spi: Updates for v5.8

This has been a very active release for the DesignWare driver in
 particular - after a long period of inactivity we have had a lot of
 people actively working on it for unrelated reasons this cycle with some
 of that work still not landed.  Otherwise it's been fairly quiet for the
 subsystem.  Highlights include:
 
  - Lots of performance improvements and fixes for the DesignWare driver
    from Serge Semin, Andy Shevchenko, Wan Ahmad Zainie, Clement Leger,
    Dinh Nguyen and Jarkko Nikula.
  - Support for octal mode transfers in spidev.
  - Slave mode support for the Rockchip drivers.
  - Support for AMD controllers, Broadcom mspi and Raspberry Pi 4,
    and Intel Elkhart Lake.
 -----BEGIN PGP SIGNATURE-----
 
 iQFHBAABCgAxFiEEreZoqmdXGLWf4p/qJNaLcl1Uh9AFAl7U6r0THGJyb29uaWVA
 a2VybmVsLm9yZwAKCRAk1otyXVSH0LasB/9npXOMe6tOT03YqtIhN4pxrdUo+LsN
 A5Rc8prfQo7srnIZMndt5/wcTftomVdvjSNrtyXMXtzj+Logx01Pndrr6UVUP6Qq
 Sy0R+4QXBSlj5QtUOBvGFTlzKw2BEaOBYftxVKQM6s4eoefvl0BFALHpEeaHvsDO
 YXfwU8EK6sZylDzvsuVy2uoJlTcY4+wKop7JWY5Ze+LTUjsuJQVEG9zbxpZNEpOn
 ZHO3FVS2MlIAuhcVmy0TfvYxTldTrT89zv8x4sKaPaXwDJFzYjJBwz77vYAjD8u5
 i52JhrAMkZyU4SZdnciJLJx9oTdT8+Rj32oQBU6uK8nRN7U3zflNHHQw
 =qm1J
 -----END PGP SIGNATURE-----

Merge tag 'spi-v5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi

Pull spi updates from Mark Brown:
 "This has been a very active release for the DesignWare driver in
  particular - after a long period of inactivity we have had a lot of
  people actively working on it for unrelated reasons this cycle with
  some of that work still not landed.

  Otherwise it's been fairly quiet for the subsystem.

  Highlights include:

   - Lots of performance improvements and fixes for the DesignWare
     driver from Serge Semin, Andy Shevchenko, Wan Ahmad Zainie, Clement
     Leger, Dinh Nguyen and Jarkko Nikula.

   - Support for octal mode transfers in spidev.

   - Slave mode support for the Rockchip drivers.

   - Support for AMD controllers, Broadcom mspi and Raspberry Pi 4, and
     Intel Elkhart Lake"

* tag 'spi-v5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi: (125 commits)
  spi: spi-fsl-dspi: fix native data copy
  spi: Convert DW SPI binding to DT schema
  spi: dw: Refactor mid_spi_dma_setup() to separate DMA and IRQ config
  spi: dw: Make DMA request line assignments explicit for Intel Medfield
  spi: bcm2835: Remove shared interrupt support
  dt-bindings: snps,dw-apb-ssi: add optional reset property
  spi: dw: add reset control
  spi: bcm2835: Enable shared interrupt support
  spi: bcm2835: Implement shutdown callback
  spi: dw: Use regset32 DebugFS method to create regdump file
  spi: dw: Add DMA support to the DW SPI MMIO driver
  spi: dw: Cleanup generic DW DMA code namings
  spi: dw: Add DW SPI DMA/PCI/MMIO dependency on the DW SPI core
  spi: dw: Remove DW DMA code dependency from DW_DMAC_PCI
  spi: dw: Move Non-DMA code to the DW PCIe-SPI driver
  spi: dw: Add core suffix to the DW APB SSI core source file
  spi: dw: Fix Rx-only DMA transfers
  spi: dw: Use DMA max burst to set the request thresholds
  spi: dw: Parameterize the DMA Rx/Tx burst length
  spi: dw: Add SPI Rx-done wait method to DMA-based transfer
  ...
This commit is contained in:
Linus Torvalds 2020-06-01 11:42:38 -07:00
commit a36de5ebac
55 changed files with 2079 additions and 938 deletions

