futex: Split out wait/wake
Move the wait/wake bits into their own file. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: André Almeida <andrealmeid@collabora.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: André Almeida <andrealmeid@collabora.com> Link: https://lore.kernel.org/r/20210923171111.300673-15-andrealmeid@collabora.com
This commit is contained in:
parent
e5c6828493
commit
a046f1a0d3
@ -1,3 +1,3 @@
|
||||
# SPDX-License-Identifier: GPL-2.0
|
||||
|
||||
obj-y += core.o syscalls.o pi.o requeue.o
|
||||
obj-y += core.o syscalls.o pi.o requeue.o waitwake.o
|
||||
|
@ -34,7 +34,6 @@
|
||||
#include <linux/compat.h>
|
||||
#include <linux/jhash.h>
|
||||
#include <linux/pagemap.h>
|
||||
#include <linux/freezer.h>
|
||||
#include <linux/memblock.h>
|
||||
#include <linux/fault-inject.h>
|
||||
#include <linux/slab.h>
|
||||
@ -42,106 +41,6 @@
|
||||
#include "futex.h"
|
||||
#include "../locking/rtmutex_common.h"
|
||||
|
||||
/*
|
||||
* READ this before attempting to hack on futexes!
|
||||
*
|
||||
* Basic futex operation and ordering guarantees
|
||||
* =============================================
|
||||
*
|
||||
* The waiter reads the futex value in user space and calls
|
||||
* futex_wait(). This function computes the hash bucket and acquires
|
||||
* the hash bucket lock. After that it reads the futex user space value
|
||||
* again and verifies that the data has not changed. If it has not changed
|
||||
* it enqueues itself into the hash bucket, releases the hash bucket lock
|
||||
* and schedules.
|
||||
*
|
||||
* The waker side modifies the user space value of the futex and calls
|
||||
* futex_wake(). This function computes the hash bucket and acquires the
|
||||
* hash bucket lock. Then it looks for waiters on that futex in the hash
|
||||
* bucket and wakes them.
|
||||
*
|
||||
* In futex wake up scenarios where no tasks are blocked on a futex, taking
|
||||
* the hb spinlock can be avoided and simply return. In order for this
|
||||
* optimization to work, ordering guarantees must exist so that the waiter
|
||||
* being added to the list is acknowledged when the list is concurrently being
|
||||
* checked by the waker, avoiding scenarios like the following:
|
||||
*
|
||||
* CPU 0 CPU 1
|
||||
* val = *futex;
|
||||
* sys_futex(WAIT, futex, val);
|
||||
* futex_wait(futex, val);
|
||||
* uval = *futex;
|
||||
* *futex = newval;
|
||||
* sys_futex(WAKE, futex);
|
||||
* futex_wake(futex);
|
||||
* if (queue_empty())
|
||||
* return;
|
||||
* if (uval == val)
|
||||
* lock(hash_bucket(futex));
|
||||
* queue();
|
||||
* unlock(hash_bucket(futex));
|
||||
* schedule();
|
||||
*
|
||||
* This would cause the waiter on CPU 0 to wait forever because it
|
||||
* missed the transition of the user space value from val to newval
|
||||
* and the waker did not find the waiter in the hash bucket queue.
|
||||
*
|
||||
* The correct serialization ensures that a waiter either observes
|
||||
* the changed user space value before blocking or is woken by a
|
||||
* concurrent waker:
|
||||
*
|
||||
* CPU 0 CPU 1
|
||||
* val = *futex;
|
||||
* sys_futex(WAIT, futex, val);
|
||||
* futex_wait(futex, val);
|
||||
*
|
||||
* waiters++; (a)
|
||||
* smp_mb(); (A) <-- paired with -.
|
||||
* |
|
||||
* lock(hash_bucket(futex)); |
|
||||
* |
|
||||
* uval = *futex; |
|
||||
* | *futex = newval;
|
||||
* | sys_futex(WAKE, futex);
|
||||
* | futex_wake(futex);
|
||||
* |
|
||||
* `--------> smp_mb(); (B)
|
||||
* if (uval == val)
|
||||
* queue();
|
||||
* unlock(hash_bucket(futex));
|
||||
* schedule(); if (waiters)
|
||||
* lock(hash_bucket(futex));
|
||||
* else wake_waiters(futex);
|
||||
* waiters--; (b) unlock(hash_bucket(futex));
|
||||
*
|
||||
* Where (A) orders the waiters increment and the futex value read through
|
||||
* atomic operations (see futex_hb_waiters_inc) and where (B) orders the write
|
||||
* to futex and the waiters read (see futex_hb_waiters_pending()).
|
||||
*
|
||||
* This yields the following case (where X:=waiters, Y:=futex):
|
||||
*
|
||||
* X = Y = 0
|
||||
*
|
||||
* w[X]=1 w[Y]=1
|
||||
* MB MB
|
||||
* r[Y]=y r[X]=x
|
||||
*
|
||||
* Which guarantees that x==0 && y==0 is impossible; which translates back into
|
||||
* the guarantee that we cannot both miss the futex variable change and the
|
||||
* enqueue.
|
||||
*
|
||||
* Note that a new waiter is accounted for in (a) even when it is possible that
|
||||
* the wait call can return error, in which case we backtrack from it in (b).
|
||||
* Refer to the comment in futex_q_lock().
