[SPARC64]: Fix TLB context allocation with SMT style shared TLBs.

The context allocation scheme we use depends upon there being a 1<-->1
mapping from cpu to physical TLB for correctness.  Chips like Niagara
break this assumption.

So what we do is notify all cpus with a cross call when the context
version number changes, and if necessary this makes them allocate
a valid context for the address space they are running at the time.

Stress tested with make -j1024, make -j2048, and make -j4096 kernel
builds on a 32-strand, 8 core, T2000 with 16GB of ram.

Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
David S. Miller 2006-02-23 14:19:28 -08:00 committed by David S. Miller
parent 074d82cf68
commit a0663a79ad
4 changed files with 50 additions and 25 deletions

View File

@ -885,26 +885,44 @@ void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
put_cpu(); put_cpu();
} }
static void __smp_receive_signal_mask(cpumask_t mask)
{
smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
}
void smp_receive_signal(int cpu) void smp_receive_signal(int cpu)
{ {
cpumask_t mask = cpumask_of_cpu(cpu); cpumask_t mask = cpumask_of_cpu(cpu);
if (cpu_online(cpu)) { if (cpu_online(cpu))
u64 data0 = (((u64)&xcall_receive_signal) & 0xffffffff); __smp_receive_signal_mask(mask);
if (tlb_type == spitfire)
spitfire_xcall_deliver(data0, 0, 0, mask);
else if (tlb_type == cheetah || tlb_type == cheetah_plus)
cheetah_xcall_deliver(data0, 0, 0, mask);
else if (tlb_type == hypervisor)
hypervisor_xcall_deliver(data0, 0, 0, mask);
}
} }
void smp_receive_signal_client(int irq, struct pt_regs *regs) void smp_receive_signal_client(int irq, struct pt_regs *regs)
{ {
/* Just return, rtrap takes care of the rest. */ struct mm_struct *mm;
clear_softint(1 << irq); clear_softint(1 << irq);
/* See if we need to allocate a new TLB context because
* the version of the one we are using is now out of date.
*/
mm = current->active_mm;
if (likely(mm)) {
if (unlikely(!CTX_VALID(mm->context))) {
unsigned long flags;
spin_lock_irqsave(&mm->context.lock, flags);
get_new_mmu_context(mm);
load_secondary_context(mm);
spin_unlock_irqrestore(&mm->context.lock, flags);
}
}
}
void smp_new_mmu_context_version(void)
{
__smp_receive_signal_mask(cpu_online_map);
} }
void smp_report_regs(void) void smp_report_regs(void)

View File

@ -629,17 +629,20 @@ void __flush_dcache_range(unsigned long start, unsigned long end)
* let the user have CTX 0 (nucleus) or we ever use a CTX * let the user have CTX 0 (nucleus) or we ever use a CTX
* version of zero (and thus NO_CONTEXT would not be caught * version of zero (and thus NO_CONTEXT would not be caught
* by version mis-match tests in mmu_context.h). * by version mis-match tests in mmu_context.h).
*
* Always invoked with interrupts disabled.
*/ */
void get_new_mmu_context(struct mm_struct *mm) void get_new_mmu_context(struct mm_struct *mm)
{ {
unsigned long ctx, new_ctx; unsigned long ctx, new_ctx;
unsigned long orig_pgsz_bits; unsigned long orig_pgsz_bits;
int new_version;
spin_lock(&ctx_alloc_lock); spin_lock(&ctx_alloc_lock);
orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK); orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
ctx = (tlb_context_cache + 1) & CTX_NR_MASK; ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx); new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
new_version = 0;
if (new_ctx >= (1 << CTX_NR_BITS)) { if (new_ctx >= (1 << CTX_NR_BITS)) {
new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1); new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
if (new_ctx >= ctx) { if (new_ctx >= ctx) {
@ -662,6 +665,7 @@ void get_new_mmu_context(struct mm_struct *mm)
mmu_context_bmap[i + 2] = 0; mmu_context_bmap[i + 2] = 0;
mmu_context_bmap[i + 3] = 0; mmu_context_bmap[i + 3] = 0;
} }
new_version = 1;
goto out; goto out;
} }
} }
@ -671,6 +675,9 @@ out:
tlb_context_cache = new_ctx; tlb_context_cache = new_ctx;
mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits; mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
spin_unlock(&ctx_alloc_lock); spin_unlock(&ctx_alloc_lock);
if (unlikely(new_version))
smp_new_mmu_context_version();
} }
void sparc_ultra_dump_itlb(void) void sparc_ultra_dump_itlb(void)

