GRU Driver: resource management
This file contains functions realted to managing GRU resources provided to the user. Examples include GRU context assignment, load, unload, migration, etc.. Signed-off-by: Jack Steiner <steiner@sgi.com> Cc: Nick Piggin <nickpiggin@yahoo.com.au> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
28bffaf094
commit
9a0deecc90
798
drivers/misc/sgi-gru/grumain.c
Normal file
798
drivers/misc/sgi-gru/grumain.c
Normal file
@ -0,0 +1,798 @@
|
||||
/*
|
||||
* SN Platform GRU Driver
|
||||
*
|
||||
* DRIVER TABLE MANAGER + GRU CONTEXT LOAD/UNLOAD
|
||||
*
|
||||
* This file is subject to the terms and conditions of the GNU General Public
|
||||
* License. See the file "COPYING" in the main directory of this archive
|
||||
* for more details.
|
||||
*
|
||||
* Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/device.h>
|
||||
#include <linux/list.h>
|
||||
#include <asm/uv/uv_hub.h>
|
||||
#include "gru.h"
|
||||
#include "grutables.h"
|
||||
#include "gruhandles.h"
|
||||
|
||||
unsigned long options __read_mostly;
|
||||
|
||||
static struct device_driver gru_driver = {
|
||||
.name = "gru"
|
||||
};
|
||||
|
||||
static struct device gru_device = {
|
||||
.bus_id = {0},
|
||||
.driver = &gru_driver,
|
||||
};
|
||||
|
||||
struct device *grudev = &gru_device;
|
||||
|
||||
/*
|
||||
* Select a gru fault map to be used by the current cpu. Note that
|
||||
* multiple cpus may be using the same map.
|
||||
* ZZZ should "shift" be used?? Depends on HT cpu numbering
|
||||
* ZZZ should be inline but did not work on emulator
|
||||
*/
|
||||
int gru_cpu_fault_map_id(void)
|
||||
{
|
||||
return uv_blade_processor_id() % GRU_NUM_TFM;
|
||||
}
|
||||
|
||||
/*--------- ASID Management -------------------------------------------
|
||||
*
|
||||
* Initially, assign asids sequentially from MIN_ASID .. MAX_ASID.
|
||||
* Once MAX is reached, flush the TLB & start over. However,
|
||||
* some asids may still be in use. There won't be many (percentage wise) still
|
||||
* in use. Search active contexts & determine the value of the first
|
||||
* asid in use ("x"s below). Set "limit" to this value.
|
||||
* This defines a block of assignable asids.
|
||||
*
|
||||
* When "limit" is reached, search forward from limit+1 and determine the
|
||||
* next block of assignable asids.
|
||||
*
|
||||
* Repeat until MAX_ASID is reached, then start over again.
|
||||
*
|
||||
* Each time MAX_ASID is reached, increment the asid generation. Since
|
||||
* the search for in-use asids only checks contexts with GRUs currently
|
||||
* assigned, asids in some contexts will be missed. Prior to loading
|
||||
* a context, the asid generation of the GTS asid is rechecked. If it
|
||||
* doesn't match the current generation, a new asid will be assigned.
|
||||
*
|
||||
* 0---------------x------------x---------------------x----|
|
||||
* ^-next ^-limit ^-MAX_ASID
|
||||
*
|
||||
* All asid manipulation & context loading/unloading is protected by the
|
||||
* gs_lock.