View File

@ -26,6 +26,16 @@ Required properties:
"brcm,spi-bcm-qspi", "brcm,spi-brcmstb-qspi" : MSPI+BSPI on BRCMSTB SoCs "brcm,spi-bcm-qspi", "brcm,spi-brcmstb-qspi" : MSPI+BSPI on BRCMSTB SoCs
"brcm,spi-bcm-qspi", "brcm,spi-brcmstb-mspi" : Second Instance of MSPI "brcm,spi-bcm-qspi", "brcm,spi-brcmstb-mspi" : Second Instance of MSPI
BRCMSTB SoCs BRCMSTB SoCs
"brcm,spi-bcm7425-qspi", "brcm,spi-bcm-qspi", "brcm,spi-brcmstb-mspi" : Second Instance of MSPI
BRCMSTB SoCs
"brcm,spi-bcm7429-qspi", "brcm,spi-bcm-qspi", "brcm,spi-brcmstb-mspi" : Second Instance of MSPI
BRCMSTB SoCs
"brcm,spi-bcm7435-qspi", "brcm,spi-bcm-qspi", "brcm,spi-brcmstb-mspi" : Second Instance of MSPI
BRCMSTB SoCs
"brcm,spi-bcm7216-qspi", "brcm,spi-bcm-qspi", "brcm,spi-brcmstb-mspi" : Second Instance of MSPI
BRCMSTB SoCs
"brcm,spi-bcm7278-qspi", "brcm,spi-bcm-qspi", "brcm,spi-brcmstb-mspi" : Second Instance of MSPI
BRCMSTB SoCs
"brcm,spi-bcm-qspi", "brcm,spi-nsp-qspi" : MSPI+BSPI on Cygnus, NSP "brcm,spi-bcm-qspi", "brcm,spi-nsp-qspi" : MSPI+BSPI on Cygnus, NSP
"brcm,spi-bcm-qspi", "brcm,spi-ns2-qspi" : NS2 SoCs "brcm,spi-bcm-qspi", "brcm,spi-ns2-qspi" : NS2 SoCs

View File

@ -0,0 +1,36 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/spi/mikrotik,rb4xx-spi.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: MikroTik RB4xx series SPI master
maintainers:
- Gabor Juhos <juhosg@openwrt.org>
- Bert Vermeulen <bert@biot.com>
allOf:
- $ref: "spi-controller.yaml#"
properties:
compatible:
const: mikrotik,rb4xx-spi
reg:
maxItems: 1
required:
- compatible
- reg
examples:
- |
spi: spi@1f000000 {
#address-cells = <1>;
#size-cells = <0>;
compatible = "mikrotik,rb4xx-spi";
reg = <0x1f000000 0x10>;
};
...

