Merge branch 'akpm' (Andrew's patch-bomb)

Merge patches from Andrew Morton:
 "A few misc things and very nearly all of the MM tree.  A tremendous
  amount of stuff (again), including a significant rbtree library
  rework."

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (160 commits)
  sparc64: Support transparent huge pages.
  mm: thp: Use more portable PMD clearing sequenece in zap_huge_pmd().
  mm: Add and use update_mmu_cache_pmd() in transparent huge page code.
  sparc64: Document PGD and PMD layout.
  sparc64: Eliminate PTE table memory wastage.
  sparc64: Halve the size of PTE tables
  sparc64: Only support 4MB huge pages and 8KB base pages.
  memory-hotplug: suppress "Trying to free nonexistent resource <XXXXXXXXXXXXXXXX-YYYYYYYYYYYYYYYY>" warning
  mm: memcg: clean up mm_match_cgroup() signature
  mm: document PageHuge somewhat
  mm: use %pK for /proc/vmallocinfo
  mm, thp: fix mlock statistics
  mm, thp: fix mapped pages avoiding unevictable list on mlock
  memory-hotplug: update memory block's state and notify userspace
  memory-hotplug: preparation to notify memory block's state at memory hot remove
  mm: avoid section mismatch warning for memblock_type_name
  make GFP_NOTRACK definition unconditional
  cma: decrease cc.nr_migratepages after reclaiming pagelist
  CMA: migrate mlocked pages
  kpageflags: fix wrong KPF_THP on non-huge compound pages
  ...
This commit is contained in:
Linus Torvalds 2012-10-09 16:23:15 +09:00
commit 9e2d8656f5
255 changed files with 5013 additions and 3577 deletions

View File

@ -270,8 +270,6 @@ preempt-locking.txt
- info on locking under a preemptive kernel.
printk-formats.txt
- how to get printk format specifiers right
prio_tree.txt
- info on radix-priority-search-tree use for indexing vmas.
ramoops.txt
- documentation of the ramoops oops/panic logging module.
rbtree.txt

View File

@ -1,22 +0,0 @@
What: /proc/<pid>/oom_adj
When: August 2012
Why: /proc/<pid>/oom_adj allows userspace to influence the oom killer's
badness heuristic used to determine which task to kill when the kernel
is out of memory.
The badness heuristic has since been rewritten since the introduction of
this tunable such that its meaning is deprecated. The value was
implemented as a bitshift on a score generated by the badness()
function that did not have any precise units of measure. With the
rewrite, the score is given as a proportion of available memory to the
task allocating pages, so using a bitshift which grows the score
exponentially is, thus, impossible to tune with fine granularity.
A much more powerful interface, /proc/<pid>/oom_score_adj, was
introduced with the oom killer rewrite that allows users to increase or
decrease the badness score linearly. This interface will replace
/proc/<pid>/oom_adj.
A warning will be emitted to the kernel log if an application uses this
deprecated interface. After it is printed once, future warnings will be
suppressed until the kernel is rebooted.

View File

@ -18,16 +18,16 @@ from the rest of the system. The article on LWN [12] mentions some probable
uses of the memory controller. The memory controller can be used to
a. Isolate an application or a group of applications
Memory hungry applications can be isolated and limited to a smaller
Memory-hungry applications can be isolated and limited to a smaller
amount of memory.
b. Create a cgroup with limited amount of memory, this can be used
b. Create a cgroup with a limited amount of memory; this can be used
as a good alternative to booting with mem=XXXX.
c. Virtualization solutions can control the amount of memory they want
to assign to a virtual machine instance.
d. A CD/DVD burner could control the amount of memory used by the
rest of the system to ensure that burning does not fail due to lack
of available memory.
e. There are several other use cases, find one or use the controller just
e. There are several other use cases; find one or use the controller just
for fun (to learn and hack on the VM subsystem).
Current Status: linux-2.6.34-mmotm(development version of 2010/April)
@ -38,12 +38,12 @@ Features:
- optionally, memory+swap usage can be accounted and limited.
- hierarchical accounting
- soft limit
- moving(recharging) account at moving a task is selectable.
- moving (recharging) account at moving a task is selectable.
- usage threshold notifier
- oom-killer disable knob and oom-notifier
- Root cgroup has no limit controls.
Kernel memory support is work in progress, and the current version provides
Kernel memory support is a work in progress, and the current version provides
basically functionality. (See Section 2.7)
Brief summary of control files.
@ -144,9 +144,9 @@ Figure 1 shows the important aspects of the controller
3. Each page has a pointer to the page_cgroup, which in turn knows the
cgroup it belongs to
The accounting is done as follows: mem_cgroup_charge() is invoked to setup
The accounting is done as follows: mem_cgroup_charge() is invoked to set up
the necessary data structures and check if the cgroup that is being charged
is over its limit. If it is then reclaim is invoked on the cgroup.
is over its limit. If it is, then reclaim is invoked on the cgroup.
More details can be found in the reclaim section of this document.
If everything goes well, a page meta-data-structure called page_cgroup is
updated. page_cgroup has its own LRU on cgroup.
@ -163,13 +163,13 @@ for earlier. A file page will be accounted for as Page Cache when it's
inserted into inode (radix-tree). While it's mapped into the page tables of
processes, duplicate accounting is carefully avoided.
A RSS page is unaccounted when it's fully unmapped. A PageCache page is
An RSS page is unaccounted when it's fully unmapped. A PageCache page is
unaccounted when it's removed from radix-tree. Even if RSS pages are fully
unmapped (by kswapd), they may exist as SwapCache in the system until they
are really freed. Such SwapCaches also also accounted.
are really freed. Such SwapCaches are also accounted.
A swapped-in page is not accounted until it's mapped.
Note: The kernel does swapin-readahead and read multiple swaps at once.
Note: The kernel does swapin-readahead and reads multiple swaps at once.
This means swapped-in pages may contain pages for other tasks than a task
causing page fault. So, we avoid accounting at swap-in I/O.
@ -209,7 +209,7 @@ memsw.limit_in_bytes.
Example: Assume a system with 4G of swap. A task which allocates 6G of memory
(by mistake) under 2G memory limitation will use all swap.
In this case, setting memsw.limit_in_bytes=3G will prevent bad use of swap.
By using memsw limit, you can avoid system OOM which can be caused by swap
By using the memsw limit, you can avoid system OOM which can be caused by swap
shortage.
* why 'memory+swap' rather than swap.
@ -217,7 +217,7 @@ The global LRU(kswapd) can swap out arbitrary pages. Swap-out means
to move account from memory to swap...there is no change in usage of
memory+swap. In other words, when we want to limit the usage of swap without
affecting global LRU, memory+swap limit is better than just limiting swap from
OS point of view.
an OS point of view.
* What happens when a cgroup hits memory.memsw.limit_in_bytes
When a cgroup hits memory.memsw.limit_in_bytes, it's useless to do swap-out
@ -236,7 +236,7 @@ an OOM routine is invoked to select and kill the bulkiest task in the
cgroup. (See 10. OOM Control below.)
The reclaim algorithm has not been modified for cgroups, except that
pages that are selected for reclaiming come from the per cgroup LRU
pages that are selected for reclaiming come from the per-cgroup LRU
list.
NOTE: Reclaim does not work for the root cgroup, since we cannot set any
@ -316,7 +316,7 @@ We can check the usage:
# cat /sys/fs/cgroup/memory/0/memory.usage_in_bytes
1216512
A successful write to this file does not guarantee a successful set of
A successful write to this file does not guarantee a successful setting of
this limit to the value written into the file. This can be due to a
number of factors, such as rounding up to page boundaries or the total
availability of memory on the system. The user is required to re-read
@ -350,7 +350,7 @@ Trying usual test under memory controller is always helpful.
4.1 Troubleshooting
Sometimes a user might find that the application under a cgroup is
terminated by OOM killer. There are several causes for this:
terminated by the OOM killer. There are several causes for this:
1. The cgroup limit is too low (just too low to do anything useful)
2. The user is using anonymous memory and swap is turned off or too low
@ -358,7 +358,7 @@ terminated by OOM killer. There are several causes for this:
A sync followed by echo 1 > /proc/sys/vm/drop_caches will help get rid of
some of the pages cached in the cgroup (page cache pages).
To know what happens, disable OOM_Kill by 10. OOM Control(see below) and
To know what happens, disabling OOM_Kill as per "10. OOM Control" (below) and
seeing what happens will be helpful.
4.2 Task migration
@ -399,10 +399,10 @@ About use_hierarchy, see Section 6.
Almost all pages tracked by this memory cgroup will be unmapped and freed.
Some pages cannot be freed because they are locked or in-use. Such pages are
moved to parent(if use_hierarchy==1) or root (if use_hierarchy==0) and this
moved to parent (if use_hierarchy==1) or root (if use_hierarchy==0) and this
cgroup will be empty.
Typical use case of this interface is that calling this before rmdir().
The typical use case for this interface is before calling rmdir().
Because rmdir() moves all pages to parent, some out-of-use page caches can be
moved to the parent. If you want to avoid that, force_empty will be useful.
@ -486,7 +486,7 @@ You can reset failcnt by writing 0 to failcnt file.
For efficiency, as other kernel components, memory cgroup uses some optimization
to avoid unnecessary cacheline false sharing. usage_in_bytes is affected by the
method and doesn't show 'exact' value of memory(and swap) usage, it's an fuzz
method and doesn't show 'exact' value of memory (and swap) usage, it's a fuzz
value for efficient access. (Of course, when necessary, it's synchronized.)
If you want to know more exact memory usage, you should use RSS+CACHE(+SWAP)
value in memory.stat(see 5.2).
@ -496,8 +496,8 @@ value in memory.stat(see 5.2).
This is similar to numa_maps but operates on a per-memcg basis. This is
useful for providing visibility into the numa locality information within
an memcg since the pages are allowed to be allocated from any physical
node. One of the usecases is evaluating application performance by
combining this information with the application's cpu allocation.
node. One of the use cases is evaluating application performance by
combining this information with the application's CPU allocation.
We export "total", "file", "anon" and "unevictable" pages per-node for
each memcg. The ouput format of memory.numa_stat is:
@ -561,10 +561,10 @@ are pushed back to their soft limits. If the soft limit of each control
group is very high, they are pushed back as much as possible to make
sure that one control group does not starve the others of memory.
Please note that soft limits is a best effort feature, it comes with
Please note that soft limits is a best-effort feature; it comes with
no guarantees, but it does its best to make sure that when memory is
heavily contended for, memory is allocated based on the soft limit
hints/setup. Currently soft limit based reclaim is setup such that
hints/setup. Currently soft limit based reclaim is set up such that
it gets invoked from balance_pgdat (kswapd).
7.1 Interface
@ -592,7 +592,7 @@ page tables.
8.1 Interface
This feature is disabled by default. It can be enabled(and disabled again) by
This feature is disabled by default. It can be enabledi (and disabled again) by
writing to memory.move_charge_at_immigrate of the destination cgroup.
If you want to enable it:
@ -601,8 +601,8 @@ If you want to enable it:
Note: Each bits of move_charge_at_immigrate has its own meaning about what type
of charges should be moved. See 8.2 for details.
Note: Charges are moved only when you move mm->owner, IOW, a leader of a thread
group.
Note: Charges are moved only when you move mm->owner, in other words,
a leader of a thread group.
Note: If we cannot find enough space for the task in the destination cgroup, we
try to make space by reclaiming memory. Task migration may fail if we
cannot make enough space.
@ -612,25 +612,25 @@ And if you want disable it again:
# echo 0 > memory.move_charge_at_immigrate
8.2 Type of charges which can be move
8.2 Type of charges which can be moved
Each bits of move_charge_at_immigrate has its own meaning about what type of
charges should be moved. But in any cases, it must be noted that an account of
a page or a swap can be moved only when it is charged to the task's current(old)
memory cgroup.
Each bit in move_charge_at_immigrate has its own meaning about what type of
charges should be moved. But in any case, it must be noted that an account of
a page or a swap can be moved only when it is charged to the task's current
(old) memory cgroup.
bit | what type of charges would be moved ?
-----+------------------------------------------------------------------------
0 | A charge of an anonymous page(or swap of it) used by the target task.
| You must enable Swap Extension(see 2.4) to enable move of swap charges.
0 | A charge of an anonymous page (or swap of it) used by the target task.
| You must enable Swap Extension (see 2.4) to enable move of swap charges.
-----+------------------------------------------------------------------------
1 | A charge of file pages(normal file, tmpfs file(e.g. ipc shared memory)
1 | A charge of file pages (normal file, tmpfs file (e.g. ipc shared memory)
| and swaps of tmpfs file) mmapped by the target task. Unlike the case of
| anonymous pages, file pages(and swaps) in the range mmapped by the task
| anonymous pages, file pages (and swaps) in the range mmapped by the task
| will be moved even if the task hasn't done page fault, i.e. they might
| not be the task's "RSS", but other task's "RSS" that maps the same file.
| And mapcount of the page is ignored(the page can be moved even if
| page_mapcount(page) > 1). You must enable Swap Extension(see 2.4) to
| And mapcount of the page is ignored (the page can be moved even if
| page_mapcount(page) > 1). You must enable Swap Extension (see 2.4) to
| enable move of swap charges.
8.3 TODO
@ -640,11 +640,11 @@ memory cgroup.
9. Memory thresholds
Memory cgroup implements memory thresholds using cgroups notification
Memory cgroup implements memory thresholds using the cgroups notification
API (see cgroups.txt). It allows to register multiple memory and memsw
thresholds and gets notifications when it crosses.
To register a threshold application need:
To register a threshold, an application must:
- create an eventfd using eventfd(2);
- open memory.usage_in_bytes or memory.memsw.usage_in_bytes;
- write string like "<event_fd> <fd of memory.usage_in_bytes> <threshold>" to
@ -659,24 +659,24 @@ It's applicable for root and non-root cgroup.
memory.oom_control file is for OOM notification and other controls.
Memory cgroup implements OOM notifier using cgroup notification
Memory cgroup implements OOM notifier using the cgroup notification
API (See cgroups.txt). It allows to register multiple OOM notification
delivery and gets notification when OOM happens.
To register a notifier, application need:
To register a notifier, an application must:
- create an eventfd using eventfd(2)
- open memory.oom_control file
- write string like "<event_fd> <fd of memory.oom_control>" to
cgroup.event_control
Application will be notified through eventfd when OOM happens.
OOM notification doesn't work for root cgroup.
The application will be notified through eventfd when OOM happens.
OOM notification doesn't work for the root cgroup.
You can disable OOM-killer by writing "1" to memory.oom_control file, as:
You can disable the OOM-killer by writing "1" to memory.oom_control file, as:
#echo 1 > memory.oom_control
This operation is only allowed to the top cgroup of sub-hierarchy.
This operation is only allowed to the top cgroup of a sub-hierarchy.
If OOM-killer is disabled, tasks under cgroup will hang/sleep
in memory cgroup's OOM-waitqueue when they request accountable memory.

View File

@ -33,7 +33,7 @@ Table of Contents
2 Modifying System Parameters
3 Per-Process Parameters
3.1 /proc/<pid>/oom_adj & /proc/<pid>/oom_score_adj - Adjust the oom-killer
3.1 /proc/<pid>/oom_score_adj - Adjust the oom-killer
score
3.2 /proc/<pid>/oom_score - Display current oom-killer score
3.3 /proc/<pid>/io - Display the IO accounting fields
@ -1320,10 +1320,10 @@ of the kernel.
CHAPTER 3: PER-PROCESS PARAMETERS
------------------------------------------------------------------------------
3.1 /proc/<pid>/oom_adj & /proc/<pid>/oom_score_adj- Adjust the oom-killer score
3.1 /proc/<pid>/oom_score_adj- Adjust the oom-killer score
--------------------------------------------------------------------------------
These file can be used to adjust the badness heuristic used to select which
This file can be used to adjust the badness heuristic used to select which
process gets killed in out of memory conditions.
The badness heuristic assigns a value to each candidate task ranging from 0
@ -1361,22 +1361,10 @@ same system, cpuset, mempolicy, or memory controller resources to use at least
equivalent to discounting 50% of the task's allowed memory from being considered
as scoring against the task.
For backwards compatibility with previous kernels, /proc/<pid>/oom_adj may also
be used to tune the badness score. Its acceptable values range from -16
(OOM_ADJUST_MIN) to +15 (OOM_ADJUST_MAX) and a special value of -17
(OOM_DISABLE) to disable oom killing entirely for that task. Its value is
scaled linearly with /proc/<pid>/oom_score_adj.
Writing to /proc/<pid>/oom_score_adj or /proc/<pid>/oom_adj will change the
other with its scaled value.
The value of /proc/<pid>/oom_score_adj may be reduced no lower than the last
value set by a CAP_SYS_RESOURCE process. To reduce the value any lower
requires CAP_SYS_RESOURCE.
NOTICE: /proc/<pid>/oom_adj is deprecated and will be removed, please see
Documentation/feature-removal-schedule.txt.
Caveat: when a parent task is selected, the oom killer will sacrifice any first
generation children with separate address spaces instead, if possible. This
avoids servers and important system daemons from being killed and loses the
@ -1387,9 +1375,7 @@ minimal amount of work.
-------------------------------------------------------------
This file can be used to check the current score used by the oom-killer is for
any given <pid>. Use it together with /proc/<pid>/oom_adj to tune which
process should be killed in an out-of-memory situation.
any given <pid>.
3.3 /proc/<pid>/io - Display the IO accounting fields
-------------------------------------------------------

View File

@ -1,33 +0,0 @@
There are several classic problems related to memory on Linux
systems.
1) There are some motherboards that will not cache above
a certain quantity of memory. If you have one of these
motherboards, your system will be SLOWER, not faster
as you add more memory. Consider exchanging your
motherboard.
All of these problems can be addressed with the "mem=XXXM" boot option
(where XXX is the size of RAM to use in megabytes).
It can also tell Linux to use less memory than is actually installed.
If you use "mem=" on a machine with PCI, consider using "memmap=" to avoid
physical address space collisions.
See the documentation of your boot loader (LILO, grub, loadlin, etc.) about
how to pass options to the kernel.
There are other memory problems which Linux cannot deal with. Random
corruption of memory is usually a sign of serious hardware trouble.
Try:
* Reducing memory settings in the BIOS to the most conservative
timings.
* Adding a cooling fan.
* Not overclocking your CPU.
* Having the memory tested in a memory tester or exchanged
with the vendor. Consider testing it with memtest86 yourself.
* Exchanging your CPU, cache, or motherboard for one that works.