|
||||
*/
|
||||
|
||||
/* Hit the asid limit. Start over */
|
||||
static int gru_wrap_asid(struct gru_state *gru)
|
||||
{
|
||||
gru_dbg(grudev, "gru %p\n", gru);
|
||||
STAT(asid_wrap);
|
||||
gru->gs_asid_gen++;
|
||||
gru_flush_all_tlb(gru);
|
||||
return MIN_ASID;
|
||||
}
|
||||
|
||||
/* Find the next chunk of unused asids */
|
||||
static int gru_reset_asid_limit(struct gru_state *gru, int asid)
|
||||
{
|
||||
int i, gid, inuse_asid, limit;
|
||||
|
||||
gru_dbg(grudev, "gru %p, asid 0x%x\n", gru, asid);
|
||||
STAT(asid_next);
|
||||
limit = MAX_ASID;
|
||||
if (asid >= limit)
|
||||
asid = gru_wrap_asid(gru);
|
||||
gid = gru->gs_gid;
|
||||
again:
|
||||
for (i = 0; i < GRU_NUM_CCH; i++) {
|
||||
if (!gru->gs_gts[i])
|
||||
continue;
|
||||
inuse_asid = gru->gs_gts[i]->ts_gms->ms_asids[gid].mt_asid;
|
||||
gru_dbg(grudev, "gru %p, inuse_asid 0x%x, cxtnum %d, gts %p\n",
|
||||
gru, inuse_asid, i, gru->gs_gts[i]);
|
||||
if (inuse_asid == asid) {
|
||||
asid += ASID_INC;
|
||||
if (asid >= limit) {
|
||||
/*
|
||||
* empty range: reset the range limit and
|
||||
* start over
|
||||
*/
|
||||
limit = MAX_ASID;
|
||||
if (asid >= MAX_ASID)
|
||||
asid = gru_wrap_asid(gru);
|
||||
goto again;
|
||||
}
|
||||
}
|
||||
|
||||
if ((inuse_asid > asid) && (inuse_asid < limit))
|
||||
limit = inuse_asid;
|
||||
}
|
||||
gru->gs_asid_limit = limit;
|
||||
gru->gs_asid = asid;
|
||||
gru_dbg(grudev, "gru %p, new asid 0x%x, new_limit 0x%x\n", gru, asid,
|
||||
limit);
|
||||
return asid;
|
||||
}
|
||||
|
||||
/* Assign a new ASID to a thread context. */
|
||||
static int gru_assign_asid(struct gru_state *gru)
|
||||
{
|
||||
int asid;
|
||||
|
||||
spin_lock(&gru->gs_asid_lock);
|
||||
gru->gs_asid += ASID_INC;
|
||||
asid = gru->gs_asid;
|
||||
if (asid >= gru->gs_asid_limit)
|
||||
asid = gru_reset_asid_limit(gru, asid);
|
||||
spin_unlock(&gru->gs_asid_lock);
|
||||
|
||||
gru_dbg(grudev, "gru %p, asid 0x%x\n", gru, asid);
|
||||
return asid;
|
||||
}
|
||||
|
||||
/*
|
||||
* Clear n bits in a word. Return a word indicating the bits that were cleared.
|
||||
* Optionally, build an array of chars that contain the bit numbers allocated.
|
||||
*/
|
||||
static unsigned long reserve_resources(unsigned long *p, int n, int mmax,
|
||||
char *idx)
|
||||
{
|
||||
unsigned long bits = 0;
|
||||
int i;
|
||||
|
||||
do {
|
||||
i = find_first_bit(p, mmax);
|
||||
if (i == mmax)
|
||||
BUG();
|
||||
__clear_bit(i, p);
|
||||
__set_bit(i, &bits);
|
||||
if (idx)
|
||||
*idx++ = i;
|
||||
} while (--n);
|
||||
return bits;
|
||||
}
|
||||
|
||||
unsigned long reserve_gru_cb_resources(struct gru_state *gru, int cbr_au_count,
|
||||
char *cbmap)
|
||||
{
|
||||
return reserve_resources(&gru->gs_cbr_map, cbr_au_count, GRU_CBR_AU,
|
||||
cbmap);
|
||||
}
|
||||
|
||||
unsigned long reserve_gru_ds_resources(struct gru_state *gru, int dsr_au_count,
|
||||
char *dsmap)
|
||||
{
|
||||
return reserve_resources(&gru->gs_dsr_map, dsr_au_count, GRU_DSR_AU,
|
||||
dsmap);
|
||||
}
|
||||
|
||||
static void reserve_gru_resources(struct gru_state *gru,
|
||||
struct gru_thread_state *gts)
|
||||
{
|
||||
gru->gs_active_contexts++;
|
||||
gts->ts_cbr_map =
|
||||
reserve_gru_cb_resources(gru, gts->ts_cbr_au_count,
|
||||
gts->ts_cbr_idx);
|
||||
gts->ts_dsr_map =
|
||||
reserve_gru_ds_resources(gru, gts->ts_dsr_au_count, NULL);
|
||||
}
|
||||
|
||||
static void free_gru_resources(struct gru_state *gru,
|
||||
struct gru_thread_state *gts)
|
||||
{
|
||||
gru->gs_active_contexts--;
|
||||
gru->gs_cbr_map |= gts->ts_cbr_map;
|
||||
gru->gs_dsr_map |= gts->ts_dsr_map;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check if a GRU has sufficient free resources to satisfy an allocation
|
||||
* request. Note: GRU locks may or may not be held when this is called. If
|
||||
* not held, recheck after acquiring the appropriate locks.