|
||||
*
|
||||
* Similarly, in order to account for waiters being requeued on another
|
||||
* address we always increment the waiters for the destination bucket before
|
||||
* acquiring the lock. It then decrements them again after releasing it -
|
||||
* the code that actually moves the futex(es) between hash buckets (requeue_futex)
|
||||
* will do the additional required waiter count housekeeping. This is done for
|
||||
* double_lock_hb() and double_unlock_hb(), respectively.
|
||||
*/
|
||||
|
||||
#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
|
||||
int __read_mostly futex_cmpxchg_enabled;
|
||||
#endif
|
||||
@ -211,19 +110,6 @@ late_initcall(fail_futex_debugfs);
|
||||
|
||||
#endif /* CONFIG_FAIL_FUTEX */
|
||||
|
||||
static inline int futex_hb_waiters_pending(struct futex_hash_bucket *hb)
|
||||
{
|
||||
#ifdef CONFIG_SMP
|
||||
/*
|
||||
* Full barrier (B), see the ordering comment above.
|
||||
*/
|
||||
smp_mb();
|
||||
return atomic_read(&hb->waiters);
|
||||
#else
|
||||
return 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* futex_hash - Return the hash bucket in the global hash
|
||||
* @key: Pointer to the futex key for which the hash is calculated
|
||||
@ -628,217 +514,6 @@ void __futex_unqueue(struct futex_q *q)
|
||||
futex_hb_waiters_dec(hb);
|
||||
}
|
||||
|
||||
/*
|
||||
* The hash bucket lock must be held when this is called.
|
||||
* Afterwards, the futex_q must not be accessed. Callers
|
||||
* must ensure to later call wake_up_q() for the actual
|
||||
* wakeups to occur.
|
||||
*/
|
||||
void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q)
|
||||
{
|
||||
struct task_struct *p = q->task;
|
||||
|
||||
if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
|
||||
return;
|
||||
|
||||
get_task_struct(p);
|
||||
__futex_unqueue(q);
|
||||
/*
|
||||
* The waiting task can free the futex_q as soon as q->lock_ptr = NULL
|
||||
* is written, without taking any locks. This is possible in the event
|
||||
* of a spurious wakeup, for example. A memory barrier is required here
|
||||
* to prevent the following store to lock_ptr from getting ahead of the
|
||||
* plist_del in __futex_unqueue().
|
||||
*/
|
||||
smp_store_release(&q->lock_ptr, NULL);
|
||||
|
||||
/*
|
||||
* Queue the task for later wakeup for after we've released
|
||||
* the hb->lock.
|
||||
*/
|
||||
wake_q_add_safe(wake_q, p);
|
||||
}
|
||||
|
||||
/*
|
||||
* Wake up waiters matching bitset queued on this futex (uaddr).
|
||||
*/
|
||||
int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
|
||||
{
|
||||
struct futex_hash_bucket *hb;
|
||||
struct futex_q *this, *next;
|
||||
union futex_key key = FUTEX_KEY_INIT;
|
||||
int ret;
|
||||
DEFINE_WAKE_Q(wake_q);
|
||||
|
||||
if (!bitset)
|
||||
return -EINVAL;
|
||||
|
||||
ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
|
||||
if (unlikely(ret != 0))
|
||||
return ret;
|
||||
|
||||
hb = futex_hash(&key);
|
||||
|
||||
/* Make sure we really have tasks to wakeup */
|
||||
if (!futex_hb_waiters_pending(hb))
|
||||
return ret;
|
||||
|
||||
spin_lock(&hb->lock);
|
||||
|
||||
plist_for_each_entry_safe(this, next, &hb->chain, list) {
|
||||
if (futex_match (&this->key, &key)) {
|
||||
if (this->pi_state || this->rt_waiter) {
|
||||
ret = -EINVAL;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Check if one of the bits is set in both bitsets */
|
||||
if (!(this->bitset & bitset))
|
||||
continue;
|
||||
|
||||
futex_wake_mark(&wake_q, this);
|
||||
if (++ret >= nr_wake)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
spin_unlock(&hb->lock);
|
||||
wake_up_q(&wake_q);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
|
||||
{
|
||||
unsigned int op = (encoded_op & 0x70000000) >> 28;
|
||||
unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
|
||||
int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
|
||||
int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
|
||||
int oldval, ret;
|
||||
|
||||
if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
|
||||
if (oparg < 0 || oparg > 31) {
|
||||
char comm[sizeof(current->comm)];
|
||||
/*
|
||||
* kill this print and return -EINVAL when userspace
|
||||
* is sane again
|
||||
*/
|
||||
pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
|
||||
get_task_comm(comm, current), oparg);
|
||||
oparg &= 31;
|
||||
}
|
||||
oparg = 1 << oparg;
|
||||
}
|
||||
|
||||
pagefault_disable();
|
||||
ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
|
||||
pagefault_enable();
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
switch (cmp) {
|
||||
case FUTEX_OP_CMP_EQ:
|
||||
return oldval == cmparg;
|
||||
case FUTEX_OP_CMP_NE:
|
||||
return oldval != cmparg;
|
||||
case FUTEX_OP_CMP_LT:
|
||||
return oldval < cmparg;
|
||||
case FUTEX_OP_CMP_GE:
|
||||
return oldval >= cmparg;
|
||||
case FUTEX_OP_CMP_LE:
|
||||
return oldval <= cmparg;
|
||||
case FUTEX_OP_CMP_GT:
|
||||
return oldval > cmparg;
|
||||
default:
|