View File

@ -0,0 +1,144 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/spi/renesas,rspi.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Renesas (Quad) Serial Peripheral Interface (RSPI/QSPI)
maintainers:
- Geert Uytterhoeven <geert+renesas@glider.be>
properties:
compatible:
oneOf:
- items:
- enum:
- renesas,rspi-sh7757 # SH7757
- const: renesas,rspi # Legacy SH
- items:
- enum:
- renesas,rspi-r7s72100 # RZ/A1H
- renesas,rspi-r7s9210 # RZ/A2
- const: renesas,rspi-rz # RZ/A
- items:
- enum:
- renesas,qspi-r8a7743 # RZ/G1M
- renesas,qspi-r8a7744 # RZ/G1N
- renesas,qspi-r8a7745 # RZ/G1E
- renesas,qspi-r8a77470 # RZ/G1C
- renesas,qspi-r8a7790 # R-Car H2
- renesas,qspi-r8a7791 # R-Car M2-W
- renesas,qspi-r8a7792 # R-Car V2H
- renesas,qspi-r8a7793 # R-Car M2-N
- renesas,qspi-r8a7794 # R-Car E2
- const: renesas,qspi # R-Car Gen2 and RZ/G1
reg:
maxItems: 1
interrupts:
oneOf:
- items:
- description: A combined interrupt
- items:
- description: Error interrupt (SPEI)
- description: Receive Interrupt (SPRI)
- description: Transmit Interrupt (SPTI)
interrupt-names:
oneOf:
- items:
- const: mux
- items:
- const: error
- const: rx
- const: tx
clocks:
maxItems: 1
power-domains:
maxItems: 1
resets:
maxItems: 1
dmas:
description:
Must contain a list of pairs of references to DMA specifiers, one for
transmission, and one for reception.
dma-names:
minItems: 2
maxItems: 4
items:
enum:
- tx
- rx
num-cs:
description: |
Total number of native chip selects.
Hardware limitations related to chip selects:
- When using GPIO chip selects, at least one native chip select must
be left unused, as it will be driven anyway.
minimum: 1
maximum: 2
default: 1
required:
- compatible
- reg
- interrupts
- clocks
- power-domains
- '#address-cells'
- '#size-cells'
allOf:
- $ref: spi-controller.yaml#
- if:
properties:
compatible:
contains:
enum:
- renesas,rspi-rz
then:
properties:
interrupts:
minItems: 3
required:
- interrupt-names
- if:
properties:
compatible:
contains:
enum:
- renesas,qspi
then:
required:
- resets
examples:
- |
#include <dt-bindings/clock/r8a7791-cpg-mssr.h>
#include <dt-bindings/interrupt-controller/arm-gic.h>
#include <dt-bindings/power/r8a7791-sysc.h>
qspi: spi@e6b10000 {
compatible = "renesas,qspi-r8a7791", "renesas,qspi";
reg = <0xe6b10000 0x2c>;
interrupts = <GIC_SPI 184 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&cpg CPG_MOD 917>;
dmas = <&dmac0 0x17>, <&dmac0 0x18>, <&dmac1 0x17>, <&dmac1 0x18>;
dma-names = "tx", "rx", "tx", "rx";
power-domains = <&sysc R8A7791_PD_ALWAYS_ON>;
resets = <&cpg 917>;
num-cs = <1>;
#address-cells = <1>;
#size-cells = <0>;
};

View File

@ -1,41 +0,0 @@
Synopsys DesignWare AMBA 2.0 Synchronous Serial Interface.
Required properties:
- compatible : "snps,dw-apb-ssi" or "mscc,<soc>-spi", where soc is "ocelot" or
"jaguar2", or "amazon,alpine-dw-apb-ssi"
- reg : The register base for the controller. For "mscc,<soc>-spi", a second
register set is required (named ICPU_CFG:SPI_MST)
- interrupts : One interrupt, used by the controller.
- #address-cells : <1>, as required by generic SPI binding.
- #size-cells : <0>, also as required by generic SPI binding.
- clocks : phandles for the clocks, see the description of clock-names below.
The phandle for the "ssi_clk" is required. The phandle for the "pclk" clock
is optional. If a single clock is specified but no clock-name, it is the
"ssi_clk" clock. If both clocks are listed, the "ssi_clk" must be first.
Optional properties:
- clock-names : Contains the names of the clocks:
"ssi_clk", for the core clock used to generate the external SPI clock.
"pclk", the interface clock, required for register access. If a clock domain
used to enable this clock then it should be named "pclk_clkdomain".
- cs-gpios : Specifies the gpio pins to be used for chipselects.
- num-cs : The number of chipselects. If omitted, this will default to 4.
- reg-io-width : The I/O register width (in bytes) implemented by this
device. Supported values are 2 or 4 (the default).
Child nodes as per the generic SPI binding.
Example:
spi@fff00000 {
compatible = "snps,dw-apb-ssi";
reg = <0xfff00000 0x1000>;
interrupts = <0 154 4>;
#address-cells = <1>;
#size-cells = <0>;
clocks = <&spi_m_clk>;
num-cs = <2>;
cs-gpios = <&gpio0 13 0>,
<&gpio0 14 0>;
};