|
||||
*
|
||||
* Returns 1 if sufficient resources, 0 if not
|
||||
*/
|
||||
static int check_gru_resources(struct gru_state *gru, int cbr_au_count,
|
||||
int dsr_au_count, int max_active_contexts)
|
||||
{
|
||||
return hweight64(gru->gs_cbr_map) >= cbr_au_count
|
||||
&& hweight64(gru->gs_dsr_map) >= dsr_au_count
|
||||
&& gru->gs_active_contexts < max_active_contexts;
|
||||
}
|
||||
|
||||
/*
|
||||
* TLB manangment requires tracking all GRU chiplets that have loaded a GSEG
|
||||
* context.
|
||||
*/
|
||||
static int gru_load_mm_tracker(struct gru_state *gru, struct gru_mm_struct *gms,
|
||||
int ctxnum)
|
||||
{
|
||||
struct gru_mm_tracker *asids = &gms->ms_asids[gru->gs_gid];
|
||||
unsigned short ctxbitmap = (1 << ctxnum);
|
||||
int asid;
|
||||
|
||||
spin_lock(&gms->ms_asid_lock);
|
||||
asid = asids->mt_asid;
|
||||
|
||||
if (asid == 0 || asids->mt_asid_gen != gru->gs_asid_gen) {
|
||||
asid = gru_assign_asid(gru);
|
||||
asids->mt_asid = asid;
|
||||
asids->mt_asid_gen = gru->gs_asid_gen;
|
||||
STAT(asid_new);
|
||||
} else {
|
||||
STAT(asid_reuse);
|
||||
}
|
||||
|
||||
BUG_ON(asids->mt_ctxbitmap & ctxbitmap);
|
||||
asids->mt_ctxbitmap |= ctxbitmap;
|
||||
if (!test_bit(gru->gs_gid, gms->ms_asidmap))
|
||||
__set_bit(gru->gs_gid, gms->ms_asidmap);
|
||||
spin_unlock(&gms->ms_asid_lock);
|
||||
|
||||
gru_dbg(grudev,
|
||||
"gru %x, gms %p, ctxnum 0x%d, asid 0x%x, asidmap 0x%lx\n",
|
||||
gru->gs_gid, gms, ctxnum, asid, gms->ms_asidmap[0]);
|
||||
return asid;
|
||||
}
|
||||
|
||||
static void gru_unload_mm_tracker(struct gru_state *gru,
|
||||
struct gru_mm_struct *gms, int ctxnum)
|
||||
{
|
||||
struct gru_mm_tracker *asids;
|
||||
unsigned short ctxbitmap;
|
||||
|
||||
asids = &gms->ms_asids[gru->gs_gid];
|
||||
ctxbitmap = (1 << ctxnum);
|
||||
spin_lock(&gms->ms_asid_lock);
|
||||
BUG_ON((asids->mt_ctxbitmap & ctxbitmap) != ctxbitmap);
|
||||
asids->mt_ctxbitmap ^= ctxbitmap;
|
||||
gru_dbg(grudev, "gru %x, gms %p, ctxnum 0x%d, asidmap 0x%lx\n",
|
||||
gru->gs_gid, gms, ctxnum, gms->ms_asidmap[0]);
|
||||
spin_unlock(&gms->ms_asid_lock);
|
||||
}
|
||||
|
||||
/*
|
||||
* Decrement the reference count on a GTS structure. Free the structure
|
||||
* if the reference count goes to zero.
|
||||
*/
|
||||
void gts_drop(struct gru_thread_state *gts)
|
||||
{
|
||||
if (gts && atomic_dec_return(>s->ts_refcnt) == 0) {
|
||||
gru_drop_mmu_notifier(gts->ts_gms);
|
||||
kfree(gts);
|
||||
STAT(gts_free);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Locate the GTS structure for the current thread.
|
||||
*/
|
||||
static struct gru_thread_state *gru_find_current_gts_nolock(struct gru_vma_data
|
||||
*vdata, int tsid)
|
||||
{
|
||||
struct gru_thread_state *gts;
|
||||
|
||||
list_for_each_entry(gts, &vdata->vd_head, ts_next)
|
||||
if (gts->ts_tsid == tsid)
|
||||
return gts;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate a thread state structure.