View File

@ -1,107 +0,0 @@
The prio_tree.c code indexes vmas using 3 different indexes:
* heap_index = vm_pgoff + vm_size_in_pages : end_vm_pgoff
* radix_index = vm_pgoff : start_vm_pgoff
* size_index = vm_size_in_pages
A regular radix-priority-search-tree indexes vmas using only heap_index and
radix_index. The conditions for indexing are:
* ->heap_index >= ->left->heap_index &&
->heap_index >= ->right->heap_index
* if (->heap_index == ->left->heap_index)
then ->radix_index < ->left->radix_index;
* if (->heap_index == ->right->heap_index)
then ->radix_index < ->right->radix_index;
* nodes are hashed to left or right subtree using radix_index
similar to a pure binary radix tree.
A regular radix-priority-search-tree helps to store and query
intervals (vmas). However, a regular radix-priority-search-tree is only
suitable for storing vmas with different radix indices (vm_pgoff).
Therefore, the prio_tree.c extends the regular radix-priority-search-tree
to handle many vmas with the same vm_pgoff. Such vmas are handled in
2 different ways: 1) All vmas with the same radix _and_ heap indices are
linked using vm_set.list, 2) if there are many vmas with the same radix
index, but different heap indices and if the regular radix-priority-search
tree cannot index them all, we build an overflow-sub-tree that indexes such
vmas using heap and size indices instead of heap and radix indices. For
example, in the figure below some vmas with vm_pgoff = 0 (zero) are
indexed by regular radix-priority-search-tree whereas others are pushed
into an overflow-subtree. Note that all vmas in an overflow-sub-tree have
the same vm_pgoff (radix_index) and if necessary we build different
overflow-sub-trees to handle each possible radix_index. For example,
in figure we have 3 overflow-sub-trees corresponding to radix indices
0, 2, and 4.
In the final tree the first few (prio_tree_root->index_bits) levels
are indexed using heap and radix indices whereas the overflow-sub-trees below
those levels (i.e. levels prio_tree_root->index_bits + 1 and higher) are
indexed using heap and size indices. In overflow-sub-trees the size_index
is used for hashing the nodes to appropriate places.
Now, an example prio_tree:
vmas are represented [radix_index, size_index, heap_index]
i.e., [start_vm_pgoff, vm_size_in_pages, end_vm_pgoff]
level prio_tree_root->index_bits = 3
-----
_
0 [0,7,7] |
/ \ |
------------------ ------------ | Regular
/ \ | radix priority
1 [1,6,7] [4,3,7] | search tree
/ \ / \ |
------- ----- ------ ----- | heap-and-radix
/ \ / \ | indexed
2 [0,6,6] [2,5,7] [5,2,7] [6,1,7] |
/ \ / \ / \ / \ |
3 [0,5,5] [1,5,6] [2,4,6] [3,4,7] [4,2,6] [5,1,6] [6,0,6] [7,0,7] |
/ / / _
/ / / _
4 [0,4,4] [2,3,5] [4,1,5] |
/ / / |
5 [0,3,3] [2,2,4] [4,0,4] | Overflow-sub-trees
/ / |
6 [0,2,2] [2,1,3] | heap-and-size
/ / | indexed
7 [0,1,1] [2,0,2] |
/ |
8 [0,0,0] |
_
Note that we use prio_tree_root->index_bits to optimize the height
of the heap-and-radix indexed tree. Since prio_tree_root->index_bits is
set according to the maximum end_vm_pgoff mapped, we are sure that all
bits (in vm_pgoff) above prio_tree_root->index_bits are 0 (zero). Therefore,
we only use the first prio_tree_root->index_bits as radix_index.
Whenever index_bits is increased in prio_tree_expand, we shuffle the tree
to make sure that the first prio_tree_root->index_bits levels of the tree
is indexed properly using heap and radix indices.
We do not optimize the height of overflow-sub-trees using index_bits.
The reason is: there can be many such overflow-sub-trees and all of
them have to be suffled whenever the index_bits increases. This may involve
walking the whole prio_tree in prio_tree_insert->prio_tree_expand code
path which is not desirable. Hence, we do not optimize the height of the
heap-and-size indexed overflow-sub-trees using prio_tree->index_bits.
Instead the overflow sub-trees are indexed using full BITS_PER_LONG bits
of size_index. This may lead to skewed sub-trees because most of the
higher significant bits of the size_index are likely to be 0 (zero). In
the example above, all 3 overflow-sub-trees are skewed. This may marginally
affect the performance. However, processes rarely map many vmas with the
same start_vm_pgoff but different end_vm_pgoffs. Therefore, we normally
do not require overflow-sub-trees to index all vmas.
From the above discussion it is clear that the maximum height of
a prio_tree can be prio_tree_root->index_bits + BITS_PER_LONG.
However, in most of the common cases we do not need overflow-sub-trees,
so the tree height in the common cases will be prio_tree_root->index_bits.
It is fair to mention here that the prio_tree_root->index_bits
is increased on demand, however, the index_bits is not decreased when
vmas are removed from the prio_tree. That's tricky to do. Hence, it's
left as a home work problem.

View File

@ -193,24 +193,55 @@ Example:
Support for Augmented rbtrees
-----------------------------
Augmented rbtree is an rbtree with "some" additional data stored in each node.
This data can be used to augment some new functionality to rbtree.
Augmented rbtree is an optional feature built on top of basic rbtree
infrastructure. An rbtree user who wants this feature will have to call the
augmentation functions with the user provided augmentation callback
when inserting and erasing nodes.
Augmented rbtree is an rbtree with "some" additional data stored in
each node, where the additional data for node N must be a function of
the contents of all nodes in the subtree rooted at N. This data can
be used to augment some new functionality to rbtree. Augmented rbtree
is an optional feature built on top of basic rbtree infrastructure.
An rbtree user who wants this feature will have to call the augmentation
functions with the user provided augmentation callback when inserting
and erasing nodes.
On insertion, the user must call rb_augment_insert() once the new node is in
place. This will cause the augmentation function callback to be called for
each node between the new node and the root which has been affected by the
insertion.
C files implementing augmented rbtree manipulation must include
<linux/rbtree_augmented.h> instead of <linus/rbtree.h>. Note that
linux/rbtree_augmented.h exposes some rbtree implementations details
you are not expected to rely on; please stick to the documented APIs
there and do not include <linux/rbtree_augmented.h> from header files
either so as to minimize chances of your users accidentally relying on
such implementation details.
When erasing a node, the user must call rb_augment_erase_begin() first to
retrieve the deepest node on the rebalance path. Then, after erasing the
original node, the user must call rb_augment_erase_end() with the deepest
node found earlier. This will cause the augmentation function to be called
for each affected node between the deepest node and the root.
On insertion, the user must update the augmented information on the path
leading to the inserted node, then call rb_link_node() as usual and
rb_augment_inserted() instead of the usual rb_insert_color() call.
If rb_augment_inserted() rebalances the rbtree, it will callback into
a user provided function to update the augmented information on the
affected subtrees.
When erasing a node, the user must call rb_erase_augmented() instead of
rb_erase(). rb_erase_augmented() calls back into user provided functions
to updated the augmented information on affected subtrees.
In both cases, the callbacks are provided through struct rb_augment_callbacks.
3 callbacks must be defined:
- A propagation callback, which updates the augmented value for a given
node and its ancestors, up to a given stop point (or NULL to update
all the way to the root).
- A copy callback, which copies the augmented value for a given subtree
to a newly assigned subtree root.
- A tree rotation callback, which copies the augmented value for a given
subtree to a newly assigned subtree root AND recomputes the augmented
information for the former subtree root.
The compiled code for rb_erase_augmented() may inline the propagation and
copy callbacks, which results in a large function, so each augmented rbtree
user should have a single rb_erase_augmented() call site in order to limit
compiled code size.
Sample usage:
Interval tree is an example of augmented rb tree. Reference -
"Introduction to Algorithms" by Cormen, Leiserson, Rivest and Stein.
@ -230,26 +261,132 @@ and its immediate children. And this will be used in O(log n) lookup
for lowest match (lowest start address among all possible matches)
with something like:
find_lowest_match(lo, hi, node)
struct interval_tree_node *
interval_tree_first_match(struct rb_root *root,
unsigned long start, unsigned long last)
{
lowest_match = NULL;
while (node) {
if (max_hi(node->left) > lo) {
// Lowest overlap if any must be on left side
node = node->left;
} else if (overlap(lo, hi, node)) {
lowest_match = node;
break;
} else if (lo > node->lo) {
// Lowest overlap if any must be on right side
node = node->right;
} else {
break;
struct interval_tree_node *node;
if (!root->rb_node)
return NULL;
node = rb_entry(root->rb_node, struct interval_tree_node, rb);
while (true) {
if (node->rb.rb_left) {
struct interval_tree_node *left =
rb_entry(node->rb.rb_left,
struct interval_tree_node, rb);
if (left->__subtree_last >= start) {
/*
* Some nodes in left subtree satisfy Cond2.
* Iterate to find the leftmost such node N.
* If it also satisfies Cond1, that's the match
* we are looking for. Otherwise, there is no
* matching interval as nodes to the right of N
* can't satisfy Cond1 either.
*/
node = left;
continue;
}
}
if (node->start <= last) { /* Cond1 */
if (node->last >= start) /* Cond2 */
return node; /* node is leftmost match */
if (node->rb.rb_right) {
node = rb_entry(node->rb.rb_right,
struct interval_tree_node, rb);
if (node->__subtree_last >= start)
continue;
}
}
return NULL; /* No match */
}
return lowest_match;
}
Finding exact match will be to first find lowest match and then to follow
successor nodes looking for exact match, until the start of a node is beyond
the hi value we are looking for.
Insertion/removal are defined using the following augmented callbacks:
static inline unsigned long
compute_subtree_last(struct interval_tree_node *node)
{
unsigned long max = node->last, subtree_last;
if (node->rb.rb_left) {
subtree_last = rb_entry(node->rb.rb_left,
struct interval_tree_node, rb)->__subtree_last;
if (max < subtree_last)
max = subtree_last;
}
if (node->rb.rb_right) {
subtree_last = rb_entry(node->rb.rb_right,
struct interval_tree_node, rb)->__subtree_last;
if (max < subtree_last)
max = subtree_last;
}
return max;
}
static void augment_propagate(struct rb_node *rb, struct rb_node *stop)
{
while (rb != stop) {
struct interval_tree_node *node =
rb_entry(rb, struct interval_tree_node, rb);
unsigned long subtree_last = compute_subtree_last(node);
if (node->__subtree_last == subtree_last)
break;
node->__subtree_last = subtree_last;
rb = rb_parent(&node->rb);
}
}
static void augment_copy(struct rb_node *rb_old, struct rb_node *rb_new)
{
struct interval_tree_node *old =
rb_entry(rb_old, struct interval_tree_node, rb);
struct interval_tree_node *new =
rb_entry(rb_new, struct interval_tree_node, rb);
new->__subtree_last = old->__subtree_last;
}
static void augment_rotate(struct rb_node *rb_old, struct rb_node *rb_new)
{
struct interval_tree_node *old =
rb_entry(rb_old, struct interval_tree_node, rb);
struct interval_tree_node *new =
rb_entry(rb_new, struct interval_tree_node, rb);
new->__subtree_last = old->__subtree_last;
old->__subtree_last = compute_subtree_last(old);
}
static const struct rb_augment_callbacks augment_callbacks = {
augment_propagate, augment_copy, augment_rotate
};
void interval_tree_insert(struct interval_tree_node *node,
struct rb_root *root)
{
struct rb_node **link = &root->rb_node, *rb_parent = NULL;
unsigned long start = node->start, last = node->last;
struct interval_tree_node *parent;
while (*link) {
rb_parent = *link;
parent = rb_entry(rb_parent, struct interval_tree_node, rb);
if (parent->__subtree_last < last)
parent->__subtree_last = last;
if (start < parent->start)
link = &parent->rb.rb_left;
else
link = &parent->rb.rb_right;
}
node->__subtree_last = last;
rb_link_node(&node->rb, rb_parent, link);
rb_insert_augmented(&node->rb, root, &augment_callbacks);
}
void interval_tree_remove(struct interval_tree_node *node,
struct rb_root *root)
{
rb_erase_augmented(&node->rb, root, &augment_callbacks);
}

View File

@ -197,12 +197,8 @@ the pages are also "rescued" from the unevictable list in the process of
freeing them.
page_evictable() also checks for mlocked pages by testing an additional page
flag, PG_mlocked (as wrapped by PageMlocked()). If the page is NOT mlocked,
and a non-NULL VMA is supplied, page_evictable() will check whether the VMA is
VM_LOCKED via is_mlocked_vma(). is_mlocked_vma() will SetPageMlocked() and
update the appropriate statistics if the vma is VM_LOCKED. This method allows
efficient "culling" of pages in the fault path that are being faulted in to
VM_LOCKED VMAs.
flag, PG_mlocked (as wrapped by PageMlocked()), which is set when a page is
faulted into a VM_LOCKED vma, or found in a vma being VM_LOCKED.
VMSCAN'S HANDLING OF UNEVICTABLE PAGES
@ -371,8 +367,8 @@ mlock_fixup() filters several classes of "special" VMAs:
mlock_fixup() will call make_pages_present() in the hugetlbfs VMA range to
allocate the huge pages and populate the ptes.
3) VMAs with VM_DONTEXPAND or VM_RESERVED are generally userspace mappings of
kernel pages, such as the VDSO page, relay channel pages, etc. These pages
3) VMAs with VM_DONTEXPAND are generally userspace mappings of kernel pages,
such as the VDSO page, relay channel pages, etc. These pages
are inherently unevictable and are not managed on the LRU lists.
mlock_fixup() treats these VMAs the same as hugetlbfs VMAs. It calls
make_pages_present() to populate the ptes.
@ -651,7 +647,7 @@ PAGE RECLAIM IN shrink_*_list()
-------------------------------
shrink_active_list() culls any obviously unevictable pages - i.e.
!page_evictable(page, NULL) - diverting these to the unevictable list.
!page_evictable(page) - diverting these to the unevictable list.
However, shrink_active_list() only sees unevictable pages that made it onto the
active/inactive lru lists. Note that these pages do not have PageUnevictable
set - otherwise they would be on the unevictable list and shrink_active_list

View File

@ -7039,6 +7039,14 @@ S: Maintained
F: Documentation/svga.txt
F: arch/x86/boot/video*
SWIOTLB SUBSYSTEM
M: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
L: linux-kernel@vger.kernel.org
S: Supported
F: lib/swiotlb.c
F: arch/*/kernel/pci-swiotlb.c
F: include/linux/swiotlb.h
SYSV FILESYSTEM
M: Christoph Hellwig <hch@infradead.org>
S: Maintained

View File

@ -313,4 +313,7 @@ config HAVE_IRQ_TIME_ACCOUNTING
Archs need to ensure they use a high enough resolution clock to
support irq time accounting and then call enable_sched_clock_irqtime().
config HAVE_ARCH_TRANSPARENT_HUGEPAGE
bool
source "kernel/gcov/Kconfig"