||||
return -ENOSYS;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Wake up all waiters hashed on the physical page that is mapped
|
||||
* to this virtual address:
|
||||
*/
|
||||
int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
|
||||
int nr_wake, int nr_wake2, int op)
|
||||
{
|
||||
union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
|
||||
struct futex_hash_bucket *hb1, *hb2;
|
||||
struct futex_q *this, *next;
|
||||
int ret, op_ret;
|
||||
DEFINE_WAKE_Q(wake_q);
|
||||
|
||||
retry:
|
||||
ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
|
||||
if (unlikely(ret != 0))
|
||||
return ret;
|
||||
ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
|
||||
if (unlikely(ret != 0))
|
||||
return ret;
|
||||
|
||||
hb1 = futex_hash(&key1);
|
||||
hb2 = futex_hash(&key2);
|
||||
|
||||
retry_private:
|
||||
double_lock_hb(hb1, hb2);
|
||||
op_ret = futex_atomic_op_inuser(op, uaddr2);
|
||||
if (unlikely(op_ret < 0)) {
|
||||
double_unlock_hb(hb1, hb2);
|
||||
|
||||
if (!IS_ENABLED(CONFIG_MMU) ||
|
||||
unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
|
||||
/*
|
||||
* we don't get EFAULT from MMU faults if we don't have
|
||||
* an MMU, but we might get them from range checking
|
||||
*/
|
||||
ret = op_ret;
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (op_ret == -EFAULT) {
|
||||
ret = fault_in_user_writeable(uaddr2);
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
|
||||
cond_resched();
|
||||
if (!(flags & FLAGS_SHARED))
|
||||
goto retry_private;
|
||||
goto retry;
|
||||
}
|
||||
|
||||
plist_for_each_entry_safe(this, next, &hb1->chain, list) {
|
||||
if (futex_match (&this->key, &key1)) {
|
||||
if (this->pi_state || this->rt_waiter) {
|
||||
ret = -EINVAL;
|
||||
goto out_unlock;
|
||||
}
|
||||
futex_wake_mark(&wake_q, this);
|
||||
if (++ret >= nr_wake)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (op_ret > 0) {
|
||||
op_ret = 0;
|
||||
plist_for_each_entry_safe(this, next, &hb2->chain, list) {
|
||||
if (futex_match (&this->key, &key2)) {
|
||||
if (this->pi_state || this->rt_waiter) {
|
||||
ret = -EINVAL;
|
||||
goto out_unlock;
|
||||
}
|
||||
futex_wake_mark(&wake_q, this);
|
||||
if (++op_ret >= nr_wake2)
|
||||
break;
|
||||
}
|
||||
}
|
||||
ret += op_ret;
|
||||
}
|
||||
|
||||
out_unlock:
|
||||
double_unlock_hb(hb1, hb2);
|
||||
wake_up_q(&wake_q);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* The key must be already stored in q->key. */
|
||||
struct futex_hash_bucket *futex_q_lock(struct futex_q *q)
|
||||
__acquires(&hb->lock)
|
||||
@ -889,25 +564,6 @@ void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb)
|
||||
q->task = current;
|
||||
}
|
||||
|
||||
/**
|
||||
* futex_queue() - Enqueue the futex_q on the futex_hash_bucket
|
||||
* @q: The futex_q to enqueue
|
||||
* @hb: The destination hash bucket
|
||||
*
|
||||
* The hb->lock must be held by the caller, and is released here. A call to
|
||||
* futex_queue() is typically paired with exactly one call to futex_unqueue(). The
|
||||
* exceptions involve the PI related operations, which may use futex_unqueue_pi()
|
||||
* or nothing if the unqueue is done as part of the wake process and the unqueue
|
||||
* state is implicit in the state of woken task (see futex_wait_requeue_pi() for
|
||||
* an example).
|
||||
*/
|
||||
static inline void futex_queue(struct futex_q *q, struct futex_hash_bucket *hb)
|
||||
__releases(&hb->lock)
|
||||
{
|
||||
__futex_queue(q, hb);
|
||||
spin_unlock(&hb->lock);
|
||||
}
|
||||
|
||||
/**
|
||||
* futex_unqueue() - Remove the futex_q from its futex_hash_bucket
|
||||
* @q: The futex_q to unqueue
|
||||
@ -919,7 +575,7 @@ static inline void futex_queue(struct futex_q *q, struct futex_hash_bucket *hb)
|
||||
* - 1 - if the futex_q was still queued (and we removed unqueued it);
|
||||
* - 0 - if the futex_q was already removed by the waking thread
|
||||
*/
|
||||
static int futex_unqueue(struct futex_q *q)
|
||||
int futex_unqueue(struct futex_q *q)
|
||||
{
|
||||
spinlock_t *lock_ptr;
|
||||
int ret = 0;
|
||||
@ -975,196 +631,6 @@ void futex_unqueue_pi(struct futex_q *q)
|
||||
q->pi_state = NULL;
|
||||
}
|
||||
|
||||
static long futex_wait_restart(struct restart_block *restart);
|
||||
|
||||
/**
|
||||
* futex_wait_queue() - futex_queue() and wait for wakeup, timeout, or signal
|
||||
* @hb: the futex hash bucket, must be locked by the caller
|
||||
* @q: the futex_q to queue up on
|
||||
* @timeout: the prepared hrtimer_sleeper, or null for no timeout
|
||||
*/
|
||||
void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q,
|
||||
struct hrtimer_sleeper *timeout)
|
||||
{
|
||||
/*
|
||||
* The task state is guaranteed to be set before another task can
|
||||
* wake it. set_current_state() is implemented using smp_store_mb() and
|
||||
* futex_queue() calls spin_unlock() upon completion, both serializing
|
||||
* access to the hash list and forcing another memory barrier.