|
||||
*/
|
||||
static struct gru_thread_state *gru_alloc_gts(struct vm_area_struct *vma,
|
||||
struct gru_vma_data *vdata,
|
||||
int tsid)
|
||||
{
|
||||
struct gru_thread_state *gts;
|
||||
int bytes;
|
||||
|
||||
bytes = DSR_BYTES(vdata->vd_dsr_au_count) +
|
||||
CBR_BYTES(vdata->vd_cbr_au_count);
|
||||
bytes += sizeof(struct gru_thread_state);
|
||||
gts = kzalloc(bytes, GFP_KERNEL);
|
||||
if (!gts)
|
||||
return NULL;
|
||||
|
||||
STAT(gts_alloc);
|
||||
atomic_set(>s->ts_refcnt, 1);
|
||||
mutex_init(>s->ts_ctxlock);
|
||||
gts->ts_cbr_au_count = vdata->vd_cbr_au_count;
|
||||
gts->ts_dsr_au_count = vdata->vd_dsr_au_count;
|
||||
gts->ts_user_options = vdata->vd_user_options;
|
||||
gts->ts_tsid = tsid;
|
||||
gts->ts_user_options = vdata->vd_user_options;
|
||||
gts->ts_ctxnum = NULLCTX;
|
||||
gts->ts_mm = current->mm;
|
||||
gts->ts_vma = vma;
|
||||
gts->ts_tlb_int_select = -1;
|
||||
gts->ts_gms = gru_register_mmu_notifier();
|
||||
if (!gts->ts_gms)
|
||||
goto err;
|
||||
|
||||
gru_dbg(grudev, "alloc vdata %p, new gts %p\n", vdata, gts);
|
||||
return gts;
|
||||
|
||||
err:
|
||||
gts_drop(gts);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate a vma private data structure.
|
||||
*/
|
||||
struct gru_vma_data *gru_alloc_vma_data(struct vm_area_struct *vma, int tsid)
|
||||
{
|
||||
struct gru_vma_data *vdata = NULL;
|
||||
|
||||
vdata = kmalloc(sizeof(*vdata), GFP_KERNEL);
|
||||
if (!vdata)
|
||||
return NULL;
|
||||
|
||||
INIT_LIST_HEAD(&vdata->vd_head);
|
||||
spin_lock_init(&vdata->vd_lock);
|
||||
gru_dbg(grudev, "alloc vdata %p\n", vdata);
|
||||
return vdata;
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the thread state structure for the current thread.
|
||||
*/
|
||||
struct gru_thread_state *gru_find_thread_state(struct vm_area_struct *vma,
|
||||
int tsid)
|
||||
{
|
||||
struct gru_vma_data *vdata = vma->vm_private_data;
|
||||
struct gru_thread_state *gts;
|
||||
|
||||
spin_lock(&vdata->vd_lock);
|
||||
gts = gru_find_current_gts_nolock(vdata, tsid);
|
||||
spin_unlock(&vdata->vd_lock);
|
||||
gru_dbg(grudev, "vma %p, gts %p\n", vma, gts);
|
||||
return gts;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate a new thread state for a GSEG. Note that races may allow
|
||||
* another thread to race to create a gts.
|
||||
*/
|
||||
struct gru_thread_state *gru_alloc_thread_state(struct vm_area_struct *vma,
|
||||
int tsid)
|
||||
{
|
||||
struct gru_vma_data *vdata = vma->vm_private_data;
|
||||
struct gru_thread_state *gts, *ngts;
|
||||
|
||||
gts = gru_alloc_gts(vma, vdata, tsid);
|
||||
if (!gts)
|
||||
return NULL;
|
||||
|
||||
spin_lock(&vdata->vd_lock);
|
||||
ngts = gru_find_current_gts_nolock(vdata, tsid);
|
||||
if (ngts) {
|
||||
gts_drop(gts);
|
||||
gts = ngts;
|
||||
STAT(gts_double_allocate);
|
||||
} else {
|
||||
list_add(>s->ts_next, &vdata->vd_head);
|
||||
}
|
||||
spin_unlock(&vdata->vd_lock);
|
||||
gru_dbg(grudev, "vma %p, gts %p\n", vma, gts);
|
||||
return gts;
|
||||
}
|
||||
|
||||
/*
|
||||
* Free the GRU context assigned to the thread state.
|
||||
*/
|
||||
static void gru_free_gru_context(struct gru_thread_state *gts)
|
||||
{
|
||||
struct gru_state *gru;
|
||||
|
||||
gru = gts->ts_gru;
|
||||
gru_dbg(grudev, "gts %p, gru %p\n", gts, gru);
|
||||
|
||||
spin_lock(&gru->gs_lock);
|
||||
gru->gs_gts[gts->ts_ctxnum] = NULL;
|
||||
free_gru_resources(gru, gts);
|
||||
BUG_ON(test_bit(gts->ts_ctxnum, &gru->gs_context_map) == 0);
|
||||
__clear_bit(gts->ts_ctxnum, &gru->gs_context_map);
|
||||
gts->ts_ctxnum = NULLCTX;
|
||||
gts->ts_gru = NULL;
|
||||
spin_unlock(&gru->gs_lock);
|
||||
|
||||
gts_drop(gts);
|
||||
STAT(free_context);
|
||||
}
|
||||
|
||||
/*
|
||||
* Prefetching cachelines help hardware performance.