View File

@ -26,7 +26,7 @@ static int hose_mmap_page_range(struct pci_controller *hose,
base = sparse ? hose->sparse_io_base : hose->dense_io_base;
vma->vm_pgoff += base >> PAGE_SHIFT;
vma->vm_flags |= (VM_IO | VM_RESERVED);
vma->vm_flags |= VM_IO | VM_DONTEXPAND | VM_DONTDUMP;
return io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
vma->vm_end - vma->vm_start,

View File

@ -25,6 +25,7 @@ config ARM
select HAVE_FUNCTION_GRAPH_TRACER if (!THUMB2_KERNEL)
select ARCH_BINFMT_ELF_RANDOMIZE_PIE
select HAVE_GENERIC_DMA_COHERENT
select HAVE_DEBUG_KMEMLEAK
select HAVE_KERNEL_GZIP
select HAVE_KERNEL_LZO
select HAVE_KERNEL_LZMA
@ -39,6 +40,7 @@ config ARM
select HARDIRQS_SW_RESEND
select GENERIC_IRQ_PROBE
select GENERIC_IRQ_SHOW
select HAVE_UID16
select ARCH_WANT_IPC_PARSE_VERSION
select HARDIRQS_SW_RESEND
select CPU_PM if (SUSPEND || CPU_IDLE)

View File

@ -134,7 +134,6 @@ make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
{
struct mm_struct *mm = vma->vm_mm;
struct vm_area_struct *mpnt;
struct prio_tree_iter iter;
unsigned long offset;
pgoff_t pgoff;
int aliases = 0;
@ -147,7 +146,7 @@ make_coherent(struct address_space *mapping, struct vm_area_struct *vma,
* cache coherency.
*/
flush_dcache_mmap_lock(mapping);
vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
/*
* If this VMA is not in our MM, we can ignore it.
* Note that we intentionally mask out the VMA

View File

@ -336,6 +336,7 @@ retry:
/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
* of starvation. */
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
goto retry;
}
}

View File

@ -196,7 +196,6 @@ static void __flush_dcache_aliases(struct address_space *mapping, struct page *p
{
struct mm_struct *mm = current->active_mm;
struct vm_area_struct *mpnt;
struct prio_tree_iter iter;
pgoff_t pgoff;
/*
@ -208,7 +207,7 @@ static void __flush_dcache_aliases(struct address_space *mapping, struct page *p
pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
flush_dcache_mmap_lock(mapping);
vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
unsigned long offset;
/*

View File

@ -10,6 +10,8 @@ config ARM64
select GENERIC_TIME_VSYSCALL
select HARDIRQS_SW_RESEND
select HAVE_ARCH_TRACEHOOK
select HAVE_DEBUG_BUGVERBOSE
select HAVE_DEBUG_KMEMLEAK
select HAVE_DMA_API_DEBUG
select HAVE_DMA_ATTRS
select HAVE_GENERIC_DMA_COHERENT
@ -26,6 +28,7 @@ config ARM64
select PERF_USE_VMALLOC
select RTC_LIB
select SPARSE_IRQ
select SYSCTL_EXCEPTION_TRACE
help
ARM 64-bit (AArch64) Linux support.
@ -193,6 +196,7 @@ config COMPAT
bool "Kernel support for 32-bit EL0"
depends on !ARM64_64K_PAGES
select COMPAT_BINFMT_ELF
select HAVE_UID16
help
This option enables support for a 32-bit EL0 running under a 64-bit
kernel at EL1. AArch32-specific components such as system calls,

View File

@ -152,6 +152,7 @@ good_area:
tsk->min_flt++;
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/*
* No need to up_read(&mm->mmap_sem) as we would have

View File

@ -33,6 +33,7 @@ config BLACKFIN
select HAVE_PERF_EVENTS
select ARCH_HAVE_CUSTOM_GPIO_H
select ARCH_WANT_OPTIONAL_GPIOLIB
select HAVE_UID16
select ARCH_WANT_IPC_PARSE_VERSION
select HAVE_GENERIC_HARDIRQS
select GENERIC_ATOMIC64

View File

@ -42,6 +42,7 @@ config CRIS
select HAVE_IDE
select GENERIC_ATOMIC64
select HAVE_GENERIC_HARDIRQS
select HAVE_UID16
select ARCH_WANT_IPC_PARSE_VERSION
select GENERIC_IRQ_SHOW
select GENERIC_IOMAP

View File

@ -186,6 +186,7 @@ retry:
tsk->min_flt++;
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/*
* No need to up_read(&mm->mmap_sem) as we would

View File

@ -5,8 +5,10 @@ config FRV
select HAVE_ARCH_TRACEHOOK
select HAVE_IRQ_WORK
select HAVE_PERF_EVENTS
select HAVE_UID16
select HAVE_GENERIC_HARDIRQS
select GENERIC_IRQ_SHOW
select HAVE_DEBUG_BUGVERBOSE
select ARCH_HAVE_NMI_SAFE_CMPXCHG
select GENERIC_CPU_DEVICES
select ARCH_WANT_IPC_PARSE_VERSION

View File

@ -3,6 +3,7 @@ config H8300
default y
select HAVE_IDE
select HAVE_GENERIC_HARDIRQS
select HAVE_UID16
select ARCH_WANT_IPC_PARSE_VERSION
select GENERIC_IRQ_SHOW
select GENERIC_CPU_DEVICES

View File

@ -113,6 +113,7 @@ good_area:
current->min_flt++;
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
goto retry;
}
}

View File

@ -77,4 +77,8 @@ static inline void arch_release_hugepage(struct page *page)
{
}
static inline void arch_clear_hugepage_flags(struct page *page)
{
}
#endif /* _ASM_IA64_HUGETLB_H */

View File

@ -2307,7 +2307,7 @@ pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t
*/
vma->vm_mm = mm;
vma->vm_file = get_file(filp);
vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
vma->vm_flags = VM_READ|VM_MAYREAD|VM_DONTEXPAND|VM_DONTDUMP;
vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
/*

View File

@ -184,6 +184,7 @@ retry:
current->min_flt++;
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/* No need to up_read(&mm->mmap_sem) as we would
* have already released it in __lock_page_or_retry

View File

@ -138,7 +138,8 @@ ia64_init_addr_space (void)
vma->vm_mm = current->mm;
vma->vm_end = PAGE_SIZE;
vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
VM_DONTEXPAND | VM_DONTDUMP;
down_write(&current->mm->mmap_sem);
if (insert_vm_struct(current->mm, vma)) {
up_write(&current->mm->mmap_sem);
@ -636,6 +637,7 @@ mem_init (void)
high_memory = __va(max_low_pfn * PAGE_SIZE);
reset_zone_present_pages();
for_each_online_pgdat(pgdat)
if (pgdat->bdata->node_bootmem_map)
totalram_pages += free_all_bootmem_node(pgdat);

View File

@ -8,6 +8,7 @@ config M32R
select HAVE_KERNEL_BZIP2
select HAVE_KERNEL_LZMA
select ARCH_WANT_IPC_PARSE_VERSION
select HAVE_DEBUG_BUGVERBOSE
select HAVE_GENERIC_HARDIRQS
select GENERIC_IRQ_PROBE
select GENERIC_IRQ_SHOW

View File

@ -3,9 +3,11 @@ config M68K
default y
select HAVE_IDE
select HAVE_AOUT if MMU
select HAVE_DEBUG_BUGVERBOSE
select HAVE_GENERIC_HARDIRQS
select GENERIC_IRQ_SHOW
select GENERIC_ATOMIC64
select HAVE_UID16
select ARCH_HAVE_NMI_SAFE_CMPXCHG if RMW_INSNS
select GENERIC_CPU_DEVICES
select GENERIC_STRNCPY_FROM_USER if MMU

View File

@ -170,6 +170,7 @@ good_area:
/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
* of starvation. */
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/*
* No need to up_read(&mm->mmap_sem) as we would

View File

@ -16,6 +16,7 @@ config MICROBLAZE
select OF
select OF_EARLY_FLATTREE
select ARCH_WANT_IPC_PARSE_VERSION
select HAVE_DEBUG_KMEMLEAK
select IRQ_DOMAIN
select HAVE_GENERIC_HARDIRQS
select GENERIC_IRQ_PROBE

View File

@ -22,5 +22,6 @@ static inline int atomic_dec_if_positive(atomic_t *v)
return res;
}
#define atomic_dec_if_positive atomic_dec_if_positive
#endif /* _ASM_MICROBLAZE_ATOMIC_H */

View File

@ -233,6 +233,7 @@ good_area:
current->min_flt++;
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/*
* No need to up_read(&mm->mmap_sem) as we would

View File

@ -17,6 +17,7 @@ config MIPS
select HAVE_FUNCTION_GRAPH_TRACER
select HAVE_KPROBES
select HAVE_KRETPROBES
select HAVE_DEBUG_KMEMLEAK
select ARCH_BINFMT_ELF_RANDOMIZE_PIE
select RTC_LIB if !MACH_LOONGSON
select GENERIC_ATOMIC64 if !64BIT

View File

@ -112,4 +112,8 @@ static inline void arch_release_hugepage(struct page *page)
{
}
static inline void arch_clear_hugepage_flags(struct page *page)
{
}
#endif /* __ASM_HUGETLB_H */

View File

@ -171,6 +171,7 @@ good_area:
}
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/*
* No need to up_read(&mm->mmap_sem) as we would

View File

@ -183,6 +183,7 @@ good_area:
tsk->min_flt++;
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/* No need to up_read(&mm->mmap_sem) as we would
* have already released it in __lock_page_or_retry

View File

@ -276,7 +276,6 @@ void flush_dcache_page(struct page *page)
{
struct address_space *mapping = page_mapping(page);
struct vm_area_struct *mpnt;
struct prio_tree_iter iter;
unsigned long offset;
unsigned long addr, old_addr = 0;
pgoff_t pgoff;
@ -299,7 +298,7 @@ void flush_dcache_page(struct page *page)
* to flush one address here for them all to become coherent */
flush_dcache_mmap_lock(mapping);
vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
addr = mpnt->vm_start + offset;

View File

@ -99,6 +99,7 @@ config PPC
select HAVE_DYNAMIC_FTRACE
select HAVE_FUNCTION_TRACER
select HAVE_FUNCTION_GRAPH_TRACER
select SYSCTL_EXCEPTION_TRACE
select ARCH_WANT_OPTIONAL_GPIOLIB
select HAVE_IDE
select HAVE_IOREMAP_PROT
@ -113,6 +114,7 @@ config PPC
select HAVE_DMA_API_DEBUG
select USE_GENERIC_SMP_HELPERS if SMP
select HAVE_OPROFILE
select HAVE_DEBUG_KMEMLEAK
select HAVE_SYSCALL_WRAPPERS if PPC64
select GENERIC_ATOMIC64 if PPC32
select ARCH_HAS_ATOMIC64_DEC_IF_POSITIVE

View File

@ -268,6 +268,7 @@ static __inline__ int atomic_dec_if_positive(atomic_t *v)
return t;
}
#define atomic_dec_if_positive atomic_dec_if_positive
#define smp_mb__before_atomic_dec() smp_mb()
#define smp_mb__after_atomic_dec() smp_mb()

View File

@ -151,6 +151,10 @@ static inline void arch_release_hugepage(struct page *page)
{
}
static inline void arch_clear_hugepage_flags(struct page *page)
{
}
#else /* ! CONFIG_HUGETLB_PAGE */
static inline void flush_hugetlb_page(struct vm_area_struct *vma,
unsigned long vmaddr)

View File

@ -1183,7 +1183,7 @@ static const struct vm_operations_struct kvm_rma_vm_ops = {
static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
{
vma->vm_flags |= VM_RESERVED;
vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
vma->vm_ops = &kvm_rma_vm_ops;
return 0;
}

View File

@ -451,6 +451,7 @@ good_area:
/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
* of starvation. */
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
goto retry;
}
}

View File

@ -304,7 +304,7 @@ static inline unsigned long fast_get_dcookie(struct path *path)
return cookie;
}
/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
/* Look up the dcookie for the task's mm->exe_file,
* which corresponds loosely to "application name". Also, determine
* the offset for the SPU ELF object. If computed offset is
* non-zero, it implies an embedded SPU object; otherwise, it's a
@ -321,7 +321,6 @@ get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
{
unsigned long app_cookie = 0;
unsigned int my_offset = 0;
struct file *app = NULL;
struct vm_area_struct *vma;
struct mm_struct *mm = spu->mm;
@ -330,16 +329,10 @@ get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
down_read(&mm->mmap_sem);
for (vma = mm->mmap; vma; vma = vma->vm_next) {
if (!vma->vm_file)
continue;
if (!(vma->vm_flags & VM_EXECUTABLE))
continue;
app_cookie = fast_get_dcookie(&vma->vm_file->f_path);
if (mm->exe_file) {
app_cookie = fast_get_dcookie(&mm->exe_file->f_path);
pr_debug("got dcookie for %s\n",
vma->vm_file->f_dentry->d_name.name);
app = vma->vm_file;
break;
mm->exe_file->f_dentry->d_name.name);
}
for (vma = mm->mmap; vma; vma = vma->vm_next) {

View File

@ -77,7 +77,8 @@ static int pseries_remove_memblock(unsigned long base, unsigned int memblock_siz
{
unsigned long start, start_pfn;
struct zone *zone;
int ret;
int i, ret;
int sections_to_remove;
start_pfn = base >> PAGE_SHIFT;
@ -97,9 +98,13 @@ static int pseries_remove_memblock(unsigned long base, unsigned int memblock_siz
* to sysfs "state" file and we can't remove sysfs entries
* while writing to it. So we have to defer it to here.
*/
ret = __remove_pages(zone, start_pfn, memblock_size >> PAGE_SHIFT);
if (ret)
return ret;
sections_to_remove = (memblock_size >> PAGE_SHIFT) / PAGES_PER_SECTION;
for (i = 0; i < sections_to_remove; i++) {
unsigned long pfn = start_pfn + i * PAGES_PER_SECTION;
ret = __remove_pages(zone, start_pfn, PAGES_PER_SECTION);
if (ret)
return ret;
}
/*
* Update memory regions for memory remove

View File

@ -68,6 +68,7 @@ config S390
select HAVE_FTRACE_MCOUNT_RECORD
select HAVE_C_RECORDMCOUNT
select HAVE_SYSCALL_TRACEPOINTS
select SYSCTL_EXCEPTION_TRACE
select HAVE_DYNAMIC_FTRACE
select HAVE_FUNCTION_GRAPH_TRACER
select HAVE_REGS_AND_STACK_ACCESS_API
@ -80,6 +81,7 @@ config S390
select HAVE_IRQ_WORK
select HAVE_PERF_EVENTS
select ARCH_HAVE_NMI_SAFE_CMPXCHG
select HAVE_DEBUG_KMEMLEAK
select HAVE_KERNEL_GZIP
select HAVE_KERNEL_BZIP2
select HAVE_KERNEL_LZMA
@ -126,6 +128,7 @@ config S390
select ARCH_INLINE_WRITE_UNLOCK_BH
select ARCH_INLINE_WRITE_UNLOCK_IRQ
select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE
select HAVE_UID16 if 32BIT
select ARCH_WANT_IPC_PARSE_VERSION
select GENERIC_SMP_IDLE_THREAD
select GENERIC_TIME_VSYSCALL

View File

@ -33,6 +33,7 @@ static inline int prepare_hugepage_range(struct file *file,
}
#define hugetlb_prefault_arch_hook(mm) do { } while (0)
#define arch_clear_hugepage_flags(page) do { } while (0)
int arch_prepare_hugepage(struct page *page);
void arch_release_hugepage(struct page *page);
@ -77,23 +78,6 @@ static inline void __pmd_csp(pmd_t *pmdp)
" csp %1,%3"
: "=m" (*pmdp)
: "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
pmd_val(*pmdp) = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY;
}
static inline void __pmd_idte(unsigned long address, pmd_t *pmdp)
{
unsigned long sto = (unsigned long) pmdp -
pmd_index(address) * sizeof(pmd_t);
if (!(pmd_val(*pmdp) & _SEGMENT_ENTRY_INV)) {
asm volatile(
" .insn rrf,0xb98e0000,%2,%3,0,0"
: "=m" (*pmdp)
: "m" (*pmdp), "a" (sto),
"a" ((address & HPAGE_MASK))
);
}
pmd_val(*pmdp) = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY;
}
static inline void huge_ptep_invalidate(struct mm_struct *mm,
@ -105,6 +89,7 @@ static inline void huge_ptep_invalidate(struct mm_struct *mm,
__pmd_idte(address, pmdp);
else
__pmd_csp(pmdp);
pmd_val(*pmdp) = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY;
}
static inline pte_t huge_ptep_get_and_clear(struct mm_struct *mm,