View File

@ -0,0 +1,133 @@
# SPDX-License-Identifier: GPL-2.0-only
%YAML 1.2
---
$id: http://devicetree.org/schemas/spi/snps,dw-apb-ssi.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Synopsys DesignWare AMBA 2.0 Synchronous Serial Interface
maintainers:
- Mark Brown <broonie@kernel.org>
allOf:
- $ref: "spi-controller.yaml#"
- if:
properties:
compatible:
contains:
enum:
- mscc,ocelot-spi
- mscc,jaguar2-spi
then:
properties:
reg:
minItems: 2
properties:
compatible:
oneOf:
- description: Generic DW SPI Controller
enum:
- snps,dw-apb-ssi
- snps,dwc-ssi-1.01a
- description: Microsemi Ocelot/Jaguar2 SoC SPI Controller
items:
- enum:
- mscc,ocelot-spi
- mscc,jaguar2-spi
- const: snps,dw-apb-ssi
- description: Amazon Alpine SPI Controller
const: amazon,alpine-dw-apb-ssi
- description: Renesas RZ/N1 SPI Controller
items:
- const: renesas,rzn1-spi
- const: snps,dw-apb-ssi
- description: Intel Keem Bay SPI Controller
const: intel,keembay-ssi
reg:
minItems: 1
items:
- description: DW APB SSI controller memory mapped registers
- description: SPI MST region map
interrupts:
maxItems: 1
clocks:
minItems: 1
items:
- description: SPI Controller reference clock source
- description: APB interface clock source
clock-names:
minItems: 1
items:
- const: ssi_clk
- const: pclk
resets:
maxItems: 1
reset-names:
const: spi
reg-io-width:
$ref: /schemas/types.yaml#/definitions/uint32
description: I/O register width (in bytes) implemented by this device
default: 4
enum: [ 2, 4 ]
num-cs:
default: 4
minimum: 1
maximum: 4
dmas:
items:
- description: TX DMA Channel
- description: RX DMA Channel
dma-names:
items:
- const: tx
- const: rx
patternProperties:
"^.*@[0-9a-f]+$":
type: object
properties:
reg:
minimum: 0
maximum: 3
spi-rx-bus-width:
const: 1
spi-tx-bus-width:
const: 1
unevaluatedProperties: false
required:
- compatible
- reg
- "#address-cells"
- "#size-cells"
- interrupts
- clocks
examples:
- |
spi@fff00000 {
compatible = "snps,dw-apb-ssi";
reg = <0xfff00000 0x1000>;
#address-cells = <1>;
#size-cells = <0>;
interrupts = <0 154 4>;
clocks = <&spi_m_clk>;
num-cs = <2>;
cs-gpios = <&gpio0 13 0>,
<&gpio0 14 0>;
};
...

View File

@ -0,0 +1,57 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/spi/socionext,uniphier-spi.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Socionext UniPhier SPI controller
description: |
UniPhier SoCs have SCSSI which supports SPI single channel.
maintainers:
- Kunihiko Hayashi <hayashi.kunihiko@socionext.com>
- Keiji Hayashibara <hayashibara.keiji@socionext.com>
allOf:
- $ref: spi-controller.yaml#
properties:
"#address-cells": true
"#size-cells": true
compatible:
const: socionext,uniphier-scssi
reg:
maxItems: 1
interrupts:
maxItems: 1
clocks:
maxItems: 1
resets:
maxItems: 1
required:
- compatible
- reg
- interrupts
- clocks
- resets
- "#address-cells"
- "#size-cells"
examples:
- |
spi0: spi@54006000 {
compatible = "socionext,uniphier-scssi";
reg = <0x54006000 0x100>;
#address-cells = <1>;
#size-cells = <0>;
interrupts = <0 39 4>;
clocks = <&peri_clk 11>;
resets = <&peri_rst 11>;
};

View File

@ -1,24 +0,0 @@
Synopsys DesignWare SPI master
Required properties:
- compatible: should be "snps,designware-spi"
- #address-cells: see spi-bus.txt
- #size-cells: see spi-bus.txt
- reg: address and length of the spi master registers
- interrupts: should contain one interrupt
- clocks: spi clock phandle
- num-cs: see spi-bus.txt
Optional properties:
- cs-gpios: see spi-bus.txt
Example:
spi: spi@4020a000 {
compatible = "snps,designware-spi";
interrupts = <11 1>;
reg = <0x4020a000 0x1000>;
clocks = <&pclk>;
num-cs = <2>;
cs-gpios = <&banka 0 0>;
};