|
||||
*/
|
||||
static void prefetch_data(void *p, int num, int stride)
|
||||
{
|
||||
while (num-- > 0) {
|
||||
prefetchw(p);
|
||||
p += stride;
|
||||
}
|
||||
}
|
||||
|
||||
static inline long gru_copy_handle(void *d, void *s)
|
||||
{
|
||||
memcpy(d, s, GRU_HANDLE_BYTES);
|
||||
return GRU_HANDLE_BYTES;
|
||||
}
|
||||
|
||||
/* rewrite in assembly & use lots of prefetch */
|
||||
static void gru_load_context_data(void *save, void *grubase, int ctxnum,
|
||||
unsigned long cbrmap, unsigned long dsrmap)
|
||||
{
|
||||
void *gseg, *cb, *cbe;
|
||||
unsigned long length;
|
||||
int i, scr;
|
||||
|
||||
gseg = grubase + ctxnum * GRU_GSEG_STRIDE;
|
||||
length = hweight64(dsrmap) * GRU_DSR_AU_BYTES;
|
||||
prefetch_data(gseg + GRU_DS_BASE, length / GRU_CACHE_LINE_BYTES,
|
||||
GRU_CACHE_LINE_BYTES);
|
||||
|
||||
cb = gseg + GRU_CB_BASE;
|
||||
cbe = grubase + GRU_CBE_BASE;
|
||||
for_each_cbr_in_allocation_map(i, &cbrmap, scr) {
|
||||
prefetch_data(cb, 1, GRU_CACHE_LINE_BYTES);
|
||||
prefetch_data(cbe + i * GRU_HANDLE_STRIDE, 1,
|
||||
GRU_CACHE_LINE_BYTES);
|
||||
cb += GRU_HANDLE_STRIDE;
|
||||
}
|
||||
|
||||
cb = gseg + GRU_CB_BASE;
|
||||
for_each_cbr_in_allocation_map(i, &cbrmap, scr) {
|
||||
save += gru_copy_handle(cb, save);
|
||||
save += gru_copy_handle(cbe + i * GRU_HANDLE_STRIDE, save);
|
||||
cb += GRU_HANDLE_STRIDE;
|
||||
}
|
||||
|
||||
memcpy(gseg + GRU_DS_BASE, save, length);
|
||||
}
|
||||
|
||||
static void gru_unload_context_data(void *save, void *grubase, int ctxnum,
|
||||
unsigned long cbrmap, unsigned long dsrmap)
|
||||
{
|
||||
void *gseg, *cb, *cbe;
|
||||
unsigned long length;
|
||||
int i, scr;
|
||||
|
||||
gseg = grubase + ctxnum * GRU_GSEG_STRIDE;
|
||||
|
||||
cb = gseg + GRU_CB_BASE;
|
||||
cbe = grubase + GRU_CBE_BASE;
|
||||
for_each_cbr_in_allocation_map(i, &cbrmap, scr) {
|
||||
save += gru_copy_handle(save, cb);
|
||||
save += gru_copy_handle(save, cbe + i * GRU_HANDLE_STRIDE);
|
||||
cb += GRU_HANDLE_STRIDE;
|
||||
}
|
||||
length = hweight64(dsrmap) * GRU_DSR_AU_BYTES;
|
||||
memcpy(save, gseg + GRU_DS_BASE, length);
|
||||
}
|
||||
|
||||
void gru_unload_context(struct gru_thread_state *gts, int savestate)
|
||||
{
|
||||
struct gru_state *gru = gts->ts_gru;
|
||||
struct gru_context_configuration_handle *cch;
|
||||
int ctxnum = gts->ts_ctxnum;
|
||||
|
||||
zap_vma_ptes(gts->ts_vma, UGRUADDR(gts), GRU_GSEG_PAGESIZE);
|
||||
cch = get_cch(gru->gs_gru_base_vaddr, ctxnum);
|
||||
|
||||
lock_cch_handle(cch);
|
||||
if (cch_interrupt_sync(cch))
|
||||
BUG();
|
||||
gru_dbg(grudev, "gts %p\n", gts);
|
||||
|
||||
gru_unload_mm_tracker(gru, gts->ts_gms, gts->ts_ctxnum);
|
||||
if (savestate)
|
||||
gru_unload_context_data(gts->ts_gdata, gru->gs_gru_base_vaddr,
|
||||
ctxnum, gts->ts_cbr_map,
|
||||
gts->ts_dsr_map);
|
||||
|
||||
if (cch_deallocate(cch))
|
||||
BUG();
|
||||
gts->ts_force_unload = 0; /* ts_force_unload locked by CCH lock */
|
||||
unlock_cch_handle(cch);
|
||||
|
||||
gru_free_gru_context(gts);
|
||||
STAT(unload_context);
|
||||
}
|
||||
|
||||
/*
|
||||
* Load a GRU context by copying it from the thread data structure in memory
|
||||
* to the GRU.