|
||||
*/
|
||||
set_current_state(TASK_INTERRUPTIBLE);
|
||||
futex_queue(q, hb);
|
||||
|
||||
/* Arm the timer */
|
||||
if (timeout)
|
||||
hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
|
||||
|
||||
/*
|
||||
* If we have been removed from the hash list, then another task
|
||||
* has tried to wake us, and we can skip the call to schedule().
|
||||
*/
|
||||
if (likely(!plist_node_empty(&q->list))) {
|
||||
/*
|
||||
* If the timer has already expired, current will already be
|
||||
* flagged for rescheduling. Only call schedule if there
|
||||
* is no timeout, or if it has yet to expire.
|
||||
*/
|
||||
if (!timeout || timeout->task)
|
||||
freezable_schedule();
|
||||
}
|
||||
__set_current_state(TASK_RUNNING);
|
||||
}
|
||||
|
||||
/**
|
||||
* futex_wait_setup() - Prepare to wait on a futex
|
||||
* @uaddr: the futex userspace address
|
||||
* @val: the expected value
|
||||
* @flags: futex flags (FLAGS_SHARED, etc.)
|
||||
* @q: the associated futex_q
|
||||
* @hb: storage for hash_bucket pointer to be returned to caller
|
||||
*
|
||||
* Setup the futex_q and locate the hash_bucket. Get the futex value and
|
||||
* compare it with the expected value. Handle atomic faults internally.
|
||||
* Return with the hb lock held on success, and unlocked on failure.
|
||||
*
|
||||
* Return:
|
||||
* - 0 - uaddr contains val and hb has been locked;
|
||||
* - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
|
||||
*/
|
||||
int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
|
||||
struct futex_q *q, struct futex_hash_bucket **hb)
|
||||
{
|
||||
u32 uval;
|
||||
int ret;
|
||||
|
||||
/*
|
||||
* Access the page AFTER the hash-bucket is locked.
|
||||
* Order is important:
|
||||
*
|
||||
* Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
|
||||
* Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
|
||||
*
|
||||
* The basic logical guarantee of a futex is that it blocks ONLY
|
||||
* if cond(var) is known to be true at the time of blocking, for
|
||||
* any cond. If we locked the hash-bucket after testing *uaddr, that
|
||||
* would open a race condition where we could block indefinitely with
|
||||
* cond(var) false, which would violate the guarantee.
|
||||
*
|
||||
* On the other hand, we insert q and release the hash-bucket only
|
||||
* after testing *uaddr. This guarantees that futex_wait() will NOT
|
||||
* absorb a wakeup if *uaddr does not match the desired values
|
||||
* while the syscall executes.
|
||||
*/
|
||||
retry:
|
||||
ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
|
||||
if (unlikely(ret != 0))
|
||||
return ret;
|
||||
|
||||
retry_private:
|
||||
*hb = futex_q_lock(q);
|
||||
|
||||
ret = futex_get_value_locked(&uval, uaddr);
|
||||
|
||||
if (ret) {
|
||||
futex_q_unlock(*hb);
|
||||
|
||||
ret = get_user(uval, uaddr);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
if (!(flags & FLAGS_SHARED))
|
||||
goto retry_private;
|
||||
|
||||
goto retry;
|
||||
}
|
||||
|
||||
if (uval != val) {
|
||||
futex_q_unlock(*hb);
|
||||
ret = -EWOULDBLOCK;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset)
|
||||
{
|
||||
struct hrtimer_sleeper timeout, *to;
|
||||
struct restart_block *restart;
|
||||
struct futex_hash_bucket *hb;
|
||||
struct futex_q q = futex_q_init;
|
||||
int ret;
|
||||
|
||||
if (!bitset)
|
||||
return -EINVAL;
|
||||
q.bitset = bitset;
|
||||
|
||||
to = futex_setup_timer(abs_time, &timeout, flags,
|
||||
current->timer_slack_ns);
|
||||
retry:
|
||||
/*
|
||||
* Prepare to wait on uaddr. On success, it holds hb->lock and q
|
||||
* is initialized.
|
||||
*/
|
||||
ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
|
||||
if (ret)
|
||||
goto out;
|
||||
|
||||
/* futex_queue and wait for wakeup, timeout, or a signal. */
|
||||
futex_wait_queue(hb, &q, to);
|
||||
|
||||
/* If we were woken (and unqueued), we succeeded, whatever. */
|
||||
ret = 0;
|
||||
if (!futex_unqueue(&q))
|
||||
goto out;
|
||||
ret = -ETIMEDOUT;
|
||||
if (to && !to->task)
|
||||
goto out;
|
||||
|
||||
/*
|
||||
* We expect signal_pending(current), but we might be the
|
||||
* victim of a spurious wakeup as well.