View File

@ -1,73 +0,0 @@
Device tree configuration for Renesas RSPI/QSPI driver
Required properties:
- compatible : For Renesas Serial Peripheral Interface on legacy SH:
"renesas,rspi-<soctype>", "renesas,rspi" as fallback.
For Renesas Serial Peripheral Interface on RZ/A:
"renesas,rspi-<soctype>", "renesas,rspi-rz" as fallback.
For Quad Serial Peripheral Interface on R-Car Gen2 and
RZ/G1 devices:
"renesas,qspi-<soctype>", "renesas,qspi" as fallback.
Examples with soctypes are:
- "renesas,rspi-sh7757" (SH)
- "renesas,rspi-r7s72100" (RZ/A1H)
- "renesas,rspi-r7s9210" (RZ/A2)
- "renesas,qspi-r8a7743" (RZ/G1M)
- "renesas,qspi-r8a7744" (RZ/G1N)
- "renesas,qspi-r8a7745" (RZ/G1E)
- "renesas,qspi-r8a77470" (RZ/G1C)
- "renesas,qspi-r8a7790" (R-Car H2)
- "renesas,qspi-r8a7791" (R-Car M2-W)
- "renesas,qspi-r8a7792" (R-Car V2H)
- "renesas,qspi-r8a7793" (R-Car M2-N)
- "renesas,qspi-r8a7794" (R-Car E2)
- reg : Address start and address range size of the device
- interrupts : A list of interrupt-specifiers, one for each entry in
interrupt-names.
If interrupt-names is not present, an interrupt specifier
for a single muxed interrupt.
- interrupt-names : A list of interrupt names. Should contain (if present):
- "error" for SPEI,
- "rx" for SPRI,
- "tx" to SPTI,
- "mux" for a single muxed interrupt.
- num-cs : Number of chip selects. Some RSPI cores have more than 1.
- #address-cells : Must be <1>
- #size-cells : Must be <0>
Optional properties:
- clocks : Must contain a reference to the functional clock.
- dmas : Must contain a list of two references to DMA specifiers,
one for transmission, and one for reception.
- dma-names : Must contain a list of two DMA names, "tx" and "rx".
Pinctrl properties might be needed, too. See
Documentation/devicetree/bindings/pinctrl/renesas,*.
Examples:
spi0: spi@e800c800 {
compatible = "renesas,rspi-r7s72100", "renesas,rspi-rz";
reg = <0xe800c800 0x24>;
interrupts = <0 238 IRQ_TYPE_LEVEL_HIGH>,
<0 239 IRQ_TYPE_LEVEL_HIGH>,
<0 240 IRQ_TYPE_LEVEL_HIGH>;
interrupt-names = "error", "rx", "tx";
interrupt-parent = <&gic>;
num-cs = <1>;
#address-cells = <1>;
#size-cells = <0>;
};
spi: spi@e6b10000 {
compatible = "renesas,qspi-r8a7791", "renesas,qspi";
reg = <0 0xe6b10000 0 0x2c>;
interrupt-parent = <&gic>;
interrupts = <0 184 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&mstp9_clks R8A7791_CLK_QSPI_MOD>;
num-cs = <1>;
#address-cells = <1>;
#size-cells = <0>;
dmas = <&dmac0 0x17>, <&dmac0 0x18>;
dma-names = "tx", "rx";
};

View File

@ -1,28 +0,0 @@
Socionext UniPhier SPI controller driver
UniPhier SoCs have SCSSI which supports SPI single channel.
Required properties:
- compatible: should be "socionext,uniphier-scssi"
- reg: address and length of the spi master registers
- #address-cells: must be <1>, see spi-bus.txt
- #size-cells: must be <0>, see spi-bus.txt
- interrupts: a single interrupt specifier
- pinctrl-names: should be "default"
- pinctrl-0: pin control state for the default mode
- clocks: a phandle to the clock for the device
- resets: a phandle to the reset control for the device
Example:
spi0: spi@54006000 {
compatible = "socionext,uniphier-scssi";
reg = <0x54006000 0x100>;
#address-cells = <1>;
#size-cells = <0>;
interrupts = <0 39 4>;
pinctrl-names = "default";
pinctrl-0 = <&pinctrl_spi0>;
clocks = <&peri_clk 11>;
resets = <&peri_rst 11>;
};

View File

@ -29,7 +29,7 @@ modification to bootloader.
Example: Example:
For am4372: For am4372:
qspi: qspi@4b300000 { qspi: qspi@47900000 {
compatible = "ti,am4372-qspi"; compatible = "ti,am4372-qspi";
reg = <0x47900000 0x100>, <0x30000000 0x4000000>; reg = <0x47900000 0x100>, <0x30000000 0x4000000>;
reg-names = "qspi_base", "qspi_mmap"; reg-names = "qspi_base", "qspi_mmap";