|
||||
*/
|
||||
static void gru_load_context(struct gru_thread_state *gts)
|
||||
{
|
||||
struct gru_state *gru = gts->ts_gru;
|
||||
struct gru_context_configuration_handle *cch;
|
||||
int err, asid, ctxnum = gts->ts_ctxnum;
|
||||
|
||||
gru_dbg(grudev, "gts %p\n", gts);
|
||||
cch = get_cch(gru->gs_gru_base_vaddr, ctxnum);
|
||||
|
||||
lock_cch_handle(cch);
|
||||
asid = gru_load_mm_tracker(gru, gts->ts_gms, gts->ts_ctxnum);
|
||||
cch->tfm_fault_bit_enable =
|
||||
(gts->ts_user_options == GRU_OPT_MISS_FMM_POLL
|
||||
|| gts->ts_user_options == GRU_OPT_MISS_FMM_INTR);
|
||||
cch->tlb_int_enable = (gts->ts_user_options == GRU_OPT_MISS_FMM_INTR);
|
||||
if (cch->tlb_int_enable) {
|
||||
gts->ts_tlb_int_select = gru_cpu_fault_map_id();
|
||||
cch->tlb_int_select = gts->ts_tlb_int_select;
|
||||
}
|
||||
cch->tfm_done_bit_enable = 0;
|
||||
err = cch_allocate(cch, asid, gts->ts_cbr_map, gts->ts_dsr_map);
|
||||
if (err) {
|
||||
gru_dbg(grudev,
|
||||
"err %d: cch %p, gts %p, cbr 0x%lx, dsr 0x%lx\n",
|
||||
err, cch, gts, gts->ts_cbr_map, gts->ts_dsr_map);
|
||||
BUG();
|
||||
}
|
||||
|
||||
gru_load_context_data(gts->ts_gdata, gru->gs_gru_base_vaddr, ctxnum,
|
||||
gts->ts_cbr_map, gts->ts_dsr_map);
|
||||
|
||||
if (cch_start(cch))
|
||||
BUG();
|
||||
unlock_cch_handle(cch);
|
||||
|
||||
STAT(load_context);
|
||||
}
|
||||
|
||||
/*
|
||||
* Update fields in an active CCH:
|
||||
* - retarget interrupts on local blade
|
||||
* - force a delayed context unload by clearing the CCH asids. This
|
||||
* forces TLB misses for new GRU instructions. The context is unloaded
|
||||
* when the next TLB miss occurs.
|
||||
*/
|
||||
static int gru_update_cch(struct gru_thread_state *gts, int int_select)
|
||||
{
|
||||
struct gru_context_configuration_handle *cch;
|
||||
struct gru_state *gru = gts->ts_gru;
|
||||
int i, ctxnum = gts->ts_ctxnum, ret = 0;
|
||||
|
||||
cch = get_cch(gru->gs_gru_base_vaddr, ctxnum);
|
||||
|
||||
lock_cch_handle(cch);
|
||||
if (cch->state == CCHSTATE_ACTIVE) {
|
||||
if (gru->gs_gts[gts->ts_ctxnum] != gts)
|
||||
goto exit;
|
||||
if (cch_interrupt(cch))
|
||||
BUG();
|
||||
if (int_select >= 0) {
|
||||
gts->ts_tlb_int_select = int_select;
|
||||
cch->tlb_int_select = int_select;
|
||||
} else {
|
||||
for (i = 0; i < 8; i++)
|
||||
cch->asid[i] = 0;
|
||||
cch->tfm_fault_bit_enable = 0;
|
||||
cch->tlb_int_enable = 0;
|
||||
gts->ts_force_unload = 1;
|
||||
}
|
||||
if (cch_start(cch))
|
||||
BUG();
|
||||
ret = 1;
|
||||
}
|
||||
exit:
|
||||
unlock_cch_handle(cch);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Update CCH tlb interrupt select. Required when all the following is true:
|
||||
* - task's GRU context is loaded into a GRU
|
||||
* - task is using interrupt notification for TLB faults
|
||||
* - task has migrated to a different cpu on the same blade where
|
||||
* it was previously running.
