* use the length of delay from SPCR1_LSB */
if (bcm_qspi_has_fastbr(qspi))
mspi_cdram |= MSPI_CDRAM_DT_BIT;
write_txram_slot_u64(qspi, slot, val);
dev_dbg(&qspi->pdev->dev, "WR %llx\n", val);
} }
mspi_cdram = MSPI_CDRAM_CONT_BIT;
mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
MSPI_CDRAM_BITSE_BIT);
/* set 3wrire halfduplex mode data from master to slave */
if ((spi->mode & SPI_3WIRE) && tp.trans->tx_buf)
mspi_cdram |= MSPI_CDRAM_OUTP;
if (has_bspi(qspi)) if (has_bspi(qspi))
mspi_cdram &= ~1; mspi_cdram &= ~1;
@ -814,9 +957,6 @@ static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
mspi_cdram |= (~(1 << spi->chip_select) & mspi_cdram |= (~(1 << spi->chip_select) &
MSPI_CDRAM_PCS); MSPI_CDRAM_PCS);
mspi_cdram |= ((tp.trans->bits_per_word <= 8) ? 0 :
MSPI_CDRAM_BITSE_BIT);
write_cdram_slot(qspi, slot, mspi_cdram); write_cdram_slot(qspi, slot, mspi_cdram);
tstatus = update_qspi_trans_byte_count(qspi, &tp, tstatus = update_qspi_trans_byte_count(qspi, &tp,
@ -1251,10 +1391,14 @@ static void bcm_qspi_hw_init(struct bcm_qspi *qspi)
static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi) static void bcm_qspi_hw_uninit(struct bcm_qspi *qspi)
{ {
u32 status = bcm_qspi_read(qspi, MSPI, MSPI_MSPI_STATUS);
bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0); bcm_qspi_write(qspi, MSPI, MSPI_SPCR2, 0);
if (has_bspi(qspi)) if (has_bspi(qspi))
bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0); bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
/* clear interrupt */
bcm_qspi_write(qspi, MSPI, MSPI_MSPI_STATUS, status & ~1);
} }
static const struct spi_controller_mem_ops bcm_qspi_mem_ops = { static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
@ -1347,7 +1491,8 @@ int bcm_qspi_probe(struct platform_device *pdev,
qspi->master = master; qspi->master = master;
master->bus_num = -1; master->bus_num = -1;
master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD; master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_RX_DUAL | SPI_RX_QUAD |
SPI_3WIRE;
master->setup = bcm_qspi_setup; master->setup = bcm_qspi_setup;
master->transfer_one = bcm_qspi_transfer_one; master->transfer_one = bcm_qspi_transfer_one;
master->mem_ops = &bcm_qspi_mem_ops; master->mem_ops = &bcm_qspi_mem_ops;
@ -1398,6 +1543,47 @@ int bcm_qspi_probe(struct platform_device *pdev,
if (!qspi->dev_ids) if (!qspi->dev_ids)
return -ENOMEM; return -ENOMEM;
/*
* Some SoCs integrate spi controller (e.g., its interrupt bits)
* in specific ways
*/
if (soc_intc) {
qspi->soc_intc = soc_intc;
soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
} else {
qspi->soc_intc = NULL;
}
if (qspi->clk) {
ret = clk_prepare_enable(qspi->clk);
if (ret) {
dev_err(dev, "failed to prepare clock\n");
goto qspi_probe_err;
}
qspi->base_clk = clk_get_rate(qspi->clk);
} else {
qspi->base_clk = MSPI_BASE_FREQ;
}
if (data->has_mspi_rev) {
rev = bcm_qspi_read(qspi, MSPI, MSPI_REV);
/* some older revs do not have a MSPI_REV register */
if ((rev & 0xff) == 0xff)
rev = 0;
}
qspi->mspi_maj_rev = (rev >> 4) & 0xf;
qspi->mspi_min_rev = rev & 0xf;
qspi->mspi_spcr3_sysclk = data->has_spcr3_sysclk;
qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
/*
* On SW resets it is possible to have the mask still enabled
* Need to disable the mask and clear the status while we init
*/
bcm_qspi_hw_uninit(qspi);
for (val = 0; val < num_irqs; val++) { for (val = 0; val < num_irqs; val++) {
irq = -1; irq = -1;
name = qspi_irq_tab[val].irq_name; name = qspi_irq_tab[val].irq_name;
@ -1434,38 +1620,6 @@ int bcm_qspi_probe(struct platform_device *pdev,
goto qspi_probe_err; goto qspi_probe_err;
} }
/*
* Some SoCs integrate spi controller (e.g., its interrupt bits)
* in specific ways
*/
if (soc_intc) {
qspi->soc_intc = soc_intc;
soc_intc->bcm_qspi_int_set(soc_intc, MSPI_DONE, true);
} else {
qspi->soc_intc = NULL;
}
ret = clk_prepare_enable(qspi->clk);
if (ret) {
dev_err(dev, "failed to prepare clock\n");
goto qspi_probe_err;
}
qspi->base_clk = clk_get_rate(qspi->clk);
if (data->has_mspi_rev) {
rev = bcm_qspi_read(qspi, MSPI, MSPI_REV);
/* some older revs do not have a MSPI_REV register */
if ((rev & 0xff) == 0xff)
rev = 0;
}
qspi->mspi_maj_rev = (rev >> 4) & 0xf;
qspi->mspi_min_rev = rev & 0xf;
qspi->mspi_spcr3_sysclk = data->has_spcr3_sysclk;
qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
bcm_qspi_hw_init(qspi); bcm_qspi_hw_init(qspi);
init_completion(&qspi->mspi_done); init_completion(&qspi->mspi_done);
init_completion(&qspi->bspi_done); init_completion(&qspi->bspi_done);