|
||||
*/
|
||||
if (!signal_pending(current))
|
||||
goto retry;
|
||||
|
||||
ret = -ERESTARTSYS;
|
||||
if (!abs_time)
|
||||
goto out;
|
||||
|
||||
restart = ¤t->restart_block;
|
||||
restart->futex.uaddr = uaddr;
|
||||
restart->futex.val = val;
|
||||
restart->futex.time = *abs_time;
|
||||
restart->futex.bitset = bitset;
|
||||
restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
|
||||
|
||||
ret = set_restart_fn(restart, futex_wait_restart);
|
||||
|
||||
out:
|
||||
if (to) {
|
||||
hrtimer_cancel(&to->timer);
|
||||
destroy_hrtimer_on_stack(&to->timer);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
static long futex_wait_restart(struct restart_block *restart)
|
||||
{
|
||||
u32 __user *uaddr = restart->futex.uaddr;
|
||||
ktime_t t, *tp = NULL;
|
||||
|
||||
if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
|
||||
t = restart->futex.time;
|
||||
tp = &t;
|
||||
}
|
||||
restart->fn = do_no_restart_syscall;
|
||||
|
||||
return (long)futex_wait(uaddr, restart->futex.flags,
|
||||
restart->futex.val, tp, restart->futex.bitset);
|
||||
}
|
||||
|
||||
|
||||
/* Constants for the pending_op argument of handle_futex_death */
|
||||
#define HANDLE_DEATH_PENDING true
|
||||
#define HANDLE_DEATH_LIST false
|
||||
|
@ -154,6 +154,27 @@ extern struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb, union fute
|
||||
|
||||
extern void __futex_unqueue(struct futex_q *q);
|
||||
extern void __futex_queue(struct futex_q *q, struct futex_hash_bucket *hb);
|
||||
extern int futex_unqueue(struct futex_q *q);
|
||||
|
||||
/**
|
||||
* futex_queue() - Enqueue the futex_q on the futex_hash_bucket
|
||||
* @q: The futex_q to enqueue
|
||||
* @hb: The destination hash bucket
|
||||
*
|
||||
* The hb->lock must be held by the caller, and is released here. A call to
|
||||
* futex_queue() is typically paired with exactly one call to futex_unqueue(). The
|
||||
* exceptions involve the PI related operations, which may use futex_unqueue_pi()
|
||||
* or nothing if the unqueue is done as part of the wake process and the unqueue
|
||||
* state is implicit in the state of woken task (see futex_wait_requeue_pi() for
|
||||
* an example).
|
||||
*/
|
||||
static inline void futex_queue(struct futex_q *q, struct futex_hash_bucket *hb)
|
||||
__releases(&hb->lock)
|
||||
{
|
||||
__futex_queue(q, hb);
|
||||
spin_unlock(&hb->lock);
|
||||
}
|
||||
|
||||
extern void futex_unqueue_pi(struct futex_q *q);
|
||||
|
||||
extern void wait_for_owner_exiting(int ret, struct task_struct *exiting);
|
||||
@ -183,6 +204,19 @@ static inline void futex_hb_waiters_dec(struct futex_hash_bucket *hb)
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline int futex_hb_waiters_pending(struct futex_hash_bucket *hb)
|
||||
{
|
||||
#ifdef CONFIG_SMP
|
||||
/*
|
||||
* Full barrier (B), see the ordering comment above.
|
||||
*/
|
||||
smp_mb();
|
||||
return atomic_read(&hb->waiters);
|
||||
#else
|
||||
return 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
extern struct futex_hash_bucket *futex_q_lock(struct futex_q *q);
|
||||
extern void futex_q_unlock(struct futex_hash_bucket *hb);
|
||||
|
||||
|
507
kernel/futex/waitwake.c
Normal file
507
kernel/futex/waitwake.c
Normal file
@ -0,0 +1,507 @@
|
||||
// SPDX-License-Identifier: GPL-2.0-or-later
|
||||
|
||||
#include <linux/sched/task.h>
|
||||
#include <linux/sched/signal.h>
|
||||
#include <linux/freezer.h>
|
||||
|
||||
#include "futex.h"
|
||||
|
||||
/*
|
||||
* READ this before attempting to hack on futexes!
|
||||
*
|
||||
* Basic futex operation and ordering guarantees
|
||||
* =============================================
|
||||
*
|
||||
* The waiter reads the futex value in user space and calls
|
||||
* futex_wait(). This function computes the hash bucket and acquires
|
||||
* the hash bucket lock. After that it reads the futex user space value
|
||||
* again and verifies that the data has not changed. If it has not changed
|
||||
* it enqueues itself into the hash bucket, releases the hash bucket lock
|
||||
* and schedules.
|
||||
*
|
||||
* The waker side modifies the user space value of the futex and calls
|
||||
* futex_wake(). This function computes the hash bucket and acquires the
|
||||
* hash bucket lock. Then it looks for waiters on that futex in the hash
|
||||
* bucket and wakes them.
|
||||
*
|
||||
* In futex wake up scenarios where no tasks are blocked on a futex, taking
|
||||
* the hb spinlock can be avoided and simply return. In order for this
|
||||
* optimization to work, ordering guarantees must exist so that the waiter
|
||||
* being added to the list is acknowledged when the list is concurrently being
|
||||
* checked by the waker, avoiding scenarios like the following:
|
||||
*
|
||||
* CPU 0 CPU 1
|
||||
* val = *futex;
|
||||
* sys_futex(WAIT, futex, val);
|
||||
* futex_wait(futex, val);
|
||||
* uval = *futex;
|
||||
* *futex = newval;
|
||||
* sys_futex(WAKE, futex);
|
||||
* futex_wake(futex);
|
||||
* if (queue_empty())
|
||||
* return;
|
||||
* if (uval == val)
|
||||
* lock(hash_bucket(futex));
|
||||
* queue();
|
||||
* unlock(hash_bucket(futex));
|
||||
* schedule();
|
||||
*
|
||||
* This would cause the waiter on CPU 0 to wait forever because it
|
||||
* missed the transition of the user space value from val to newval
|
||||
* and the waker did not find the waiter in the hash bucket queue.