View File

@ -102,6 +102,7 @@ extern void __tsb_insert(unsigned long ent, unsigned long tag, unsigned long pte
extern void tsb_flush(unsigned long ent, unsigned long tag); extern void tsb_flush(unsigned long ent, unsigned long tag);
typedef struct { typedef struct {
spinlock_t lock;
unsigned long sparc64_ctx_val; unsigned long sparc64_ctx_val;
struct tsb *tsb; struct tsb *tsb;
unsigned long tsb_rss_limit; unsigned long tsb_rss_limit;

View File

@ -19,6 +19,12 @@ extern unsigned long tlb_context_cache;
extern unsigned long mmu_context_bmap[]; extern unsigned long mmu_context_bmap[];
extern void get_new_mmu_context(struct mm_struct *mm); extern void get_new_mmu_context(struct mm_struct *mm);
#ifdef CONFIG_SMP
extern void smp_new_mmu_context_version(void);
#else
#define smp_new_mmu_context_version() do { } while (0)
#endif
extern int init_new_context(struct task_struct *tsk, struct mm_struct *mm); extern int init_new_context(struct task_struct *tsk, struct mm_struct *mm);
extern void destroy_context(struct mm_struct *mm); extern void destroy_context(struct mm_struct *mm);
@ -58,21 +64,17 @@ extern void smp_tsb_sync(struct mm_struct *mm);
extern void __flush_tlb_mm(unsigned long, unsigned long); extern void __flush_tlb_mm(unsigned long, unsigned long);
/* Switch the current MM context. */ /* Switch the current MM context. Interrupts are disabled. */
static inline void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, struct task_struct *tsk) static inline void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, struct task_struct *tsk)
{ {
unsigned long ctx_valid; unsigned long ctx_valid;
int cpu; int cpu;
/* Note: page_table_lock is used here to serialize switch_mm spin_lock(&mm->context.lock);
* and activate_mm, and their calls to get_new_mmu_context.
* This use of page_table_lock is unrelated to its other uses.
*/
spin_lock(&mm->page_table_lock);
ctx_valid = CTX_VALID(mm->context); ctx_valid = CTX_VALID(mm->context);
if (!ctx_valid) if (!ctx_valid)
get_new_mmu_context(mm); get_new_mmu_context(mm);
spin_unlock(&mm->page_table_lock); spin_unlock(&mm->context.lock);
if (!ctx_valid || (old_mm != mm)) { if (!ctx_valid || (old_mm != mm)) {
load_secondary_context(mm); load_secondary_context(mm);
@ -98,19 +100,16 @@ static inline void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm, str
/* Activate a new MM instance for the current task. */ /* Activate a new MM instance for the current task. */
static inline void activate_mm(struct mm_struct *active_mm, struct mm_struct *mm) static inline void activate_mm(struct mm_struct *active_mm, struct mm_struct *mm)
{ {
unsigned long flags;
int cpu; int cpu;
/* Note: page_table_lock is used here to serialize switch_mm spin_lock_irqsave(&mm->context.lock, flags);
* and activate_mm, and their calls to get_new_mmu_context.
* This use of page_table_lock is unrelated to its other uses.
*/
spin_lock(&mm->page_table_lock);
if (!CTX_VALID(mm->context)) if (!CTX_VALID(mm->context))
get_new_mmu_context(mm); get_new_mmu_context(mm);
cpu = smp_processor_id(); cpu = smp_processor_id();
if (!cpu_isset(cpu, mm->cpu_vm_mask)) if (!cpu_isset(cpu, mm->cpu_vm_mask))
cpu_set(cpu, mm->cpu_vm_mask); cpu_set(cpu, mm->cpu_vm_mask);
spin_unlock(&mm->page_table_lock); spin_unlock_irqrestore(&mm->context.lock, flags);
load_secondary_context(mm); load_secondary_context(mm);
__flush_tlb_mm(CTX_HWBITS(mm->context), SECONDARY_CONTEXT); __flush_tlb_mm(CTX_HWBITS(mm->context), SECONDARY_CONTEXT);