View File

@ -42,6 +42,7 @@ extern void fault_init(void);
* tables contain all the necessary information.
*/
#define update_mmu_cache(vma, address, ptep) do { } while (0)
#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
/*
* ZERO_PAGE is a global shared page that is always zero; used
@ -347,6 +348,12 @@ extern struct page *vmemmap;
#define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
#define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
#define _SEGMENT_ENTRY_SPLIT_BIT 0 /* THP splitting bit number */
#define _SEGMENT_ENTRY_SPLIT (1UL << _SEGMENT_ENTRY_SPLIT_BIT)
/* Set of bits not changed in pmd_modify */
#define _SEGMENT_CHG_MASK (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \
| _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO)
/* Page status table bits for virtualization */
#define RCP_ACC_BITS 0xf000000000000000UL
@ -506,6 +513,30 @@ static inline int pmd_bad(pmd_t pmd)
return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
}
#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
extern void pmdp_splitting_flush(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmdp);
#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
extern int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
pmd_t entry, int dirty);
#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp);
#define __HAVE_ARCH_PMD_WRITE
static inline int pmd_write(pmd_t pmd)
{
return (pmd_val(pmd) & _SEGMENT_ENTRY_RO) == 0;
}
static inline int pmd_young(pmd_t pmd)
{
return 0;
}
static inline int pte_none(pte_t pte)
{
return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
@ -1159,6 +1190,185 @@ static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
#define pte_unmap(pte) do { } while (0)
static inline void __pmd_idte(unsigned long address, pmd_t *pmdp)
{
unsigned long sto = (unsigned long) pmdp -
pmd_index(address) * sizeof(pmd_t);
if (!(pmd_val(*pmdp) & _SEGMENT_ENTRY_INV)) {
asm volatile(
" .insn rrf,0xb98e0000,%2,%3,0,0"
: "=m" (*pmdp)
: "m" (*pmdp), "a" (sto),
"a" ((address & HPAGE_MASK))
: "cc"
);
}
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define __HAVE_ARCH_PGTABLE_DEPOSIT
extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
#define __HAVE_ARCH_PGTABLE_WITHDRAW
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
static inline int pmd_trans_splitting(pmd_t pmd)
{
return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT;
}
static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t entry)
{
*pmdp = entry;
}
static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
{
unsigned long pgprot_pmd = 0;
if (pgprot_val(pgprot) & _PAGE_INVALID) {
if (pgprot_val(pgprot) & _PAGE_SWT)
pgprot_pmd |= _HPAGE_TYPE_NONE;
pgprot_pmd |= _SEGMENT_ENTRY_INV;
}
if (pgprot_val(pgprot) & _PAGE_RO)
pgprot_pmd |= _SEGMENT_ENTRY_RO;
return pgprot_pmd;
}
static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
{
pmd_val(pmd) &= _SEGMENT_CHG_MASK;
pmd_val(pmd) |= massage_pgprot_pmd(newprot);
return pmd;
}
static inline pmd_t pmd_mkhuge(pmd_t pmd)
{
pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
return pmd;
}
static inline pmd_t pmd_mkwrite(pmd_t pmd)
{
pmd_val(pmd) &= ~_SEGMENT_ENTRY_RO;
return pmd;
}
static inline pmd_t pmd_wrprotect(pmd_t pmd)
{
pmd_val(pmd) |= _SEGMENT_ENTRY_RO;
return pmd;
}
static inline pmd_t pmd_mkdirty(pmd_t pmd)
{
/* No dirty bit in the segment table entry. */
return pmd;
}
static inline pmd_t pmd_mkold(pmd_t pmd)
{
/* No referenced bit in the segment table entry. */
return pmd;
}
static inline pmd_t pmd_mkyoung(pmd_t pmd)
{
/* No referenced bit in the segment table entry. */
return pmd;
}
#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp)
{
unsigned long pmd_addr = pmd_val(*pmdp) & HPAGE_MASK;
long tmp, rc;
int counter;
rc = 0;
if (MACHINE_HAS_RRBM) {
counter = PTRS_PER_PTE >> 6;
asm volatile(
"0: .insn rre,0xb9ae0000,%0,%3\n" /* rrbm */
" ogr %1,%0\n"
" la %3,0(%4,%3)\n"
" brct %2,0b\n"
: "=&d" (tmp), "+&d" (rc), "+d" (counter),
"+a" (pmd_addr)
: "a" (64 * 4096UL) : "cc");
rc = !!rc;
} else {
counter = PTRS_PER_PTE;
asm volatile(
"0: rrbe 0,%2\n"
" la %2,0(%3,%2)\n"
" brc 12,1f\n"
" lhi %0,1\n"
"1: brct %1,0b\n"
: "+d" (rc), "+d" (counter), "+a" (pmd_addr)
: "a" (4096UL) : "cc");
}
return rc;
}
#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
unsigned long address, pmd_t *pmdp)
{
pmd_t pmd = *pmdp;
__pmd_idte(address, pmdp);
pmd_clear(pmdp);
return pmd;
}
#define __HAVE_ARCH_PMDP_CLEAR_FLUSH
static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp)
{
return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
}
#define __HAVE_ARCH_PMDP_INVALIDATE
static inline void pmdp_invalidate(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp)
{
__pmd_idte(address, pmdp);
}
static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
{
pmd_t __pmd;
pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
return __pmd;
}
#define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
static inline int pmd_trans_huge(pmd_t pmd)
{
return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
}
static inline int has_transparent_hugepage(void)
{
return MACHINE_HAS_HPAGE ? 1 : 0;
}
static inline unsigned long pmd_pfn(pmd_t pmd)
{
if (pmd_trans_huge(pmd))
return pmd_val(pmd) >> HPAGE_SHIFT;
else
return pmd_val(pmd) >> PAGE_SHIFT;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
/*
* 31 bit swap entry format:
* A page-table entry has some bits we have to treat in a special way.

View File

@ -81,6 +81,7 @@ extern unsigned int s390_user_mode;
#define MACHINE_FLAG_SPP (1UL << 13)
#define MACHINE_FLAG_TOPOLOGY (1UL << 14)
#define MACHINE_FLAG_TE (1UL << 15)
#define MACHINE_FLAG_RRBM (1UL << 16)
#define MACHINE_IS_VM (S390_lowcore.machine_flags & MACHINE_FLAG_VM)
#define MACHINE_IS_KVM (S390_lowcore.machine_flags & MACHINE_FLAG_KVM)
@ -99,7 +100,8 @@ extern unsigned int s390_user_mode;
#define MACHINE_HAS_PFMF (0)
#define MACHINE_HAS_SPP (0)
#define MACHINE_HAS_TOPOLOGY (0)
#define MACHINE_HAS_TE (0)
#define MACHINE_HAS_TE (0)
#define MACHINE_HAS_RRBM (0)
#else /* CONFIG_64BIT */
#define MACHINE_HAS_IEEE (1)
#define MACHINE_HAS_CSP (1)
@ -112,6 +114,7 @@ extern unsigned int s390_user_mode;
#define MACHINE_HAS_SPP (S390_lowcore.machine_flags & MACHINE_FLAG_SPP)
#define MACHINE_HAS_TOPOLOGY (S390_lowcore.machine_flags & MACHINE_FLAG_TOPOLOGY)
#define MACHINE_HAS_TE (S390_lowcore.machine_flags & MACHINE_FLAG_TE)
#define MACHINE_HAS_RRBM (S390_lowcore.machine_flags & MACHINE_FLAG_RRBM)
#endif /* CONFIG_64BIT */
#define ZFCPDUMP_HSA_SIZE (32UL<<20)

View File

@ -137,6 +137,7 @@ static inline void pud_free_tlb(struct mmu_gather *tlb, pud_t *pud,
#define tlb_start_vma(tlb, vma) do { } while (0)
#define tlb_end_vma(tlb, vma) do { } while (0)
#define tlb_remove_tlb_entry(tlb, ptep, addr) do { } while (0)
#define tlb_remove_pmd_tlb_entry(tlb, pmdp, addr) do { } while (0)
#define tlb_migrate_finish(mm) do { } while (0)
#endif /* _S390_TLB_H */

View File

@ -388,6 +388,8 @@ static __init void detect_machine_facilities(void)
S390_lowcore.machine_flags |= MACHINE_FLAG_SPP;
if (test_facility(50) && test_facility(73))
S390_lowcore.machine_flags |= MACHINE_FLAG_TE;
if (test_facility(66))
S390_lowcore.machine_flags |= MACHINE_FLAG_RRBM;
#endif
}

View File

@ -367,6 +367,7 @@ retry:
/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
* of starvation. */
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
down_read(&mm->mmap_sem);
goto retry;
}

View File

@ -115,7 +115,16 @@ static inline int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr,
pmd = *pmdp;
barrier();
next = pmd_addr_end(addr, end);
if (pmd_none(pmd))
/*
* The pmd_trans_splitting() check below explains why
* pmdp_splitting_flush() has to serialize with
* smp_call_function() against our disabled IRQs, to stop
* this gup-fast code from running while we set the
* splitting bit in the pmd. Returning zero will take
* the slow path that will call wait_split_huge_page()
* if the pmd is still in splitting state.
*/
if (pmd_none(pmd) || pmd_trans_splitting(pmd))
return 0;
if (unlikely(pmd_huge(pmd))) {
if (!gup_huge_pmd(pmdp, pmd, addr, next,

View File

@ -787,6 +787,30 @@ void tlb_remove_table(struct mmu_gather *tlb, void *table)
tlb_table_flush(tlb);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
void thp_split_vma(struct vm_area_struct *vma)
{
unsigned long addr;
struct page *page;
for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) {
page = follow_page(vma, addr, FOLL_SPLIT);
}
}
void thp_split_mm(struct mm_struct *mm)
{
struct vm_area_struct *vma = mm->mmap;
while (vma != NULL) {
thp_split_vma(vma);
vma->vm_flags &= ~VM_HUGEPAGE;
vma->vm_flags |= VM_NOHUGEPAGE;
vma = vma->vm_next;
}
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
/*
* switch on pgstes for its userspace process (for kvm)
*/
@ -824,6 +848,12 @@ int s390_enable_sie(void)
if (!mm)
return -ENOMEM;
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/* split thp mappings and disable thp for future mappings */
thp_split_mm(mm);
mm->def_flags |= VM_NOHUGEPAGE;
#endif
/* Now lets check again if something happened */
task_lock(tsk);
if (!tsk->mm || atomic_read(&tsk->mm->mm_users) > 1 ||
@ -866,3 +896,81 @@ bool kernel_page_present(struct page *page)
return cc == 0;
}
#endif /* CONFIG_HIBERNATION && CONFIG_DEBUG_PAGEALLOC */
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp)
{
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
/* No need to flush TLB
* On s390 reference bits are in storage key and never in TLB */
return pmdp_test_and_clear_young(vma, address, pmdp);
}
int pmdp_set_access_flags(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmdp,
pmd_t entry, int dirty)
{
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
if (pmd_same(*pmdp, entry))
return 0;
pmdp_invalidate(vma, address, pmdp);
set_pmd_at(vma->vm_mm, address, pmdp, entry);
return 1;
}
static void pmdp_splitting_flush_sync(void *arg)
{
/* Simply deliver the interrupt */
}
void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmdp)
{
VM_BUG_ON(address & ~HPAGE_PMD_MASK);
if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT,
(unsigned long *) pmdp)) {
/* need to serialize against gup-fast (IRQ disabled) */
smp_call_function(pmdp_splitting_flush_sync, NULL, 1);
}
}
void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable)
{
struct list_head *lh = (struct list_head *) pgtable;
assert_spin_locked(&mm->page_table_lock);
/* FIFO */
if (!mm->pmd_huge_pte)
INIT_LIST_HEAD(lh);
else
list_add(lh, (struct list_head *) mm->pmd_huge_pte);
mm->pmd_huge_pte = pgtable;
}
pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm)
{
struct list_head *lh;
pgtable_t pgtable;
pte_t *ptep;
assert_spin_locked(&mm->page_table_lock);
/* FIFO */
pgtable = mm->pmd_huge_pte;
lh = (struct list_head *) pgtable;
if (list_empty(lh))
mm->pmd_huge_pte = NULL;
else {
mm->pmd_huge_pte = (pgtable_t) lh->next;
list_del(lh);
}
ptep = (pte_t *) pgtable;
pte_val(*ptep) = _PAGE_TYPE_EMPTY;
ptep++;
pte_val(*ptep) = _PAGE_TYPE_EMPTY;
return pgtable;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

View File

@ -13,14 +13,17 @@ config SUPERH
select HAVE_DMA_ATTRS
select HAVE_IRQ_WORK
select HAVE_PERF_EVENTS
select HAVE_DEBUG_BUGVERBOSE
select ARCH_HAVE_CUSTOM_GPIO_H
select ARCH_HAVE_NMI_SAFE_CMPXCHG if (GUSA_RB || CPU_SH4A)
select PERF_USE_VMALLOC
select HAVE_DEBUG_KMEMLEAK
select HAVE_KERNEL_GZIP
select HAVE_KERNEL_BZIP2
select HAVE_KERNEL_LZMA
select HAVE_KERNEL_XZ
select HAVE_KERNEL_LZO
select HAVE_UID16
select ARCH_WANT_IPC_PARSE_VERSION
select HAVE_SYSCALL_TRACEPOINTS
select HAVE_REGS_AND_STACK_ACCESS_API

View File

@ -1,6 +1,7 @@
#ifndef _ASM_SH_HUGETLB_H
#define _ASM_SH_HUGETLB_H
#include <asm/cacheflush.h>
#include <asm/page.h>
@ -89,4 +90,9 @@ static inline void arch_release_hugepage(struct page *page)
{
}
static inline void arch_clear_hugepage_flags(struct page *page)
{
clear_bit(PG_dcache_clean, &page->flags);
}
#endif /* _ASM_SH_HUGETLB_H */

View File

@ -504,6 +504,7 @@ good_area:
}
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/*
* No need to up_read(&mm->mmap_sem) as we would

View File

@ -18,6 +18,7 @@ config SPARC
select HAVE_OPROFILE
select HAVE_ARCH_KGDB if !SMP || SPARC64
select HAVE_ARCH_TRACEHOOK
select SYSCTL_EXCEPTION_TRACE
select ARCH_WANT_OPTIONAL_GPIOLIB
select RTC_CLASS
select RTC_DRV_M48T59
@ -32,6 +33,7 @@ config SPARC
select GENERIC_PCI_IOMAP
select HAVE_NMI_WATCHDOG if SPARC64
select HAVE_BPF_JIT
select HAVE_DEBUG_BUGVERBOSE
select GENERIC_SMP_IDLE_THREAD
select GENERIC_CMOS_UPDATE
select GENERIC_CLOCKEVENTS
@ -42,6 +44,7 @@ config SPARC32
def_bool !64BIT
select GENERIC_ATOMIC64
select CLZ_TAB
select HAVE_UID16
config SPARC64
def_bool 64BIT
@ -59,6 +62,7 @@ config SPARC64
select HAVE_DYNAMIC_FTRACE
select HAVE_FTRACE_MCOUNT_RECORD
select HAVE_SYSCALL_TRACEPOINTS
select HAVE_DEBUG_KMEMLEAK
select RTC_DRV_CMOS
select RTC_DRV_BQ4802
select RTC_DRV_SUN4V
@ -226,25 +230,6 @@ config EARLYFB
help
Say Y here to enable a faster early framebuffer boot console.
choice
prompt "Kernel page size" if SPARC64
default SPARC64_PAGE_SIZE_8KB
config SPARC64_PAGE_SIZE_8KB
bool "8KB"
help
This lets you select the page size of the kernel.
8KB and 64KB work quite well, since SPARC ELF sections
provide for up to 64KB alignment.
If you don't know what to do, choose 8KB.
config SPARC64_PAGE_SIZE_64KB
bool "64KB"
endchoice
config SECCOMP
bool "Enable seccomp to safely compute untrusted bytecode"
depends on SPARC64 && PROC_FS
@ -316,23 +301,6 @@ config GENERIC_LOCKBREAK
default y
depends on SPARC64 && SMP && PREEMPT
choice
prompt "SPARC64 Huge TLB Page Size"
depends on SPARC64 && HUGETLB_PAGE
default HUGETLB_PAGE_SIZE_4MB
config HUGETLB_PAGE_SIZE_4MB
bool "4MB"
config HUGETLB_PAGE_SIZE_512K
bool "512K"
config HUGETLB_PAGE_SIZE_64K
depends on !SPARC64_PAGE_SIZE_64KB
bool "64K"
endchoice
config NUMA
bool "NUMA support"
depends on SPARC64 && SMP
@ -571,6 +539,7 @@ config COMPAT
depends on SPARC64
default y
select COMPAT_BINFMT_ELF
select HAVE_UID16
select ARCH_WANT_OLD_COMPAT_IPC
config SYSVIPC_COMPAT

View File

@ -10,7 +10,10 @@ void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep);
void hugetlb_prefault_arch_hook(struct mm_struct *mm);
static inline void hugetlb_prefault_arch_hook(struct mm_struct *mm)
{
hugetlb_setup(mm);
}
static inline int is_hugepage_only_range(struct mm_struct *mm,
unsigned long addr,
@ -82,4 +85,8 @@ static inline void arch_release_hugepage(struct page *page)
{
}
static inline void arch_clear_hugepage_flags(struct page *page)
{
}
#endif /* _ASM_SPARC64_HUGETLB_H */