|
||||
*
|
||||
* The correct serialization ensures that a waiter either observes
|
||||
* the changed user space value before blocking or is woken by a
|
||||
* concurrent waker:
|
||||
*
|
||||
* CPU 0 CPU 1
|
||||
* val = *futex;
|
||||
* sys_futex(WAIT, futex, val);
|
||||
* futex_wait(futex, val);
|
||||
*
|
||||
* waiters++; (a)
|
||||
* smp_mb(); (A) <-- paired with -.
|
||||
* |
|
||||
* lock(hash_bucket(futex)); |
|
||||
* |
|
||||
* uval = *futex; |
|
||||
* | *futex = newval;
|
||||
* | sys_futex(WAKE, futex);
|
||||
* | futex_wake(futex);
|
||||
* |
|
||||
* `--------> smp_mb(); (B)
|
||||
* if (uval == val)
|
||||
* queue();
|
||||
* unlock(hash_bucket(futex));
|
||||
* schedule(); if (waiters)
|
||||
* lock(hash_bucket(futex));
|
||||
* else wake_waiters(futex);
|
||||
* waiters--; (b) unlock(hash_bucket(futex));
|
||||
*
|
||||
* Where (A) orders the waiters increment and the futex value read through
|
||||
* atomic operations (see futex_hb_waiters_inc) and where (B) orders the write
|
||||
* to futex and the waiters read (see futex_hb_waiters_pending()).
|
||||
*
|
||||
* This yields the following case (where X:=waiters, Y:=futex):
|
||||
*
|
||||
* X = Y = 0
|
||||
*
|
||||
* w[X]=1 w[Y]=1
|
||||
* MB MB
|
||||
* r[Y]=y r[X]=x
|
||||
*
|
||||
* Which guarantees that x==0 && y==0 is impossible; which translates back into
|
||||
* the guarantee that we cannot both miss the futex variable change and the
|
||||
* enqueue.
|
||||
*
|
||||
* Note that a new waiter is accounted for in (a) even when it is possible that
|
||||
* the wait call can return error, in which case we backtrack from it in (b).
|
||||
* Refer to the comment in futex_q_lock().
|
||||
*
|
||||
* Similarly, in order to account for waiters being requeued on another
|
||||
* address we always increment the waiters for the destination bucket before
|
||||
* acquiring the lock. It then decrements them again after releasing it -
|
||||
* the code that actually moves the futex(es) between hash buckets (requeue_futex)
|
||||
* will do the additional required waiter count housekeeping. This is done for
|
||||
* double_lock_hb() and double_unlock_hb(), respectively.
|
||||
*/
|
||||
|
||||
/*
|
||||
* The hash bucket lock must be held when this is called.
|
||||
* Afterwards, the futex_q must not be accessed. Callers
|
||||
* must ensure to later call wake_up_q() for the actual
|
||||
* wakeups to occur.
|
||||
*/
|
||||
void futex_wake_mark(struct wake_q_head *wake_q, struct futex_q *q)
|
||||
{
|
||||
struct task_struct *p = q->task;
|
||||
|
||||
if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
|
||||
return;
|
||||
|
||||
get_task_struct(p);
|
||||
__futex_unqueue(q);
|
||||
/*
|
||||
* The waiting task can free the futex_q as soon as q->lock_ptr = NULL
|
||||
* is written, without taking any locks. This is possible in the event
|
||||
* of a spurious wakeup, for example. A memory barrier is required here
|
||||
* to prevent the following store to lock_ptr from getting ahead of the
|
||||
* plist_del in __futex_unqueue().
|
||||
*/
|
||||
smp_store_release(&q->lock_ptr, NULL);
|
||||
|
||||
/*
|
||||
* Queue the task for later wakeup for after we've released
|
||||
* the hb->lock.
|
||||
*/
|
||||
wake_q_add_safe(wake_q, p);
|
||||
}
|
||||
|
||||
/*
|
||||
* Wake up waiters matching bitset queued on this futex (uaddr).