View File

@ -633,6 +633,8 @@ patternProperties:
description: Microsoft Corporation description: Microsoft Corporation
"^mikroe,.*": "^mikroe,.*":
description: MikroElektronika d.o.o. description: MikroElektronika d.o.o.
"^mikrotik,.*":
description: MikroTik
"^miniand,.*": "^miniand,.*":
description: Miniand Tech description: Miniand Tech
"^minix,.*": "^minix,.*":

View File

@ -899,6 +899,11 @@ F: drivers/gpu/drm/amd/include/v9_structs.h
F: drivers/gpu/drm/amd/include/vi_structs.h F: drivers/gpu/drm/amd/include/vi_structs.h
F: include/uapi/linux/kfd_ioctl.h F: include/uapi/linux/kfd_ioctl.h
AMD SPI DRIVER
M: Sanjay R Mehta <sanju.mehta@amd.com>
S: Maintained
F: drivers/spi/spi-amd.c
AMD MP2 I2C DRIVER AMD MP2 I2C DRIVER
M: Elie Morisse <syniurge@gmail.com> M: Elie Morisse <syniurge@gmail.com>
M: Nehal Shah <nehal-bakulchandra.shah@amd.com> M: Nehal Shah <nehal-bakulchandra.shah@amd.com>

View File

@ -226,17 +226,20 @@ config SPI_DESIGNWARE
help help
general driver for SPI controller core from DesignWare general driver for SPI controller core from DesignWare
if SPI_DESIGNWARE
config SPI_DW_DMA
bool "DMA support for DW SPI controller"
config SPI_DW_PCI config SPI_DW_PCI
tristate "PCI interface driver for DW SPI core" tristate "PCI interface driver for DW SPI core"
depends on SPI_DESIGNWARE && PCI depends on PCI
config SPI_DW_MID_DMA
bool "DMA support for DW SPI controller on Intel MID platform"
depends on SPI_DW_PCI && DW_DMAC_PCI
config SPI_DW_MMIO config SPI_DW_MMIO
tristate "Memory-mapped io interface driver for DW SPI core" tristate "Memory-mapped io interface driver for DW SPI core"
depends on SPI_DESIGNWARE depends on HAS_IOMEM
endif
config SPI_DLN2 config SPI_DLN2
tristate "Diolan DLN-2 USB SPI adapter" tristate "Diolan DLN-2 USB SPI adapter"
@ -844,6 +847,7 @@ config SPI_TXX9
config SPI_UNIPHIER config SPI_UNIPHIER
tristate "Socionext UniPhier SPI Controller" tristate "Socionext UniPhier SPI Controller"
depends on (ARCH_UNIPHIER || COMPILE_TEST) && OF depends on (ARCH_UNIPHIER || COMPILE_TEST) && OF
depends on HAS_IOMEM
help help
This enables a driver for the Socionext UniPhier SoC SCSSI SPI controller. This enables a driver for the Socionext UniPhier SoC SCSSI SPI controller.
@ -910,6 +914,12 @@ config SPI_ZYNQMP_GQSPI
help help
Enables Xilinx GQSPI controller driver for Zynq UltraScale+ MPSoC. Enables Xilinx GQSPI controller driver for Zynq UltraScale+ MPSoC.
config SPI_AMD
tristate "AMD SPI controller"
depends on SPI_MASTER || COMPILE_TEST
help
Enables SPI controller driver for AMD SoC.
# #
# Add new SPI master controllers in alphabetical order above this line # Add new SPI master controllers in alphabetical order above this line
# #