View File

@ -30,22 +30,8 @@
#define CTX_PGSZ_MASK ((CTX_PGSZ_BITS << CTX_PGSZ0_SHIFT) | \
(CTX_PGSZ_BITS << CTX_PGSZ1_SHIFT))
#if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
#define CTX_PGSZ_BASE CTX_PGSZ_8KB
#elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
#define CTX_PGSZ_BASE CTX_PGSZ_64KB
#else
#error No page size specified in kernel configuration
#endif
#if defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
#define CTX_PGSZ_HUGE CTX_PGSZ_4MB
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
#define CTX_PGSZ_HUGE CTX_PGSZ_512KB
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
#define CTX_PGSZ_HUGE CTX_PGSZ_64KB
#endif
#define CTX_PGSZ_HUGE CTX_PGSZ_4MB
#define CTX_PGSZ_KERN CTX_PGSZ_4MB
/* Thus, when running on UltraSPARC-III+ and later, we use the following
@ -96,7 +82,7 @@ struct tsb_config {
#define MM_TSB_BASE 0
#ifdef CONFIG_HUGETLB_PAGE
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
#define MM_TSB_HUGE 1
#define MM_NUM_TSBS 2
#else
@ -107,6 +93,7 @@ typedef struct {
spinlock_t lock;
unsigned long sparc64_ctx_val;
unsigned long huge_pte_count;
struct page *pgtable_page;
struct tsb_config tsb_block[MM_NUM_TSBS];
struct hv_tsb_descr tsb_descr[MM_NUM_TSBS];
} mm_context_t;

View File

@ -36,7 +36,7 @@ static inline void tsb_context_switch(struct mm_struct *mm)
{
__tsb_context_switch(__pa(mm->pgd),
&mm->context.tsb_block[0],
#ifdef CONFIG_HUGETLB_PAGE
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
(mm->context.tsb_block[1].tsb ?
&mm->context.tsb_block[1] :
NULL)

View File

@ -3,13 +3,7 @@
#include <linux/const.h>
#if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
#define PAGE_SHIFT 13
#elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
#define PAGE_SHIFT 16
#else
#error No page size specified in kernel configuration
#endif
#define PAGE_SIZE (_AC(1,UL) << PAGE_SHIFT)
#define PAGE_MASK (~(PAGE_SIZE-1))
@ -21,15 +15,9 @@
#define DCACHE_ALIASING_POSSIBLE
#endif
#if defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
#define HPAGE_SHIFT 22
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
#define HPAGE_SHIFT 19
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
#define HPAGE_SHIFT 16
#endif
#ifdef CONFIG_HUGETLB_PAGE
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
#define HPAGE_SIZE (_AC(1,UL) << HPAGE_SHIFT)
#define HPAGE_MASK (~(HPAGE_SIZE - 1UL))
#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
@ -38,6 +26,11 @@
#ifndef __ASSEMBLY__
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
struct mm_struct;
extern void hugetlb_setup(struct mm_struct *mm);
#endif
#define WANT_PAGE_VIRTUAL
extern void _clear_page(void *page);
@ -98,7 +91,7 @@ typedef unsigned long pgprot_t;
#endif /* (STRICT_MM_TYPECHECKS) */
typedef struct page *pgtable_t;
typedef pte_t *pgtable_t;
#define TASK_UNMAPPED_BASE (test_thread_flag(TIF_32BIT) ? \
(_AC(0x0000000070000000,UL)) : \

View File

@ -38,51 +38,20 @@ static inline void pmd_free(struct mm_struct *mm, pmd_t *pmd)
kmem_cache_free(pgtable_cache, pmd);
}
static inline pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address)
{
return (pte_t *)__get_free_page(GFP_KERNEL | __GFP_REPEAT | __GFP_ZERO);
}
extern pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address);
extern pgtable_t pte_alloc_one(struct mm_struct *mm,
unsigned long address);
extern void pte_free_kernel(struct mm_struct *mm, pte_t *pte);
extern void pte_free(struct mm_struct *mm, pgtable_t ptepage);
static inline pgtable_t pte_alloc_one(struct mm_struct *mm,
unsigned long address)
{
struct page *page;
pte_t *pte;
pte = pte_alloc_one_kernel(mm, address);
if (!pte)
return NULL;
page = virt_to_page(pte);
pgtable_page_ctor(page);
return page;
}
static inline void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
{
free_page((unsigned long)pte);
}
static inline void pte_free(struct mm_struct *mm, pgtable_t ptepage)
{
pgtable_page_dtor(ptepage);
__free_page(ptepage);
}
#define pmd_populate_kernel(MM, PMD, PTE) pmd_set(PMD, PTE)
#define pmd_populate(MM,PMD,PTE_PAGE) \
pmd_populate_kernel(MM,PMD,page_address(PTE_PAGE))
#define pmd_pgtable(pmd) pmd_page(pmd)
#define pmd_populate_kernel(MM, PMD, PTE) pmd_set(MM, PMD, PTE)
#define pmd_populate(MM, PMD, PTE) pmd_set(MM, PMD, PTE)
#define pmd_pgtable(PMD) ((pte_t *)__pmd_page(PMD))
#define check_pgt_cache() do { } while (0)
static inline void pgtable_free(void *table, bool is_page)
{
if (is_page)
free_page((unsigned long)table);
else
kmem_cache_free(pgtable_cache, table);
}
extern void pgtable_free(void *table, bool is_page);
#ifdef CONFIG_SMP
@ -113,11 +82,10 @@ static inline void pgtable_free_tlb(struct mmu_gather *tlb, void *table, bool is
}
#endif /* !CONFIG_SMP */
static inline void __pte_free_tlb(struct mmu_gather *tlb, struct page *ptepage,
static inline void __pte_free_tlb(struct mmu_gather *tlb, pte_t *pte,
unsigned long address)
{
pgtable_page_dtor(ptepage);
pgtable_free_tlb(tlb, page_address(ptepage), true);
pgtable_free_tlb(tlb, pte, true);
}
#define __pmd_free_tlb(tlb, pmd, addr) \

View File

@ -45,40 +45,59 @@
#define vmemmap ((struct page *)VMEMMAP_BASE)
/* XXX All of this needs to be rethought so we can take advantage
* XXX cheetah's full 64-bit virtual address space, ie. no more hole
* XXX in the middle like on spitfire. -DaveM
*/
/*
* Given a virtual address, the lowest PAGE_SHIFT bits determine offset
* into the page; the next higher PAGE_SHIFT-3 bits determine the pte#
* in the proper pagetable (the -3 is from the 8 byte ptes, and each page
* table is a single page long). The next higher PMD_BITS determine pmd#
* in the proper pmdtable (where we must have PMD_BITS <= (PAGE_SHIFT-2)
* since the pmd entries are 4 bytes, and each pmd page is a single page
* long). Finally, the higher few bits determine pgde#.
*/
/* PMD_SHIFT determines the size of the area a second-level page
* table can map
*/
#define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3))
#define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-4))
#define PMD_SIZE (_AC(1,UL) << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
#define PMD_BITS (PAGE_SHIFT - 2)
/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3) + PMD_BITS)
#define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-4) + PMD_BITS)
#define PGDIR_SIZE (_AC(1,UL) << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#define PGDIR_BITS (PAGE_SHIFT - 2)
#if (PGDIR_SHIFT + PGDIR_BITS) != 44
#error Page table parameters do not cover virtual address space properly.
#endif
#if (PMD_SHIFT != HPAGE_SHIFT)
#error PMD_SHIFT must equal HPAGE_SHIFT for transparent huge pages.
#endif
/* PMDs point to PTE tables which are 4K aligned. */
#define PMD_PADDR _AC(0xfffffffe,UL)
#define PMD_PADDR_SHIFT _AC(11,UL)
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define PMD_ISHUGE _AC(0x00000001,UL)
/* This is the PMD layout when PMD_ISHUGE is set. With 4MB huge
* pages, this frees up a bunch of bits in the layout that we can
* use for the protection settings and software metadata.
*/
#define PMD_HUGE_PADDR _AC(0xfffff800,UL)
#define PMD_HUGE_PROTBITS _AC(0x000007ff,UL)
#define PMD_HUGE_PRESENT _AC(0x00000400,UL)
#define PMD_HUGE_WRITE _AC(0x00000200,UL)
#define PMD_HUGE_DIRTY _AC(0x00000100,UL)
#define PMD_HUGE_ACCESSED _AC(0x00000080,UL)
#define PMD_HUGE_EXEC _AC(0x00000040,UL)
#define PMD_HUGE_SPLITTING _AC(0x00000020,UL)
#endif
/* PGDs point to PMD tables which are 8K aligned. */
#define PGD_PADDR _AC(0xfffffffc,UL)
#define PGD_PADDR_SHIFT _AC(11,UL)
#ifndef __ASSEMBLY__
#include <linux/sched.h>
/* Entries per page directory level. */
#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-3))
#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-4))
#define PTRS_PER_PMD (1UL << PMD_BITS)
#define PTRS_PER_PGD (1UL << PGDIR_BITS)
@ -160,26 +179,11 @@
#define _PAGE_SZ8K_4V _AC(0x0000000000000000,UL) /* 8K Page */
#define _PAGE_SZALL_4V _AC(0x0000000000000007,UL) /* All pgsz bits */
#if PAGE_SHIFT == 13
#define _PAGE_SZBITS_4U _PAGE_SZ8K_4U
#define _PAGE_SZBITS_4V _PAGE_SZ8K_4V
#elif PAGE_SHIFT == 16
#define _PAGE_SZBITS_4U _PAGE_SZ64K_4U
#define _PAGE_SZBITS_4V _PAGE_SZ64K_4V
#else
#error Wrong PAGE_SHIFT specified
#endif
#if defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
#define _PAGE_SZHUGE_4U _PAGE_SZ4MB_4U
#define _PAGE_SZHUGE_4V _PAGE_SZ4MB_4V
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
#define _PAGE_SZHUGE_4U _PAGE_SZ512K_4U
#define _PAGE_SZHUGE_4V _PAGE_SZ512K_4V
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
#define _PAGE_SZHUGE_4U _PAGE_SZ64K_4U
#define _PAGE_SZHUGE_4V _PAGE_SZ64K_4V
#endif
/* These are actually filled in at boot time by sun4{u,v}_pgprot_init() */
#define __P000 __pgprot(0)
@ -218,7 +222,6 @@ extern unsigned long _PAGE_CACHE;
extern unsigned long pg_iobits;
extern unsigned long _PAGE_ALL_SZ_BITS;
extern unsigned long _PAGE_SZBITS;
extern struct page *mem_map_zero;
#define ZERO_PAGE(vaddr) (mem_map_zero)
@ -231,25 +234,25 @@ extern struct page *mem_map_zero;
static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
{
unsigned long paddr = pfn << PAGE_SHIFT;
unsigned long sz_bits;
sz_bits = 0UL;
if (_PAGE_SZBITS_4U != 0UL || _PAGE_SZBITS_4V != 0UL) {
__asm__ __volatile__(
"\n661: sethi %%uhi(%1), %0\n"
" sllx %0, 32, %0\n"
" .section .sun4v_2insn_patch, \"ax\"\n"
" .word 661b\n"
" mov %2, %0\n"
" nop\n"
" .previous\n"
: "=r" (sz_bits)
: "i" (_PAGE_SZBITS_4U), "i" (_PAGE_SZBITS_4V));
}
return __pte(paddr | sz_bits | pgprot_val(prot));
BUILD_BUG_ON(_PAGE_SZBITS_4U != 0UL || _PAGE_SZBITS_4V != 0UL);
return __pte(paddr | pgprot_val(prot));
}
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot);
#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
static inline pmd_t pmd_mkhuge(pmd_t pmd)
{
/* Do nothing, mk_pmd() does this part. */
return pmd;
}
#endif
/* This one can be done with two shifts. */
static inline unsigned long pte_pfn(pte_t pte)
{
@ -286,6 +289,7 @@ static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
* Note: We encode this into 3 sun4v 2-insn patch sequences.
*/
BUILD_BUG_ON(_PAGE_SZBITS_4U != 0UL || _PAGE_SZBITS_4V != 0UL);
__asm__ __volatile__(
"\n661: sethi %%uhi(%2), %1\n"
" sethi %%hi(%2), %0\n"
@ -307,10 +311,10 @@ static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
: "=r" (mask), "=r" (tmp)
: "i" (_PAGE_PADDR_4U | _PAGE_MODIFIED_4U | _PAGE_ACCESSED_4U |
_PAGE_CP_4U | _PAGE_CV_4U | _PAGE_E_4U | _PAGE_PRESENT_4U |
_PAGE_SZBITS_4U | _PAGE_SPECIAL),
_PAGE_SPECIAL),
"i" (_PAGE_PADDR_4V | _PAGE_MODIFIED_4V | _PAGE_ACCESSED_4V |
_PAGE_CP_4V | _PAGE_CV_4V | _PAGE_E_4V | _PAGE_PRESENT_4V |
_PAGE_SZBITS_4V | _PAGE_SPECIAL));
_PAGE_SPECIAL));
return __pte((pte_val(pte) & mask) | (pgprot_val(prot) & ~mask));
}
@ -618,19 +622,130 @@ static inline unsigned long pte_special(pte_t pte)
return pte_val(pte) & _PAGE_SPECIAL;
}
#define pmd_set(pmdp, ptep) \
(pmd_val(*(pmdp)) = (__pa((unsigned long) (ptep)) >> 11UL))
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static inline int pmd_young(pmd_t pmd)
{
return pmd_val(pmd) & PMD_HUGE_ACCESSED;
}
static inline int pmd_write(pmd_t pmd)
{
return pmd_val(pmd) & PMD_HUGE_WRITE;
}
static inline unsigned long pmd_pfn(pmd_t pmd)
{
unsigned long val = pmd_val(pmd) & PMD_HUGE_PADDR;
return val >> (PAGE_SHIFT - PMD_PADDR_SHIFT);
}
static inline int pmd_large(pmd_t pmd)
{
return (pmd_val(pmd) & (PMD_ISHUGE | PMD_HUGE_PRESENT)) ==
(PMD_ISHUGE | PMD_HUGE_PRESENT);
}
static inline int pmd_trans_splitting(pmd_t pmd)
{
return (pmd_val(pmd) & (PMD_ISHUGE|PMD_HUGE_SPLITTING)) ==
(PMD_ISHUGE|PMD_HUGE_SPLITTING);
}
static inline int pmd_trans_huge(pmd_t pmd)
{
return pmd_val(pmd) & PMD_ISHUGE;
}
#define has_transparent_hugepage() 1
static inline pmd_t pmd_mkold(pmd_t pmd)
{
pmd_val(pmd) &= ~PMD_HUGE_ACCESSED;
return pmd;
}
static inline pmd_t pmd_wrprotect(pmd_t pmd)
{
pmd_val(pmd) &= ~PMD_HUGE_WRITE;
return pmd;
}
static inline pmd_t pmd_mkdirty(pmd_t pmd)
{
pmd_val(pmd) |= PMD_HUGE_DIRTY;
return pmd;
}
static inline pmd_t pmd_mkyoung(pmd_t pmd)
{
pmd_val(pmd) |= PMD_HUGE_ACCESSED;
return pmd;
}
static inline pmd_t pmd_mkwrite(pmd_t pmd)
{
pmd_val(pmd) |= PMD_HUGE_WRITE;
return pmd;
}
static inline pmd_t pmd_mknotpresent(pmd_t pmd)
{
pmd_val(pmd) &= ~PMD_HUGE_PRESENT;
return pmd;
}
static inline pmd_t pmd_mksplitting(pmd_t pmd)
{
pmd_val(pmd) |= PMD_HUGE_SPLITTING;
return pmd;
}
extern pgprot_t pmd_pgprot(pmd_t entry);
#endif
static inline int pmd_present(pmd_t pmd)
{
return pmd_val(pmd) != 0U;
}
#define pmd_none(pmd) (!pmd_val(pmd))
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t pmd);
#else
static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t pmd)
{
*pmdp = pmd;
}
#endif
static inline void pmd_set(struct mm_struct *mm, pmd_t *pmdp, pte_t *ptep)
{
unsigned long val = __pa((unsigned long) (ptep)) >> PMD_PADDR_SHIFT;
pmd_val(*pmdp) = val;
}
#define pud_set(pudp, pmdp) \
(pud_val(*(pudp)) = (__pa((unsigned long) (pmdp)) >> 11UL))
#define __pmd_page(pmd) \
((unsigned long) __va((((unsigned long)pmd_val(pmd))<<11UL)))
(pud_val(*(pudp)) = (__pa((unsigned long) (pmdp)) >> PGD_PADDR_SHIFT))
static inline unsigned long __pmd_page(pmd_t pmd)
{
unsigned long paddr = (unsigned long) pmd_val(pmd);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
if (pmd_val(pmd) & PMD_ISHUGE)
paddr &= PMD_HUGE_PADDR;
#endif
paddr <<= PMD_PADDR_SHIFT;
return ((unsigned long) __va(paddr));
}
#define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd))
#define pud_page_vaddr(pud) \
((unsigned long) __va((((unsigned long)pud_val(pud))<<11UL)))
((unsigned long) __va((((unsigned long)pud_val(pud))<<PGD_PADDR_SHIFT)))
#define pud_page(pud) virt_to_page((void *)pud_page_vaddr(pud))
#define pmd_none(pmd) (!pmd_val(pmd))
#define pmd_bad(pmd) (0)
#define pmd_present(pmd) (pmd_val(pmd) != 0U)
#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0U)
#define pud_none(pud) (!pud_val(pud))
#define pud_bad(pud) (0)
@ -664,6 +779,16 @@ static inline unsigned long pte_special(pte_t pte)
extern void tlb_batch_add(struct mm_struct *mm, unsigned long vaddr,
pte_t *ptep, pte_t orig, int fullmm);
#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
unsigned long addr,
pmd_t *pmdp)
{
pmd_t pmd = *pmdp;
set_pmd_at(mm, addr, pmdp, __pmd(0U));
return pmd;
}
static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t pte, int fullmm)
{
@ -719,6 +844,16 @@ extern void mmu_info(struct seq_file *);
struct vm_area_struct;
extern void update_mmu_cache(struct vm_area_struct *, unsigned long, pte_t *);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd);
#define __HAVE_ARCH_PGTABLE_DEPOSIT
extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
#define __HAVE_ARCH_PGTABLE_WITHDRAW
extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
#endif
/* Encode and de-code a swap entry */
#define __swp_type(entry) (((entry).val >> PAGE_SHIFT) & 0xffUL)