|
||||
*/
|
||||
int futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
|
||||
{
|
||||
struct futex_hash_bucket *hb;
|
||||
struct futex_q *this, *next;
|
||||
union futex_key key = FUTEX_KEY_INIT;
|
||||
int ret;
|
||||
DEFINE_WAKE_Q(wake_q);
|
||||
|
||||
if (!bitset)
|
||||
return -EINVAL;
|
||||
|
||||
ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
|
||||
if (unlikely(ret != 0))
|
||||
return ret;
|
||||
|
||||
hb = futex_hash(&key);
|
||||
|
||||
/* Make sure we really have tasks to wakeup */
|
||||
if (!futex_hb_waiters_pending(hb))
|
||||
return ret;
|
||||
|
||||
spin_lock(&hb->lock);
|
||||
|
||||
plist_for_each_entry_safe(this, next, &hb->chain, list) {
|
||||
if (futex_match (&this->key, &key)) {
|
||||
if (this->pi_state || this->rt_waiter) {
|
||||
ret = -EINVAL;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Check if one of the bits is set in both bitsets */
|
||||
if (!(this->bitset & bitset))
|
||||
continue;
|
||||
|
||||
futex_wake_mark(&wake_q, this);
|
||||
if (++ret >= nr_wake)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
spin_unlock(&hb->lock);
|
||||
wake_up_q(&wake_q);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
|
||||
{
|
||||
unsigned int op = (encoded_op & 0x70000000) >> 28;
|
||||
unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
|
||||
int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
|
||||
int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
|
||||
int oldval, ret;
|
||||
|
||||
if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
|
||||
if (oparg < 0 || oparg > 31) {
|
||||
char comm[sizeof(current->comm)];
|
||||
/*
|
||||
* kill this print and return -EINVAL when userspace
|
||||
* is sane again
|
||||
*/
|
||||
pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
|
||||
get_task_comm(comm, current), oparg);
|
||||
oparg &= 31;
|
||||
}
|
||||
oparg = 1 << oparg;
|
||||
}
|
||||
|
||||
pagefault_disable();
|
||||
ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
|
||||
pagefault_enable();
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
switch (cmp) {
|
||||
case FUTEX_OP_CMP_EQ:
|
||||
return oldval == cmparg;
|
||||
case FUTEX_OP_CMP_NE:
|
||||
return oldval != cmparg;
|
||||
case FUTEX_OP_CMP_LT:
|
||||
return oldval < cmparg;
|
||||
case FUTEX_OP_CMP_GE:
|
||||
return oldval >= cmparg;
|
||||
case FUTEX_OP_CMP_LE:
|
||||
return oldval <= cmparg;
|
||||
case FUTEX_OP_CMP_GT:
|
||||
return oldval > cmparg;
|
||||
default:
|
||||
return -ENOSYS;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Wake up all waiters hashed on the physical page that is mapped
|
||||
* to this virtual address:
|
||||
*/
|
||||
int futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
|
||||
int nr_wake, int nr_wake2, int op)
|
||||
{
|
||||
union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
|
||||
struct futex_hash_bucket *hb1, *hb2;
|
||||
struct futex_q *this, *next;
|
||||
int ret, op_ret;
|
||||
DEFINE_WAKE_Q(wake_q);
|
||||
|
||||
retry:
|
||||
ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
|
||||
if (unlikely(ret != 0))
|
||||
return ret;
|
||||
ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
|
||||
if (unlikely(ret != 0))
|
||||
return ret;
|
||||
|
||||
hb1 = futex_hash(&key1);
|
||||
hb2 = futex_hash(&key2);
|
||||
|
||||
retry_private:
|
||||
double_lock_hb(hb1, hb2);
|
||||
op_ret = futex_atomic_op_inuser(op, uaddr2);
|
||||
if (unlikely(op_ret < 0)) {
|
||||
double_unlock_hb(hb1, hb2);
|
||||
|
||||
if (!IS_ENABLED(CONFIG_MMU) ||
|
||||
unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
|
||||
/*
|
||||
* we don't get EFAULT from MMU faults if we don't have
|
||||
* an MMU, but we might get them from range checking
|
||||
*/
|
||||
ret = op_ret;
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (op_ret == -EFAULT) {
|
||||
ret = fault_in_user_writeable(uaddr2);
|
||||
if (ret)
|
||||
return ret;
|
||||
}
|
||||
|
||||
cond_resched();
|
||||
if (!(flags & FLAGS_SHARED))
|
||||
goto retry_private;
|
||||
goto retry;
|
||||
}
|
||||
|
||||
plist_for_each_entry_safe(this, next, &hb1->chain, list) {
|
||||
if (futex_match (&this->key, &key1)) {
|
||||
if (this->pi_state || this->rt_waiter) {
|
||||
ret = -EINVAL;
|
||||
goto out_unlock;
|
||||
}
|
||||
futex_wake_mark(&wake_q, this);
|
||||
if (++ret >= nr_wake)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (op_ret > 0) {
|
||||
op_ret = 0;
|
||||
plist_for_each_entry_safe(this, next, &hb2->chain, list) {
|
||||
if (futex_match (&this->key, &key2)) {
|
||||
if (this->pi_state || this->rt_waiter) {
|
||||
ret = -EINVAL;
|
||||
goto out_unlock;
|
||||
}
|
||||
futex_wake_mark(&wake_q, this);
|
||||
if (++op_ret >= nr_wake2)
|
||||
break;
|
||||
}
|
||||
}
|
||||
ret += op_ret;
|
||||
}
|
||||
|
||||
out_unlock:
|
||||
double_unlock_hb(hb1, hb2);
|
||||
wake_up_q(&wake_q);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static long futex_wait_restart(struct restart_block *restart);
|
||||
|
||||
/**
|
||||
* futex_wait_queue() - futex_queue() and wait for wakeup, timeout, or signal
|
||||
* @hb: the futex hash bucket, must be locked by the caller
|
||||
* @q: the futex_q to queue up on
|
||||
* @timeout: the prepared hrtimer_sleeper, or null for no timeout
|
||||
*/
|
||||
void futex_wait_queue(struct futex_hash_bucket *hb, struct futex_q *q,
|
||||
struct hrtimer_sleeper *timeout)
|
||||
{
|
||||
/*
|
||||
* The task state is guaranteed to be set before another task can
|
||||
* wake it. set_current_state() is implemented using smp_store_mb() and
|
||||
* futex_queue() calls spin_unlock() upon completion, both serializing
|
||||
* access to the hash list and forcing another memory barrier.
|
||||
*/
|
||||
set_current_state(TASK_INTERRUPTIBLE);
|
||||
futex_queue(q, hb);
|
||||
|
||||
/* Arm the timer */
|
||||
if (timeout)
|
||||
hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
|
||||
|
||||
/*
|
||||
* If we have been removed from the hash list, then another task
|
||||
* has tried to wake us, and we can skip the call to schedule().
|
||||
*/
|
||||
if (likely(!plist_node_empty(&q->list))) {
|
||||
/*
|
||||
* If the timer has already expired, current will already be
|
||||
* flagged for rescheduling. Only call schedule if there
|
||||
* is no timeout, or if it has yet to expire.