|
||||
*/
|
||||
static int gru_retarget_intr(struct gru_thread_state *gts)
|
||||
{
|
||||
if (gts->ts_tlb_int_select < 0
|
||||
|| gts->ts_tlb_int_select == gru_cpu_fault_map_id())
|
||||
return 0;
|
||||
|
||||
gru_dbg(grudev, "retarget from %d to %d\n", gts->ts_tlb_int_select,
|
||||
gru_cpu_fault_map_id());
|
||||
return gru_update_cch(gts, gru_cpu_fault_map_id());
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Insufficient GRU resources available on the local blade. Steal a context from
|
||||
* a process. This is a hack until a _real_ resource scheduler is written....
|
||||
*/
|
||||
#define next_ctxnum(n) ((n) < GRU_NUM_CCH - 2 ? (n) + 1 : 0)
|
||||
#define next_gru(b, g) (((g) < &(b)->bs_grus[GRU_CHIPLETS_PER_BLADE - 1]) ? \
|
||||
((g)+1) : &(b)->bs_grus[0])
|
||||
|
||||
static void gru_steal_context(struct gru_thread_state *gts)
|
||||
{
|
||||
struct gru_blade_state *blade;
|
||||
struct gru_state *gru, *gru0;
|
||||
struct gru_thread_state *ngts = NULL;
|
||||
int ctxnum, ctxnum0, flag = 0, cbr, dsr;
|
||||
|
||||
cbr = gts->ts_cbr_au_count;
|
||||
dsr = gts->ts_dsr_au_count;
|
||||
|
||||
preempt_disable();
|
||||
blade = gru_base[uv_numa_blade_id()];
|
||||
spin_lock(&blade->bs_lock);
|
||||
|
||||
ctxnum = next_ctxnum(blade->bs_lru_ctxnum);
|
||||
gru = blade->bs_lru_gru;
|
||||
if (ctxnum == 0)
|
||||
gru = next_gru(blade, gru);
|
||||
ctxnum0 = ctxnum;
|
||||
gru0 = gru;
|
||||
while (1) {
|
||||
if (check_gru_resources(gru, cbr, dsr, GRU_NUM_CCH))
|
||||
break;
|
||||
spin_lock(&gru->gs_lock);
|
||||
for (; ctxnum < GRU_NUM_CCH; ctxnum++) {
|
||||
if (flag && gru == gru0 && ctxnum == ctxnum0)
|
||||
break;
|
||||
ngts = gru->gs_gts[ctxnum];
|
||||
/*
|
||||
* We are grabbing locks out of order, so trylock is
|
||||
* needed. GTSs are usually not locked, so the odds of
|
||||
* success are high. If trylock fails, try to steal a
|
||||
* different GSEG.
|
||||
*/
|
||||
if (ngts && mutex_trylock(&ngts->ts_ctxlock))
|
||||
break;
|
||||
ngts = NULL;
|
||||
flag = 1;
|
||||
}
|
||||
spin_unlock(&gru->gs_lock);
|
||||
if (ngts || (flag && gru == gru0 && ctxnum == ctxnum0))
|
||||
break;
|
||||
ctxnum = 0;
|
||||
gru = next_gru(blade, gru);
|
||||
}
|
||||
blade->bs_lru_gru = gru;
|
||||
blade->bs_lru_ctxnum = ctxnum;
|
||||
spin_unlock(&blade->bs_lock);
|
||||
preempt_enable();
|
||||
|
||||
if (ngts) {
|
||||
STAT(steal_context);
|
||||
ngts->ts_steal_jiffies = jiffies;
|
||||
gru_unload_context(ngts, 1);
|
||||
mutex_unlock(&ngts->ts_ctxlock);
|
||||
} else {
|
||||
STAT(steal_context_failed);
|
||||
}
|
||||
gru_dbg(grudev,
|
||||
"stole gru %x, ctxnum %d from gts %p. Need cb %d, ds %d;"
|
||||
" avail cb %ld, ds %ld\n",
|
||||
gru->gs_gid, ctxnum, ngts, cbr, dsr, hweight64(gru->gs_cbr_map),
|
||||
hweight64(gru->gs_dsr_map));
|
||||
}
|
||||
|
||||
/*
|
||||
* Scan the GRUs on the local blade & assign a GRU context.