View File

@ -147,20 +147,96 @@ extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
brz,pn REG1, FAIL_LABEL; \
sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
srlx REG2, 64 - PAGE_SHIFT, REG2; \
sllx REG1, 11, REG1; \
sllx REG1, PGD_PADDR_SHIFT, REG1; \
andn REG2, 0x3, REG2; \
lduwa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
brz,pn REG1, FAIL_LABEL; \
sllx VADDR, 64 - PMD_SHIFT, REG2; \
srlx REG2, 64 - PAGE_SHIFT, REG2; \
sllx REG1, 11, REG1; \
srlx REG2, 64 - (PAGE_SHIFT - 1), REG2; \
sllx REG1, PMD_PADDR_SHIFT, REG1; \
andn REG2, 0x7, REG2; \
add REG1, REG2, REG1;
/* Do a user page table walk in MMU globals. Leaves physical PTE
* pointer in REG1. Jumps to FAIL_LABEL on early page table walk
* termination. Physical base of page tables is in PHYS_PGD which
* will not be modified.
/* This macro exists only to make the PMD translator below easier
* to read. It hides the ELF section switch for the sun4v code
* patching.
*/
#define OR_PTE_BIT(REG, NAME) \
661: or REG, _PAGE_##NAME##_4U, REG; \
.section .sun4v_1insn_patch, "ax"; \
.word 661b; \
or REG, _PAGE_##NAME##_4V, REG; \
.previous;
/* Load into REG the PTE value for VALID, CACHE, and SZHUGE. */
#define BUILD_PTE_VALID_SZHUGE_CACHE(REG) \
661: sethi %uhi(_PAGE_VALID|_PAGE_SZHUGE_4U), REG; \
.section .sun4v_1insn_patch, "ax"; \
.word 661b; \
sethi %uhi(_PAGE_VALID), REG; \
.previous; \
sllx REG, 32, REG; \
661: or REG, _PAGE_CP_4U|_PAGE_CV_4U, REG; \
.section .sun4v_1insn_patch, "ax"; \
.word 661b; \
or REG, _PAGE_CP_4V|_PAGE_CV_4V|_PAGE_SZHUGE_4V, REG; \
.previous;
/* PMD has been loaded into REG1, interpret the value, seeing
* if it is a HUGE PMD or a normal one. If it is not valid
* then jump to FAIL_LABEL. If it is a HUGE PMD, and it
* translates to a valid PTE, branch to PTE_LABEL.
*
* We translate the PMD by hand, one bit at a time,
* constructing the huge PTE.
*
* So we construct the PTE in REG2 as follows:
*
* 1) Extract the PMD PFN from REG1 and place it into REG2.
*
* 2) Translate PMD protection bits in REG1 into REG2, one bit
* at a time using andcc tests on REG1 and OR's into REG2.
*
* Only two bits to be concerned with here, EXEC and WRITE.
* Now REG1 is freed up and we can use it as a temporary.
*
* 3) Construct the VALID, CACHE, and page size PTE bits in
* REG1, OR with REG2 to form final PTE.
*/
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
brz,pn REG1, FAIL_LABEL; \
andcc REG1, PMD_ISHUGE, %g0; \
be,pt %xcc, 700f; \
and REG1, PMD_HUGE_PRESENT|PMD_HUGE_ACCESSED, REG2; \
cmp REG2, PMD_HUGE_PRESENT|PMD_HUGE_ACCESSED; \
bne,pn %xcc, FAIL_LABEL; \
andn REG1, PMD_HUGE_PROTBITS, REG2; \
sllx REG2, PMD_PADDR_SHIFT, REG2; \
/* REG2 now holds PFN << PAGE_SHIFT */ \
andcc REG1, PMD_HUGE_EXEC, %g0; \
bne,a,pt %xcc, 1f; \
OR_PTE_BIT(REG2, EXEC); \
1: andcc REG1, PMD_HUGE_WRITE, %g0; \
bne,a,pt %xcc, 1f; \
OR_PTE_BIT(REG2, W); \
/* REG1 can now be clobbered, build final PTE */ \
1: BUILD_PTE_VALID_SZHUGE_CACHE(REG1); \
ba,pt %xcc, PTE_LABEL; \
or REG1, REG2, REG1; \
700:
#else
#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
brz,pn REG1, FAIL_LABEL; \
nop;
#endif
/* Do a user page table walk in MMU globals. Leaves final,
* valid, PTE value in REG1. Jumps to FAIL_LABEL on early
* page table walk termination or if the PTE is not valid.
*
* Physical base of page tables is in PHYS_PGD which will not
* be modified.
*
* VADDR will not be clobbered, but REG1 and REG2 will.
*/
@ -172,15 +248,19 @@ extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
brz,pn REG1, FAIL_LABEL; \
sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
srlx REG2, 64 - PAGE_SHIFT, REG2; \
sllx REG1, 11, REG1; \
sllx REG1, PGD_PADDR_SHIFT, REG1; \
andn REG2, 0x3, REG2; \
lduwa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
brz,pn REG1, FAIL_LABEL; \
sllx VADDR, 64 - PMD_SHIFT, REG2; \
srlx REG2, 64 - PAGE_SHIFT, REG2; \
sllx REG1, 11, REG1; \
USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
sllx VADDR, 64 - PMD_SHIFT, REG2; \
srlx REG2, 64 - (PAGE_SHIFT - 1), REG2; \
sllx REG1, PMD_PADDR_SHIFT, REG1; \
andn REG2, 0x7, REG2; \
add REG1, REG2, REG1;
add REG1, REG2, REG1; \
ldxa [REG1] ASI_PHYS_USE_EC, REG1; \
brgez,pn REG1, FAIL_LABEL; \
nop; \
800:
/* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
* If no entry is found, FAIL_LABEL will be branched to. On success

View File

@ -779,7 +779,7 @@ static int __pci_mmap_make_offset(struct pci_dev *pdev,
static void __pci_mmap_set_flags(struct pci_dev *dev, struct vm_area_struct *vma,
enum pci_mmap_state mmap_state)
{
vma->vm_flags |= (VM_IO | VM_RESERVED);
vma->vm_flags |= VM_IO | VM_DONTEXPAND | VM_DONTDUMP;
}
/* Set vm_page_prot of VMA, as appropriate for this architecture, for a pci

View File

@ -176,7 +176,7 @@ sun4v_tsb_miss_common:
sub %g2, TRAP_PER_CPU_FAULT_INFO, %g2
#ifdef CONFIG_HUGETLB_PAGE
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
mov SCRATCHPAD_UTSBREG2, %g5
ldxa [%g5] ASI_SCRATCHPAD, %g5
cmp %g5, -1

View File

@ -49,7 +49,7 @@ tsb_miss_page_table_walk:
/* Before committing to a full page table walk,
* check the huge page TSB.
*/
#ifdef CONFIG_HUGETLB_PAGE
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
661: ldx [%g7 + TRAP_PER_CPU_TSB_HUGE], %g5
nop
@ -110,12 +110,9 @@ tsb_miss_page_table_walk:
tsb_miss_page_table_walk_sun4v_fastpath:
USER_PGTABLE_WALK_TL1(%g4, %g7, %g5, %g2, tsb_do_fault)
/* Load and check PTE. */
ldxa [%g5] ASI_PHYS_USE_EC, %g5
brgez,pn %g5, tsb_do_fault
nop
/* Valid PTE is now in %g5. */
#ifdef CONFIG_HUGETLB_PAGE
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
661: sethi %uhi(_PAGE_SZALL_4U), %g7
sllx %g7, 32, %g7
.section .sun4v_2insn_patch, "ax"

View File

@ -265,6 +265,7 @@ good_area:
}
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/* No need to up_read(&mm->mmap_sem) as we would
* have already released it in __lock_page_or_retry

View File

@ -452,6 +452,7 @@ good_area:
}
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/* No need to up_read(&mm->mmap_sem) as we would
* have already released it in __lock_page_or_retry
@ -464,13 +465,13 @@ good_area:
up_read(&mm->mmap_sem);
mm_rss = get_mm_rss(mm);
#ifdef CONFIG_HUGETLB_PAGE
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
mm_rss -= (mm->context.huge_pte_count * (HPAGE_SIZE / PAGE_SIZE));
#endif
if (unlikely(mm_rss >
mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit))
tsb_grow(mm, MM_TSB_BASE, mm_rss);
#ifdef CONFIG_HUGETLB_PAGE
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
mm_rss = mm->context.huge_pte_count;
if (unlikely(mm_rss >
mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit))

View File

@ -303,53 +303,3 @@ struct page *follow_huge_pmd(struct mm_struct *mm, unsigned long address,
{
return NULL;
}
static void context_reload(void *__data)
{
struct mm_struct *mm = __data;
if (mm == current->mm)
load_secondary_context(mm);
}
void hugetlb_prefault_arch_hook(struct mm_struct *mm)
{
struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
if (likely(tp->tsb != NULL))
return;
tsb_grow(mm, MM_TSB_HUGE, 0);
tsb_context_switch(mm);
smp_tsb_sync(mm);
/* On UltraSPARC-III+ and later, configure the second half of
* the Data-TLB for huge pages.
*/
if (tlb_type == cheetah_plus) {
unsigned long ctx;
spin_lock(&ctx_alloc_lock);
ctx = mm->context.sparc64_ctx_val;
ctx &= ~CTX_PGSZ_MASK;
ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
if (ctx != mm->context.sparc64_ctx_val) {
/* When changing the page size fields, we
* must perform a context flush so that no
* stale entries match. This flush must
* occur with the original context register
* settings.
*/
do_flush_tlb_mm(mm);
/* Reload the context register of all processors
* also executing in this address space.
*/
mm->context.sparc64_ctx_val = ctx;
on_each_cpu(context_reload, mm, 0);
}
spin_unlock(&ctx_alloc_lock);
}
}

View File

@ -276,7 +276,6 @@ static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long
}
unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
unsigned long _PAGE_SZBITS __read_mostly;
static void flush_dcache(unsigned long pfn)
{
@ -307,12 +306,24 @@ static void flush_dcache(unsigned long pfn)
}
}
/* mm->context.lock must be held */
static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
unsigned long tsb_hash_shift, unsigned long address,
unsigned long tte)
{
struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
unsigned long tag;
tsb += ((address >> tsb_hash_shift) &
(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
tag = (address >> 22UL);
tsb_insert(tsb, tag, tte);
}
void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
{
unsigned long tsb_index, tsb_hash_shift, flags;
struct mm_struct *mm;
struct tsb *tsb;
unsigned long tag, flags;
unsigned long tsb_index, tsb_hash_shift;
pte_t pte = *ptep;
if (tlb_type != hypervisor) {
@ -329,7 +340,7 @@ void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *
spin_lock_irqsave(&mm->context.lock, flags);
#ifdef CONFIG_HUGETLB_PAGE
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
if ((tlb_type == hypervisor &&
(pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
@ -341,11 +352,8 @@ void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *
}
#endif
tsb = mm->context.tsb_block[tsb_index].tsb;
tsb += ((address >> tsb_hash_shift) &
(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
tag = (address >> 22UL);
tsb_insert(tsb, tag, pte_val(pte));
__update_mmu_tsb_insert(mm, tsb_index, tsb_hash_shift,
address, pte_val(pte));
spin_unlock_irqrestore(&mm->context.lock, flags);
}
@ -2275,8 +2283,7 @@ static void __init sun4u_pgprot_init(void)
__ACCESS_BITS_4U | _PAGE_E_4U);
#ifdef CONFIG_DEBUG_PAGEALLOC
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
0xfffff80000000000UL;
kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
#else
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
0xfffff80000000000UL;
@ -2287,7 +2294,6 @@ static void __init sun4u_pgprot_init(void)
for (i = 1; i < 4; i++)
kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
_PAGE_SZBITS = _PAGE_SZBITS_4U;
_PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
_PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
_PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
@ -2324,8 +2330,7 @@ static void __init sun4v_pgprot_init(void)
_PAGE_CACHE = _PAGE_CACHE_4V;
#ifdef CONFIG_DEBUG_PAGEALLOC
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
0xfffff80000000000UL;
kern_linear_pte_xor[0] = _PAGE_VALID ^ 0xfffff80000000000UL;
#else
kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
0xfffff80000000000UL;
@ -2339,7 +2344,6 @@ static void __init sun4v_pgprot_init(void)
pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
__ACCESS_BITS_4V | _PAGE_E_4V);
_PAGE_SZBITS = _PAGE_SZBITS_4V;
_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
_PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
_PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
@ -2472,3 +2476,281 @@ void __flush_tlb_all(void)
__asm__ __volatile__("wrpr %0, 0, %%pstate"
: : "r" (pstate));
}
static pte_t *get_from_cache(struct mm_struct *mm)
{
struct page *page;
pte_t *ret;
spin_lock(&mm->page_table_lock);
page = mm->context.pgtable_page;
ret = NULL;
if (page) {
void *p = page_address(page);
mm->context.pgtable_page = NULL;
ret = (pte_t *) (p + (PAGE_SIZE / 2));
}
spin_unlock(&mm->page_table_lock);
return ret;
}
static struct page *__alloc_for_cache(struct mm_struct *mm)
{
struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
__GFP_REPEAT | __GFP_ZERO);
if (page) {
spin_lock(&mm->page_table_lock);
if (!mm->context.pgtable_page) {
atomic_set(&page->_count, 2);
mm->context.pgtable_page = page;
}
spin_unlock(&mm->page_table_lock);
}
return page;
}
pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
unsigned long address)
{
struct page *page;
pte_t *pte;
pte = get_from_cache(mm);
if (pte)
return pte;
page = __alloc_for_cache(mm);
if (page)
pte = (pte_t *) page_address(page);
return pte;
}
pgtable_t pte_alloc_one(struct mm_struct *mm,
unsigned long address)
{
struct page *page;
pte_t *pte;
pte = get_from_cache(mm);
if (pte)
return pte;
page = __alloc_for_cache(mm);
if (page) {
pgtable_page_ctor(page);
pte = (pte_t *) page_address(page);
}
return pte;
}
void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
{
struct page *page = virt_to_page(pte);
if (put_page_testzero(page))
free_hot_cold_page(page, 0);
}
static void __pte_free(pgtable_t pte)
{
struct page *page = virt_to_page(pte);
if (put_page_testzero(page)) {
pgtable_page_dtor(page);
free_hot_cold_page(page, 0);
}
}
void pte_free(struct mm_struct *mm, pgtable_t pte)
{
__pte_free(pte);
}
void pgtable_free(void *table, bool is_page)
{
if (is_page)
__pte_free(table);
else
kmem_cache_free(pgtable_cache, table);
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot, bool for_modify)
{
if (pgprot_val(pgprot) & _PAGE_VALID)
pmd_val(pmd) |= PMD_HUGE_PRESENT;
if (tlb_type == hypervisor) {
if (pgprot_val(pgprot) & _PAGE_WRITE_4V)
pmd_val(pmd) |= PMD_HUGE_WRITE;
if (pgprot_val(pgprot) & _PAGE_EXEC_4V)
pmd_val(pmd) |= PMD_HUGE_EXEC;
if (!for_modify) {
if (pgprot_val(pgprot) & _PAGE_ACCESSED_4V)
pmd_val(pmd) |= PMD_HUGE_ACCESSED;
if (pgprot_val(pgprot) & _PAGE_MODIFIED_4V)
pmd_val(pmd) |= PMD_HUGE_DIRTY;
}
} else {
if (pgprot_val(pgprot) & _PAGE_WRITE_4U)
pmd_val(pmd) |= PMD_HUGE_WRITE;
if (pgprot_val(pgprot) & _PAGE_EXEC_4U)
pmd_val(pmd) |= PMD_HUGE_EXEC;
if (!for_modify) {
if (pgprot_val(pgprot) & _PAGE_ACCESSED_4U)
pmd_val(pmd) |= PMD_HUGE_ACCESSED;
if (pgprot_val(pgprot) & _PAGE_MODIFIED_4U)
pmd_val(pmd) |= PMD_HUGE_DIRTY;
}
}
return pmd;
}
pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
{
pmd_t pmd;
pmd_val(pmd) = (page_nr << ((PAGE_SHIFT - PMD_PADDR_SHIFT)));
pmd_val(pmd) |= PMD_ISHUGE;
pmd = pmd_set_protbits(pmd, pgprot, false);
return pmd;
}
pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
{
pmd_val(pmd) &= ~(PMD_HUGE_PRESENT |
PMD_HUGE_WRITE |
PMD_HUGE_EXEC);
pmd = pmd_set_protbits(pmd, newprot, true);
return pmd;
}
pgprot_t pmd_pgprot(pmd_t entry)
{
unsigned long pte = 0;
if (pmd_val(entry) & PMD_HUGE_PRESENT)
pte |= _PAGE_VALID;
if (tlb_type == hypervisor) {
if (pmd_val(entry) & PMD_HUGE_PRESENT)
pte |= _PAGE_PRESENT_4V;
if (pmd_val(entry) & PMD_HUGE_EXEC)
pte |= _PAGE_EXEC_4V;
if (pmd_val(entry) & PMD_HUGE_WRITE)
pte |= _PAGE_W_4V;
if (pmd_val(entry) & PMD_HUGE_ACCESSED)
pte |= _PAGE_ACCESSED_4V;
if (pmd_val(entry) & PMD_HUGE_DIRTY)
pte |= _PAGE_MODIFIED_4V;
pte |= _PAGE_CP_4V|_PAGE_CV_4V;
} else {
if (pmd_val(entry) & PMD_HUGE_PRESENT)
pte |= _PAGE_PRESENT_4U;
if (pmd_val(entry) & PMD_HUGE_EXEC)
pte |= _PAGE_EXEC_4U;
if (pmd_val(entry) & PMD_HUGE_WRITE)
pte |= _PAGE_W_4U;
if (pmd_val(entry) & PMD_HUGE_ACCESSED)
pte |= _PAGE_ACCESSED_4U;
if (pmd_val(entry) & PMD_HUGE_DIRTY)
pte |= _PAGE_MODIFIED_4U;
pte |= _PAGE_CP_4U|_PAGE_CV_4U;
}
return __pgprot(pte);
}
void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd)
{
unsigned long pte, flags;
struct mm_struct *mm;
pmd_t entry = *pmd;
pgprot_t prot;
if (!pmd_large(entry) || !pmd_young(entry))
return;
pte = (pmd_val(entry) & ~PMD_HUGE_PROTBITS);
pte <<= PMD_PADDR_SHIFT;
pte |= _PAGE_VALID;
prot = pmd_pgprot(entry);
if (tlb_type == hypervisor)
pgprot_val(prot) |= _PAGE_SZHUGE_4V;
else
pgprot_val(prot) |= _PAGE_SZHUGE_4U;
pte |= pgprot_val(prot);
mm = vma->vm_mm;
spin_lock_irqsave(&mm->context.lock, flags);
if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
__update_mmu_tsb_insert(mm, MM_TSB_HUGE, HPAGE_SHIFT,
addr, pte);
spin_unlock_irqrestore(&mm->context.lock, flags);
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
static void context_reload(void *__data)
{
struct mm_struct *mm = __data;
if (mm == current->mm)
load_secondary_context(mm);
}
void hugetlb_setup(struct mm_struct *mm)
{
struct tsb_config *tp = &mm->context.tsb_block[MM_TSB_HUGE];
if (likely(tp->tsb != NULL))
return;
tsb_grow(mm, MM_TSB_HUGE, 0);
tsb_context_switch(mm);
smp_tsb_sync(mm);
/* On UltraSPARC-III+ and later, configure the second half of
* the Data-TLB for huge pages.
*/
if (tlb_type == cheetah_plus) {
unsigned long ctx;
spin_lock(&ctx_alloc_lock);
ctx = mm->context.sparc64_ctx_val;
ctx &= ~CTX_PGSZ_MASK;
ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
if (ctx != mm->context.sparc64_ctx_val) {
/* When changing the page size fields, we
* must perform a context flush so that no
* stale entries match. This flush must
* occur with the original context register
* settings.
*/
do_flush_tlb_mm(mm);
/* Reload the context register of all processors
* also executing in this address space.
*/
mm->context.sparc64_ctx_val = ctx;
on_each_cpu(context_reload, mm, 0);
}
spin_unlock(&ctx_alloc_lock);
}
}
#endif