|
||||
*/
|
||||
if (!timeout || timeout->task)
|
||||
freezable_schedule();
|
||||
}
|
||||
__set_current_state(TASK_RUNNING);
|
||||
}
|
||||
|
||||
/**
|
||||
* futex_wait_setup() - Prepare to wait on a futex
|
||||
* @uaddr: the futex userspace address
|
||||
* @val: the expected value
|
||||
* @flags: futex flags (FLAGS_SHARED, etc.)
|
||||
* @q: the associated futex_q
|
||||
* @hb: storage for hash_bucket pointer to be returned to caller
|
||||
*
|
||||
* Setup the futex_q and locate the hash_bucket. Get the futex value and
|
||||
* compare it with the expected value. Handle atomic faults internally.
|
||||
* Return with the hb lock held on success, and unlocked on failure.
|
||||
*
|
||||
* Return:
|
||||
* - 0 - uaddr contains val and hb has been locked;
|
||||
* - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
|
||||
*/
|
||||
int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
|
||||
struct futex_q *q, struct futex_hash_bucket **hb)
|
||||
{
|
||||
u32 uval;
|
||||
int ret;
|
||||
|
||||
/*
|
||||
* Access the page AFTER the hash-bucket is locked.
|
||||
* Order is important:
|
||||
*
|
||||
* Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
|
||||
* Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
|
||||
*
|
||||
* The basic logical guarantee of a futex is that it blocks ONLY
|
||||
* if cond(var) is known to be true at the time of blocking, for
|
||||
* any cond. If we locked the hash-bucket after testing *uaddr, that
|
||||
* would open a race condition where we could block indefinitely with
|
||||
* cond(var) false, which would violate the guarantee.
|
||||
*
|
||||
* On the other hand, we insert q and release the hash-bucket only
|
||||
* after testing *uaddr. This guarantees that futex_wait() will NOT
|
||||
* absorb a wakeup if *uaddr does not match the desired values
|
||||
* while the syscall executes.
|
||||
*/
|
||||
retry:
|
||||
ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
|
||||
if (unlikely(ret != 0))
|
||||
return ret;
|
||||
|
||||
retry_private:
|
||||
*hb = futex_q_lock(q);
|
||||
|
||||
ret = futex_get_value_locked(&uval, uaddr);
|
||||
|
||||
if (ret) {
|
||||
futex_q_unlock(*hb);
|
||||
|
||||
ret = get_user(uval, uaddr);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
if (!(flags & FLAGS_SHARED))
|
||||
goto retry_private;
|
||||
|
||||
goto retry;
|
||||
}
|
||||
|
||||
if (uval != val) {
|
||||
futex_q_unlock(*hb);
|
||||
ret = -EWOULDBLOCK;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val, ktime_t *abs_time, u32 bitset)
|
||||
{
|
||||
struct hrtimer_sleeper timeout, *to;
|
||||
struct restart_block *restart;
|
||||
struct futex_hash_bucket *hb;
|
||||
struct futex_q q = futex_q_init;
|
||||
int ret;
|
||||
|
||||
if (!bitset)
|
||||
return -EINVAL;
|
||||
q.bitset = bitset;
|
||||
|
||||
to = futex_setup_timer(abs_time, &timeout, flags,
|
||||
current->timer_slack_ns);
|
||||
retry:
|
||||
/*
|
||||
* Prepare to wait on uaddr. On success, it holds hb->lock and q
|
||||
* is initialized.
|
||||
*/
|
||||
ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
|
||||
if (ret)
|
||||
goto out;
|
||||
|
||||
/* futex_queue and wait for wakeup, timeout, or a signal. */
|
||||
futex_wait_queue(hb, &q, to);
|
||||
|
||||
/* If we were woken (and unqueued), we succeeded, whatever. */
|
||||
ret = 0;
|
||||
if (!futex_unqueue(&q))
|
||||
goto out;
|
||||
ret = -ETIMEDOUT;
|
||||
if (to && !to->task)
|
||||
goto out;
|
||||
|
||||
/*
|
||||
* We expect signal_pending(current), but we might be the
|
||||
* victim of a spurious wakeup as well.
|
||||
*/
|
||||
if (!signal_pending(current))
|
||||
goto retry;
|
||||
|
||||
ret = -ERESTARTSYS;
|
||||
if (!abs_time)
|
||||
goto out;
|
||||
|
||||
restart = ¤t->restart_block;
|
||||
restart->futex.uaddr = uaddr;
|
||||
restart->futex.val = val;
|
||||
restart->futex.time = *abs_time;
|
||||
restart->futex.bitset = bitset;
|
||||
restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
|
||||
|
||||
ret = set_restart_fn(restart, futex_wait_restart);
|
||||
|
||||
out:
|
||||
if (to) {
|
||||
hrtimer_cancel(&to->timer);
|
||||
destroy_hrtimer_on_stack(&to->timer);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
static long futex_wait_restart(struct restart_block *restart)
|
||||
{
|
||||
u32 __user *uaddr = restart->futex.uaddr;
|
||||
ktime_t t, *tp = NULL;
|
||||
|
||||
if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
|
||||
t = restart->futex.time;
|
||||
tp = &t;
|
||||
}
|
||||
restart->fn = do_no_restart_syscall;
|
||||
|
||||
return (long)futex_wait(uaddr, restart->futex.flags,
|
||||
restart->futex.val, tp, restart->futex.bitset);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user