View File

@ -36,9 +36,10 @@ obj-$(CONFIG_SPI_COLDFIRE_QSPI) += spi-coldfire-qspi.o
obj-$(CONFIG_SPI_DAVINCI) += spi-davinci.o obj-$(CONFIG_SPI_DAVINCI) += spi-davinci.o
obj-$(CONFIG_SPI_DLN2) += spi-dln2.o obj-$(CONFIG_SPI_DLN2) += spi-dln2.o
obj-$(CONFIG_SPI_DESIGNWARE) += spi-dw.o obj-$(CONFIG_SPI_DESIGNWARE) += spi-dw.o
spi-dw-y := spi-dw-core.o
spi-dw-$(CONFIG_SPI_DW_DMA) += spi-dw-dma.o
obj-$(CONFIG_SPI_DW_MMIO) += spi-dw-mmio.o obj-$(CONFIG_SPI_DW_MMIO) += spi-dw-mmio.o
obj-$(CONFIG_SPI_DW_PCI) += spi-dw-midpci.o obj-$(CONFIG_SPI_DW_PCI) += spi-dw-pci.o
spi-dw-midpci-objs := spi-dw-pci.o spi-dw-mid.o
obj-$(CONFIG_SPI_EFM32) += spi-efm32.o obj-$(CONFIG_SPI_EFM32) += spi-efm32.o
obj-$(CONFIG_SPI_EP93XX) += spi-ep93xx.o obj-$(CONFIG_SPI_EP93XX) += spi-ep93xx.o
obj-$(CONFIG_SPI_FALCON) += spi-falcon.o obj-$(CONFIG_SPI_FALCON) += spi-falcon.o
@ -127,6 +128,7 @@ obj-$(CONFIG_SPI_XLP) += spi-xlp.o
obj-$(CONFIG_SPI_XTENSA_XTFPGA) += spi-xtensa-xtfpga.o obj-$(CONFIG_SPI_XTENSA_XTFPGA) += spi-xtensa-xtfpga.o
obj-$(CONFIG_SPI_ZYNQ_QSPI) += spi-zynq-qspi.o obj-$(CONFIG_SPI_ZYNQ_QSPI) += spi-zynq-qspi.o
obj-$(CONFIG_SPI_ZYNQMP_GQSPI) += spi-zynqmp-gqspi.o obj-$(CONFIG_SPI_ZYNQMP_GQSPI) += spi-zynqmp-gqspi.o
obj-$(CONFIG_SPI_AMD) += spi-amd.o
# SPI slave protocol handlers # SPI slave protocol handlers
obj-$(CONFIG_SPI_SLAVE_TIME) += spi-slave-time.o obj-$(CONFIG_SPI_SLAVE_TIME) += spi-slave-time.o