View File

@ -43,16 +43,37 @@ void flush_tlb_pending(void)
put_cpu_var(tlb_batch);
}
void tlb_batch_add(struct mm_struct *mm, unsigned long vaddr,
pte_t *ptep, pte_t orig, int fullmm)
static void tlb_batch_add_one(struct mm_struct *mm, unsigned long vaddr,
bool exec)
{
struct tlb_batch *tb = &get_cpu_var(tlb_batch);
unsigned long nr;
vaddr &= PAGE_MASK;
if (pte_exec(orig))
if (exec)
vaddr |= 0x1UL;
nr = tb->tlb_nr;
if (unlikely(nr != 0 && mm != tb->mm)) {
flush_tlb_pending();
nr = 0;
}
if (nr == 0)
tb->mm = mm;
tb->vaddrs[nr] = vaddr;
tb->tlb_nr = ++nr;
if (nr >= TLB_BATCH_NR)
flush_tlb_pending();
put_cpu_var(tlb_batch);
}
void tlb_batch_add(struct mm_struct *mm, unsigned long vaddr,
pte_t *ptep, pte_t orig, int fullmm)
{
if (tlb_type != hypervisor &&
pte_dirty(orig)) {
unsigned long paddr, pfn = pte_pfn(orig);
@ -77,26 +98,91 @@ void tlb_batch_add(struct mm_struct *mm, unsigned long vaddr,
}
no_cache_flush:
if (fullmm) {
put_cpu_var(tlb_batch);
return;
}
nr = tb->tlb_nr;
if (unlikely(nr != 0 && mm != tb->mm)) {
flush_tlb_pending();
nr = 0;
}
if (nr == 0)
tb->mm = mm;
tb->vaddrs[nr] = vaddr;
tb->tlb_nr = ++nr;
if (nr >= TLB_BATCH_NR)
flush_tlb_pending();
put_cpu_var(tlb_batch);
if (!fullmm)
tlb_batch_add_one(mm, vaddr, pte_exec(orig));
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
static void tlb_batch_pmd_scan(struct mm_struct *mm, unsigned long vaddr,
pmd_t pmd, bool exec)
{
unsigned long end;
pte_t *pte;
pte = pte_offset_map(&pmd, vaddr);
end = vaddr + HPAGE_SIZE;
while (vaddr < end) {
if (pte_val(*pte) & _PAGE_VALID)
tlb_batch_add_one(mm, vaddr, exec);
pte++;
vaddr += PAGE_SIZE;
}
pte_unmap(pte);
}
void set_pmd_at(struct mm_struct *mm, unsigned long addr,
pmd_t *pmdp, pmd_t pmd)
{
pmd_t orig = *pmdp;
*pmdp = pmd;
if (mm == &init_mm)
return;
if ((pmd_val(pmd) ^ pmd_val(orig)) & PMD_ISHUGE) {
if (pmd_val(pmd) & PMD_ISHUGE)
mm->context.huge_pte_count++;
else
mm->context.huge_pte_count--;
if (mm->context.huge_pte_count == 1)
hugetlb_setup(mm);
}
if (!pmd_none(orig)) {
bool exec = ((pmd_val(orig) & PMD_HUGE_EXEC) != 0);
addr &= HPAGE_MASK;
if (pmd_val(orig) & PMD_ISHUGE)
tlb_batch_add_one(mm, addr, exec);
else
tlb_batch_pmd_scan(mm, addr, orig, exec);
}
}
void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable)
{
struct list_head *lh = (struct list_head *) pgtable;
assert_spin_locked(&mm->page_table_lock);
/* FIFO */
if (!mm->pmd_huge_pte)
INIT_LIST_HEAD(lh);
else
list_add(lh, (struct list_head *) mm->pmd_huge_pte);
mm->pmd_huge_pte = pgtable;
}
pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm)
{
struct list_head *lh;
pgtable_t pgtable;
assert_spin_locked(&mm->page_table_lock);
/* FIFO */
pgtable = mm->pmd_huge_pte;
lh = (struct list_head *) pgtable;
if (list_empty(lh))
mm->pmd_huge_pte = NULL;
else {
mm->pmd_huge_pte = (pgtable_t) lh->next;
list_del(lh);
}
pte_val(pgtable[0]) = 0;
pte_val(pgtable[1]) = 0;
return pgtable;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

View File

@ -78,7 +78,7 @@ void flush_tsb_user(struct tlb_batch *tb)
base = __pa(base);
__flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
#ifdef CONFIG_HUGETLB_PAGE
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
@ -90,29 +90,12 @@ void flush_tsb_user(struct tlb_batch *tb)
spin_unlock_irqrestore(&mm->context.lock, flags);
}
#if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
#define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
#define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
#elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
#define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_64K
#define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_64K
#else
#error Broken base page size setting...
#endif
#ifdef CONFIG_HUGETLB_PAGE
#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
#define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_64K
#define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_64K
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
#define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_512K
#define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_512K
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
#define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
#define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
#else
#error Broken huge page size setting...
#endif
#endif
static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
@ -207,7 +190,7 @@ static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsign
case MM_TSB_BASE:
hp->pgsz_idx = HV_PGSZ_IDX_BASE;
break;
#ifdef CONFIG_HUGETLB_PAGE
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
case MM_TSB_HUGE:
hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
break;
@ -222,7 +205,7 @@ static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsign
case MM_TSB_BASE:
hp->pgsz_mask = HV_PGSZ_MASK_BASE;
break;
#ifdef CONFIG_HUGETLB_PAGE
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
case MM_TSB_HUGE:
hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
break;
@ -444,7 +427,7 @@ retry_tsb_alloc:
int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
{
#ifdef CONFIG_HUGETLB_PAGE
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
unsigned long huge_pte_count;
#endif
unsigned int i;
@ -453,7 +436,7 @@ int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
mm->context.sparc64_ctx_val = 0UL;
#ifdef CONFIG_HUGETLB_PAGE
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
/* We reset it to zero because the fork() page copying
* will re-increment the counters as the parent PTEs are
* copied into the child address space.
@ -462,6 +445,8 @@ int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
mm->context.huge_pte_count = 0;
#endif
mm->context.pgtable_page = NULL;
/* copy_mm() copies over the parent's mm_struct before calling
* us, so we need to zero out the TSB pointer or else tsb_grow()
* will be confused and think there is an older TSB to free up.
@ -474,7 +459,7 @@ int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
*/
tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
#ifdef CONFIG_HUGETLB_PAGE
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
if (unlikely(huge_pte_count))
tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
#endif
@ -500,10 +485,17 @@ static void tsb_destroy_one(struct tsb_config *tp)
void destroy_context(struct mm_struct *mm)
{
unsigned long flags, i;
struct page *page;
for (i = 0; i < MM_NUM_TSBS; i++)
tsb_destroy_one(&mm->context.tsb_block[i]);
page = mm->context.pgtable_page;
if (page && put_page_testzero(page)) {
pgtable_page_dtor(page);
free_hot_cold_page(page, 0);
}
spin_lock_irqsave(&ctx_alloc_lock, flags);
if (CTX_VALID(mm->context)) {

View File

@ -7,12 +7,15 @@ config TILE
select HAVE_DMA_API_DEBUG
select HAVE_KVM if !TILEGX
select GENERIC_FIND_FIRST_BIT
select SYSCTL_EXCEPTION_TRACE
select USE_GENERIC_SMP_HELPERS
select CC_OPTIMIZE_FOR_SIZE
select HAVE_DEBUG_KMEMLEAK
select HAVE_GENERIC_HARDIRQS
select GENERIC_IRQ_PROBE
select GENERIC_PENDING_IRQ if SMP
select GENERIC_IRQ_SHOW
select HAVE_DEBUG_BUGVERBOSE
select HAVE_SYSCALL_WRAPPERS if TILEGX
select SYS_HYPERVISOR
select ARCH_HAVE_NMI_SAFE_CMPXCHG

View File

@ -106,6 +106,10 @@ static inline void arch_release_hugepage(struct page *page)
{
}
static inline void arch_clear_hugepage_flags(struct page *page)
{
}
#ifdef CONFIG_HUGETLB_SUPER_PAGES
static inline pte_t arch_make_huge_pte(pte_t entry, struct vm_area_struct *vma,
struct page *page, int writable)

View File

@ -36,19 +36,14 @@ static void sim_notify_exec(const char *binary_name)
} while (c);
}
static int notify_exec(void)
static int notify_exec(struct mm_struct *mm)
{
int retval = 0; /* failure */
struct vm_area_struct *vma = current->mm->mmap;
while (vma) {
if ((vma->vm_flags & VM_EXECUTABLE) && vma->vm_file)
break;
vma = vma->vm_next;
}
if (vma) {
if (mm->exe_file) {
char *buf = (char *) __get_free_page(GFP_KERNEL);
if (buf) {
char *path = d_path(&vma->vm_file->f_path,
char *path = d_path(&mm->exe_file->f_path,
buf, PAGE_SIZE);
if (!IS_ERR(path)) {
sim_notify_exec(path);
@ -106,16 +101,16 @@ int arch_setup_additional_pages(struct linux_binprm *bprm,
unsigned long vdso_base;
int retval = 0;
down_write(&mm->mmap_sem);
/*
* Notify the simulator that an exec just occurred.
* If we can't find the filename of the mapping, just use
* whatever was passed as the linux_binprm filename.
*/
if (!notify_exec())
if (!notify_exec(mm))
sim_notify_exec(bprm->filename);
down_write(&mm->mmap_sem);
/*
* MAYWRITE to allow gdb to COW and set breakpoints
*/

View File

@ -454,6 +454,7 @@ good_area:
tsk->min_flt++;
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/*
* No need to up_read(&mm->mmap_sem) as we would

View File

@ -7,6 +7,7 @@ config UML
bool
default y
select HAVE_GENERIC_HARDIRQS
select HAVE_UID16
select GENERIC_IRQ_SHOW
select GENERIC_CPU_DEVICES
select GENERIC_IO

View File

@ -89,6 +89,7 @@ good_area:
current->min_flt++;
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
goto retry;
}

View File

@ -380,7 +380,7 @@ int vectors_user_mapping(void)
return install_special_mapping(mm, 0xffff0000, PAGE_SIZE,
VM_READ | VM_EXEC |
VM_MAYREAD | VM_MAYEXEC |
VM_RESERVED,
VM_DONTEXPAND | VM_DONTDUMP,
NULL);
}

View File

@ -10,6 +10,7 @@ config X86_32
def_bool y
depends on !64BIT
select CLKSRC_I8253
select HAVE_UID16
config X86_64
def_bool y
@ -46,6 +47,7 @@ config X86
select HAVE_FUNCTION_GRAPH_FP_TEST
select HAVE_FUNCTION_TRACE_MCOUNT_TEST
select HAVE_SYSCALL_TRACEPOINTS
select SYSCTL_EXCEPTION_TRACE
select HAVE_KVM
select HAVE_ARCH_KGDB
select HAVE_ARCH_TRACEHOOK
@ -65,6 +67,7 @@ config X86
select HAVE_PERF_EVENTS_NMI
select HAVE_PERF_REGS
select HAVE_PERF_USER_STACK_DUMP
select HAVE_DEBUG_KMEMLEAK
select ANON_INODES
select HAVE_ALIGNED_STRUCT_PAGE if SLUB && !M386
select HAVE_CMPXCHG_LOCAL if !M386
@ -85,6 +88,7 @@ config X86
select IRQ_FORCED_THREADING
select USE_GENERIC_SMP_HELPERS if SMP
select HAVE_BPF_JIT if X86_64
select HAVE_ARCH_TRANSPARENT_HUGEPAGE
select CLKEVT_I8253
select ARCH_HAVE_NMI_SAFE_CMPXCHG
select GENERIC_IOMAP
@ -2168,6 +2172,7 @@ config IA32_EMULATION
bool "IA32 Emulation"
depends on X86_64
select COMPAT_BINFMT_ELF
select HAVE_UID16
---help---
Include code to run legacy 32-bit programs under a
64-bit kernel. You should likely turn this on, unless you're