|
||||
*/
|
||||
static struct gru_state *gru_assign_gru_context(struct gru_thread_state *gts)
|
||||
{
|
||||
struct gru_state *gru, *grux;
|
||||
int i, max_active_contexts;
|
||||
|
||||
preempt_disable();
|
||||
|
||||
again:
|
||||
gru = NULL;
|
||||
max_active_contexts = GRU_NUM_CCH;
|
||||
for_each_gru_on_blade(grux, uv_numa_blade_id(), i) {
|
||||
if (check_gru_resources(grux, gts->ts_cbr_au_count,
|
||||
gts->ts_dsr_au_count,
|
||||
max_active_contexts)) {
|
||||
gru = grux;
|
||||
max_active_contexts = grux->gs_active_contexts;
|
||||
if (max_active_contexts == 0)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (gru) {
|
||||
spin_lock(&gru->gs_lock);
|
||||
if (!check_gru_resources(gru, gts->ts_cbr_au_count,
|
||||
gts->ts_dsr_au_count, GRU_NUM_CCH)) {
|
||||
spin_unlock(&gru->gs_lock);
|
||||
goto again;
|
||||
}
|
||||
reserve_gru_resources(gru, gts);
|
||||
gts->ts_gru = gru;
|
||||
gts->ts_ctxnum =
|
||||
find_first_zero_bit(&gru->gs_context_map, GRU_NUM_CCH);
|
||||
BUG_ON(gts->ts_ctxnum == GRU_NUM_CCH);
|
||||
atomic_inc(>s->ts_refcnt);
|
||||
gru->gs_gts[gts->ts_ctxnum] = gts;
|
||||
__set_bit(gts->ts_ctxnum, &gru->gs_context_map);
|
||||
spin_unlock(&gru->gs_lock);
|
||||
|
||||
STAT(assign_context);
|
||||
gru_dbg(grudev,
|
||||
"gseg %p, gts %p, gru %x, ctx %d, cbr %d, dsr %d\n",
|
||||
gseg_virtual_address(gts->ts_gru, gts->ts_ctxnum), gts,
|
||||
gts->ts_gru->gs_gid, gts->ts_ctxnum,
|
||||
gts->ts_cbr_au_count, gts->ts_dsr_au_count);
|
||||
} else {
|
||||
gru_dbg(grudev, "failed to allocate a GTS %s\n", "");
|
||||
STAT(assign_context_failed);
|
||||
}
|
||||
|
||||
preempt_enable();
|
||||
return gru;
|
||||
}
|
||||
|
||||
/*
|
||||
* gru_nopage
|
||||
*
|
||||
* Map the user's GRU segment
|
||||
*/
|
||||
int gru_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
||||
{
|
||||
struct gru_thread_state *gts;
|
||||
unsigned long paddr, vaddr;
|
||||
|
||||
vaddr = (unsigned long)vmf->virtual_address;
|
||||
gru_dbg(grudev, "vma %p, vaddr 0x%lx (0x%lx)\n",
|
||||
vma, vaddr, GSEG_BASE(vaddr));
|
||||
STAT(nopfn);
|
||||
|
||||
gts = gru_find_thread_state(vma, TSID(vaddr, vma));
|
||||
if (!gts)
|
||||
return VM_FAULT_SIGBUS;
|
||||
|
||||
again:
|
||||
preempt_disable();
|
||||
mutex_lock(>s->ts_ctxlock);
|
||||
if (gts->ts_gru) {
|
||||
if (gts->ts_gru->gs_blade_id != uv_numa_blade_id()) {
|
||||
STAT(migrated_nopfn_unload);
|
||||
gru_unload_context(gts, 1);
|
||||
} else {
|
||||
if (gru_retarget_intr(gts))
|
||||
STAT(migrated_nopfn_retarget);
|
||||
}
|
||||
}
|
||||
|
||||
if (!gts->ts_gru) {
|
||||
while (!gru_assign_gru_context(gts)) {
|
||||
mutex_unlock(>s->ts_ctxlock);
|
||||
preempt_enable();
|
||||
schedule_timeout(GRU_ASSIGN_DELAY); /* true hack ZZZ */
|
||||
if (gts->ts_steal_jiffies + GRU_STEAL_DELAY < jiffies)
|
||||
gru_steal_context(gts);
|
||||
goto again;
|
||||
}
|
||||
gru_load_context(gts);
|
||||
paddr = gseg_physical_address(gts->ts_gru, gts->ts_ctxnum);
|
||||
remap_pfn_range(vma, vaddr & ~(GRU_GSEG_PAGESIZE - 1),
|
||||
paddr >> PAGE_SHIFT, GRU_GSEG_PAGESIZE,
|
||||
vma->vm_page_prot);
|
||||
}
|
||||
|
||||
mutex_unlock(>s->ts_ctxlock);
|
||||
preempt_enable();
|
||||
|
||||
return VM_FAULT_NOPAGE;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user