View File

@ -240,30 +240,6 @@ static inline int __atomic_add_unless(atomic_t *v, int a, int u)
return c;
}
/*
* atomic_dec_if_positive - decrement by 1 if old value positive
* @v: pointer of type atomic_t
*
* The function returns the old value of *v minus 1, even if
* the atomic variable, v, was not decremented.
*/
static inline int atomic_dec_if_positive(atomic_t *v)
{
int c, old, dec;
c = atomic_read(v);
for (;;) {
dec = c - 1;
if (unlikely(dec < 0))
break;
old = atomic_cmpxchg((v), c, dec);
if (likely(old == c))
break;
c = old;
}
return dec;
}
/**
* atomic_inc_short - increment of a short integer
* @v: pointer to type int

View File

@ -90,4 +90,8 @@ static inline void arch_release_hugepage(struct page *page)
{
}
static inline void arch_clear_hugepage_flags(struct page *page)
{
}
#endif /* _ASM_X86_HUGETLB_H */

View File

@ -146,8 +146,7 @@ static inline unsigned long pmd_pfn(pmd_t pmd)
static inline int pmd_large(pmd_t pte)
{
return (pmd_flags(pte) & (_PAGE_PSE | _PAGE_PRESENT)) ==
(_PAGE_PSE | _PAGE_PRESENT);
return pmd_flags(pte) & _PAGE_PSE;
}
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
@ -415,7 +414,13 @@ static inline int pte_hidden(pte_t pte)
static inline int pmd_present(pmd_t pmd)
{
return pmd_flags(pmd) & _PAGE_PRESENT;
/*
* Checking for _PAGE_PSE is needed too because
* split_huge_page will temporarily clear the present bit (but
* the _PAGE_PSE flag will remain set at all times while the
* _PAGE_PRESENT bit is clear).
*/
return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
}
static inline int pmd_none(pmd_t pmd)

View File

@ -71,6 +71,7 @@ do { \
* tables contain all the necessary information.
*/
#define update_mmu_cache(vma, address, ptep) do { } while (0)
#define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
#endif /* !__ASSEMBLY__ */

View File

@ -143,6 +143,7 @@ static inline int pgd_large(pgd_t pgd) { return 0; }
#define pte_unmap(pte) ((void)(pte))/* NOP */
#define update_mmu_cache(vma, address, ptep) do { } while (0)
#define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
/* Encode and de-code a swap entry */
#if _PAGE_BIT_FILE < _PAGE_BIT_PROTNONE

View File

@ -1220,6 +1220,7 @@ good_area:
/* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
* of starvation. */
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
goto retry;
}
}

View File

@ -71,7 +71,6 @@ huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
struct address_space *mapping = vma->vm_file->f_mapping;
pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
vma->vm_pgoff;
struct prio_tree_iter iter;
struct vm_area_struct *svma;
unsigned long saddr;
pte_t *spte = NULL;
@ -81,7 +80,7 @@ huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
return (pte_t *)pmd_alloc(mm, pud, addr);
mutex_lock(&mapping->i_mmap_mutex);
vma_prio_tree_foreach(svma, &iter, &mapping->i_mmap, idx, idx) {
vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
if (svma == vma)
continue;

View File

@ -664,20 +664,20 @@ static void free_pfn_range(u64 paddr, unsigned long size)
}
/*
* track_pfn_vma_copy is called when vma that is covering the pfnmap gets
* track_pfn_copy is called when vma that is covering the pfnmap gets
* copied through copy_page_range().
*
* If the vma has a linear pfn mapping for the entire range, we get the prot
* from pte and reserve the entire vma range with single reserve_pfn_range call.
*/
int track_pfn_vma_copy(struct vm_area_struct *vma)
int track_pfn_copy(struct vm_area_struct *vma)
{
resource_size_t paddr;
unsigned long prot;
unsigned long vma_size = vma->vm_end - vma->vm_start;
pgprot_t pgprot;
if (is_linear_pfn_mapping(vma)) {
if (vma->vm_flags & VM_PAT) {
/*
* reserve the whole chunk covered by vma. We need the
* starting address and protection from pte.
@ -694,31 +694,59 @@ int track_pfn_vma_copy(struct vm_area_struct *vma)
}
/*
* track_pfn_vma_new is called when a _new_ pfn mapping is being established
* for physical range indicated by pfn and size.
*
* prot is passed in as a parameter for the new mapping. If the vma has a
* linear pfn mapping for the entire range reserve the entire vma range with
* single reserve_pfn_range call.
*/
int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
unsigned long pfn, unsigned long size)
int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
unsigned long pfn, unsigned long addr, unsigned long size)
{
resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
unsigned long flags;
resource_size_t paddr;
unsigned long vma_size = vma->vm_end - vma->vm_start;
if (is_linear_pfn_mapping(vma)) {
/* reserve the whole chunk starting from vm_pgoff */
paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
return reserve_pfn_range(paddr, vma_size, prot, 0);
/* reserve the whole chunk starting from paddr */
if (addr == vma->vm_start && size == (vma->vm_end - vma->vm_start)) {
int ret;
ret = reserve_pfn_range(paddr, size, prot, 0);
if (!ret)
vma->vm_flags |= VM_PAT;
return ret;
}
if (!pat_enabled)
return 0;
/* for vm_insert_pfn and friends, we set prot based on lookup */
flags = lookup_memtype(pfn << PAGE_SHIFT);
/*
* For anything smaller than the vma size we set prot based on the
* lookup.
*/
flags = lookup_memtype(paddr);
/* Check memtype for the remaining pages */
while (size > PAGE_SIZE) {
size -= PAGE_SIZE;
paddr += PAGE_SIZE;
if (flags != lookup_memtype(paddr))
return -EINVAL;
}
*prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
flags);
return 0;
}
int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
unsigned long pfn)
{
unsigned long flags;
if (!pat_enabled)
return 0;
/* Set prot based on lookup */
flags = lookup_memtype((resource_size_t)pfn << PAGE_SHIFT);
*prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
flags);
@ -726,22 +754,31 @@ int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
}
/*
* untrack_pfn_vma is called while unmapping a pfnmap for a region.
* untrack_pfn is called while unmapping a pfnmap for a region.
* untrack can be called for a specific region indicated by pfn and size or
* can be for the entire vma (in which case size can be zero).
* can be for the entire vma (in which case pfn, size are zero).
*/
void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
unsigned long size)
void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
unsigned long size)
{
resource_size_t paddr;
unsigned long vma_size = vma->vm_end - vma->vm_start;
unsigned long prot;
if (is_linear_pfn_mapping(vma)) {
/* free the whole chunk starting from vm_pgoff */
paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
free_pfn_range(paddr, vma_size);
if (!(vma->vm_flags & VM_PAT))
return;
/* free the chunk starting from pfn or the whole chunk */
paddr = (resource_size_t)pfn << PAGE_SHIFT;
if (!paddr && !size) {
if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
WARN_ON_ONCE(1);
return;
}
size = vma->vm_end - vma->vm_start;
}
free_pfn_range(paddr, size);
vma->vm_flags &= ~VM_PAT;
}
pgprot_t pgprot_writecombine(pgprot_t prot)

View File

@ -12,7 +12,7 @@
#include <linux/debugfs.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/rbtree.h>
#include <linux/rbtree_augmented.h>
#include <linux/sched.h>
#include <linux/gfp.h>
@ -54,29 +54,24 @@ static u64 get_subtree_max_end(struct rb_node *node)
return ret;
}
/* Update 'subtree_max_end' for a node, based on node and its children */
static void memtype_rb_augment_cb(struct rb_node *node, void *__unused)
static u64 compute_subtree_max_end(struct memtype *data)
{
struct memtype *data;
u64 max_end, child_max_end;
u64 max_end = data->end, child_max_end;
if (!node)
return;
data = container_of(node, struct memtype, rb);
max_end = data->end;
child_max_end = get_subtree_max_end(node->rb_right);
child_max_end = get_subtree_max_end(data->rb.rb_right);
if (child_max_end > max_end)
max_end = child_max_end;
child_max_end = get_subtree_max_end(node->rb_left);
child_max_end = get_subtree_max_end(data->rb.rb_left);
if (child_max_end > max_end)
max_end = child_max_end;
data->subtree_max_end = max_end;
return max_end;
}
RB_DECLARE_CALLBACKS(static, memtype_rb_augment_cb, struct memtype, rb,
u64, subtree_max_end, compute_subtree_max_end)
/* Find the first (lowest start addr) overlapping range from rb tree */
static struct memtype *memtype_rb_lowest_match(struct rb_root *root,
u64 start, u64 end)
@ -179,15 +174,17 @@ static void memtype_rb_insert(struct rb_root *root, struct memtype *newdata)
struct memtype *data = container_of(*node, struct memtype, rb);
parent = *node;
if (data->subtree_max_end < newdata->end)
data->subtree_max_end = newdata->end;
if (newdata->start <= data->start)
node = &((*node)->rb_left);
else if (newdata->start > data->start)
node = &((*node)->rb_right);
}
newdata->subtree_max_end = newdata->end;
rb_link_node(&newdata->rb, parent, node);
rb_insert_color(&newdata->rb, root);
rb_augment_insert(&newdata->rb, memtype_rb_augment_cb, NULL);
rb_insert_augmented(&newdata->rb, root, &memtype_rb_augment_cb);
}
int rbt_memtype_check_insert(struct memtype *new, unsigned long *ret_type)
@ -209,16 +206,13 @@ int rbt_memtype_check_insert(struct memtype *new, unsigned long *ret_type)
struct memtype *rbt_memtype_erase(u64 start, u64 end)
{
struct rb_node *deepest;
struct memtype *data;
data = memtype_rb_exact_match(&memtype_rbroot, start, end);
if (!data)
goto out;
deepest = rb_augment_erase_begin(&data->rb);
rb_erase(&data->rb, &memtype_rbroot);
rb_augment_erase_end(deepest, memtype_rb_augment_cb, NULL);
rb_erase_augmented(&data->rb, &memtype_rbroot, &memtype_rb_augment_cb);
out:
return data;
}

View File

@ -2451,8 +2451,7 @@ int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
(VM_PFNMAP | VM_RESERVED | VM_IO)));
BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_IO)) == (VM_PFNMAP | VM_IO)));
rmd.mfn = mfn;
rmd.prot = prot;

View File

@ -126,6 +126,7 @@ good_area:
current->min_flt++;
if (fault & VM_FAULT_RETRY) {
flags &= ~FAULT_FLAG_ALLOW_RETRY;
flags |= FAULT_FLAG_TRIED;
/* No need to up_read(&mm->mmap_sem) as we would
* have already released it in __lock_page_or_retry

View File

@ -248,26 +248,23 @@ static bool pages_correctly_reserved(unsigned long start_pfn,
static int
memory_block_action(unsigned long phys_index, unsigned long action)
{
unsigned long start_pfn, start_paddr;
unsigned long start_pfn;
unsigned long nr_pages = PAGES_PER_SECTION * sections_per_block;
struct page *first_page;
int ret;
first_page = pfn_to_page(phys_index << PFN_SECTION_SHIFT);
start_pfn = page_to_pfn(first_page);
switch (action) {
case MEM_ONLINE:
start_pfn = page_to_pfn(first_page);
if (!pages_correctly_reserved(start_pfn, nr_pages))
return -EBUSY;
ret = online_pages(start_pfn, nr_pages);
break;
case MEM_OFFLINE:
start_paddr = page_to_pfn(first_page) << PAGE_SHIFT;
ret = remove_memory(start_paddr,
nr_pages << PAGE_SHIFT);
ret = offline_pages(start_pfn, nr_pages);
break;
default:
WARN(1, KERN_WARNING "%s(%ld, %ld) unknown action: "
@ -278,13 +275,11 @@ memory_block_action(unsigned long phys_index, unsigned long action)
return ret;
}
static int memory_block_change_state(struct memory_block *mem,
static int __memory_block_change_state(struct memory_block *mem,
unsigned long to_state, unsigned long from_state_req)
{
int ret = 0;
mutex_lock(&mem->state_mutex);
if (mem->state != from_state_req) {
ret = -EINVAL;
goto out;
@ -312,10 +307,20 @@ static int memory_block_change_state(struct memory_block *mem,
break;
}
out:
mutex_unlock(&mem->state_mutex);
return ret;
}
static int memory_block_change_state(struct memory_block *mem,
unsigned long to_state, unsigned long from_state_req)
{
int ret;
mutex_lock(&mem->state_mutex);
ret = __memory_block_change_state(mem, to_state, from_state_req);
mutex_unlock(&mem->state_mutex);
return ret;
}
static ssize_t
store_mem_state(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
@ -655,6 +660,21 @@ int unregister_memory_section(struct mem_section *section)
return remove_memory_block(0, section, 0);
}
/*
* offline one memory block. If the memory block has been offlined, do nothing.
*/
int offline_memory_block(struct memory_block *mem)
{
int ret = 0;
mutex_lock(&mem->state_mutex);
if (mem->state != MEM_OFFLINE)
ret = __memory_block_change_state(mem, MEM_OFFLINE, MEM_ONLINE);
mutex_unlock(&mem->state_mutex);
return ret;
}
/*
* Initialize the sysfs support for memory devices...
*/

View File

@ -507,7 +507,7 @@ static int mbcs_gscr_mmap(struct file *fp, struct vm_area_struct *vma)
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
/* Remap-pfn-range will mark the range VM_IO and VM_RESERVED */
/* Remap-pfn-range will mark the range VM_IO */
if (remap_pfn_range(vma,
vma->vm_start,
__pa(soft->gscr_addr) >> PAGE_SHIFT,

View File

@ -322,7 +322,7 @@ static int mmap_mem(struct file *file, struct vm_area_struct *vma)
vma->vm_ops = &mmap_mem_ops;
/* Remap-pfn-range will mark the range VM_IO and VM_RESERVED */
/* Remap-pfn-range will mark the range VM_IO */
if (remap_pfn_range(vma,
vma->vm_start,
vma->vm_pgoff,

View File

@ -286,7 +286,7 @@ mspec_mmap(struct file *file, struct vm_area_struct *vma,
atomic_set(&vdata->refcnt, 1);
vma->vm_private_data = vdata;
vma->vm_flags |= (VM_IO | VM_RESERVED | VM_PFNMAP | VM_DONTEXPAND);
vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
if (vdata->type == MSPEC_FETCHOP || vdata->type == MSPEC_UNCACHED)
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
vma->vm_ops = &mspec_vm_ops;

View File

@ -706,7 +706,7 @@ int drm_gem_mmap(struct file *filp, struct vm_area_struct *vma)
goto out_unlock;
}
vma->vm_flags |= VM_RESERVED | VM_IO | VM_PFNMAP | VM_DONTEXPAND;
vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
vma->vm_ops = obj->dev->driver->gem_vm_ops;
vma->vm_private_data = map->handle;
vma->vm_page_prot = pgprot_writecombine(vm_get_page_prot(vma->vm_flags));

View File

@ -514,8 +514,7 @@ static int drm_mmap_dma(struct file *filp, struct vm_area_struct *vma)
vma->vm_ops = &drm_vm_dma_ops;
vma->vm_flags |= VM_RESERVED; /* Don't swap */
vma->vm_flags |= VM_DONTEXPAND;
vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
drm_vm_open_locked(dev, vma);
return 0;
@ -643,21 +642,16 @@ int drm_mmap_locked(struct file *filp, struct vm_area_struct *vma)
case _DRM_SHM:
vma->vm_ops = &drm_vm_shm_ops;
vma->vm_private_data = (void *)map;
/* Don't let this area swap. Change when
DRM_KERNEL advisory is supported. */
vma->vm_flags |= VM_RESERVED;
break;
case _DRM_SCATTER_GATHER:
vma->vm_ops = &drm_vm_sg_ops;
vma->vm_private_data = (void *)map;
vma->vm_flags |= VM_RESERVED;
vma->vm_page_prot = drm_dma_prot(map->type, vma);
break;
default:
return -EINVAL; /* This should never happen. */
}
vma->vm_flags |= VM_RESERVED; /* Don't swap */
vma->vm_flags |= VM_DONTEXPAND;
vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
drm_vm_open_locked(dev, vma);
return 0;

View File

@ -500,7 +500,7 @@ static int exynos_drm_gem_mmap_buffer(struct file *filp,
DRM_DEBUG_KMS("%s\n", __FILE__);
vma->vm_flags |= (VM_IO | VM_RESERVED);
vma->vm_flags |= VM_IO | VM_DONTEXPAND | VM_DONTDUMP;
update_vm_cache_attr(exynos_gem_obj, vma);

Some files were not shown because too many files have changed in this diff Show More