315
drivers/spi/spi-amd.c Normal file
View File

@ -0,0 +1,315 @@
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
//
// AMD SPI controller driver
//
// Copyright (c) 2020, Advanced Micro Devices, Inc.
//
// Author: Sanjay R Mehta <sanju.mehta@amd.com>
#include <linux/acpi.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/spi/spi.h>
#define AMD_SPI_CTRL0_REG 0x00
#define AMD_SPI_EXEC_CMD BIT(16)
#define AMD_SPI_FIFO_CLEAR BIT(20)
#define AMD_SPI_BUSY BIT(31)
#define AMD_SPI_OPCODE_MASK 0xFF
#define AMD_SPI_ALT_CS_REG 0x1D
#define AMD_SPI_ALT_CS_MASK 0x3
#define AMD_SPI_FIFO_BASE 0x80
#define AMD_SPI_TX_COUNT_REG 0x48
#define AMD_SPI_RX_COUNT_REG 0x4B
#define AMD_SPI_STATUS_REG 0x4C
#define AMD_SPI_MEM_SIZE 200
/* M_CMD OP codes for SPI */
#define AMD_SPI_XFER_TX 1
#define AMD_SPI_XFER_RX 2
struct amd_spi {
void __iomem *io_remap_addr;
unsigned long io_base_addr;
u32 rom_addr;
u8 chip_select;
};
static inline u8 amd_spi_readreg8(struct spi_master *master, int idx)
{
struct amd_spi *amd_spi = spi_master_get_devdata(master);
return ioread8((u8 __iomem *)amd_spi->io_remap_addr + idx);
}
static inline void amd_spi_writereg8(struct spi_master *master, int idx,
u8 val)
{
struct amd_spi *amd_spi = spi_master_get_devdata(master);
iowrite8(val, ((u8 __iomem *)amd_spi->io_remap_addr + idx));
}
static inline void amd_spi_setclear_reg8(struct spi_master *master, int idx,
u8 set, u8 clear)
{
u8 tmp = amd_spi_readreg8(master, idx);
tmp = (tmp & ~clear) | set;
amd_spi_writereg8(master, idx, tmp);
}
static inline u32 amd_spi_readreg32(struct spi_master *master, int idx)
{
struct amd_spi *amd_spi = spi_master_get_devdata(master);
return ioread32((u8 __iomem *)amd_spi->io_remap_addr + idx);
}
static inline void amd_spi_writereg32(struct spi_master *master, int idx,
u32 val)
{
struct amd_spi *amd_spi = spi_master_get_devdata(master);
iowrite32(val, ((u8 __iomem *)amd_spi->io_remap_addr + idx));
}
static inline void amd_spi_setclear_reg32(struct spi_master *master, int idx,
u32 set, u32 clear)
{
u32 tmp = amd_spi_readreg32(master, idx);
tmp = (tmp & ~clear) | set;
amd_spi_writereg32(master, idx, tmp);
}
static void amd_spi_select_chip(struct spi_master *master)
{
struct amd_spi *amd_spi = spi_master_get_devdata(master);
u8 chip_select = amd_spi->chip_select;
amd_spi_setclear_reg8(master, AMD_SPI_ALT_CS_REG, chip_select,
AMD_SPI_ALT_CS_MASK);
}
static void amd_spi_clear_fifo_ptr(struct spi_master *master)
{
amd_spi_setclear_reg32(master, AMD_SPI_CTRL0_REG, AMD_SPI_FIFO_CLEAR,
AMD_SPI_FIFO_CLEAR);
}
static void amd_spi_set_opcode(struct spi_master *master, u8 cmd_opcode)
{
amd_spi_setclear_reg32(master, AMD_SPI_CTRL0_REG, cmd_opcode,
AMD_SPI_OPCODE_MASK);
}
static inline void amd_spi_set_rx_count(struct spi_master *master,
u8 rx_count)
{
amd_spi_setclear_reg8(master, AMD_SPI_RX_COUNT_REG, rx_count, 0xff);
}
static inline void amd_spi_set_tx_count(struct spi_master *master,
u8 tx_count)
{
amd_spi_setclear_reg8(master, AMD_SPI_TX_COUNT_REG, tx_count, 0xff);
}
static inline int amd_spi_busy_wait(struct amd_spi *amd_spi)
{
bool spi_busy;
int timeout = 100000;
/* poll for SPI bus to become idle */
spi_busy = (ioread32((u8 __iomem *)amd_spi->io_remap_addr +
AMD_SPI_CTRL0_REG) & AMD_SPI_BUSY) == AMD_SPI_BUSY;
while (spi_busy) {
usleep_range(10, 20);
if (timeout-- < 0)
return -ETIMEDOUT;
spi_busy = (ioread32((u8 __iomem *)amd_spi->io_remap_addr +
AMD_SPI_CTRL0_REG) & AMD_SPI_BUSY) == AMD_SPI_BUSY;
}
return 0;
}
static void amd_spi_execute_opcode(struct spi_master *master)
{
struct amd_spi *amd_spi = spi_master_get_devdata(master);
/* Set ExecuteOpCode bit in the CTRL0 register */
amd_spi_setclear_reg32(master, AMD_SPI_CTRL0_REG, AMD_SPI_EXEC_CMD,
AMD_SPI_EXEC_CMD);
amd_spi_busy_wait(amd_spi);
}
static int amd_spi_master_setup(struct spi_device *spi)
{
struct spi_master *master = spi->master;
amd_spi_clear_fifo_ptr(master);
return 0;
}
static inline int amd_spi_fifo_xfer(struct amd_spi *amd_spi,
struct spi_master *master,
struct spi_message *message)
{
struct spi_transfer *xfer = NULL;
u8 cmd_opcode;
u8 *buf = NULL;
u32 m_cmd = 0;
u32 i = 0;
u32 tx_len = 0, rx_len = 0;
list_for_each_entry(xfer, &message->transfers,
transfer_list) {
if (xfer->rx_buf)
m_cmd = AMD_SPI_XFER_RX;
if (xfer->tx_buf)
m_cmd = AMD_SPI_XFER_TX;
if (m_cmd & AMD_SPI_XFER_TX) {
buf = (u8 *)xfer->tx_buf;
tx_len = xfer->len - 1;
cmd_opcode = *(u8 *)xfer->tx_buf;
buf++;
amd_spi_set_opcode(master, cmd_opcode);
/* Write data into the FIFO. */
for (i = 0; i < tx_len; i++) {
iowrite8(buf[i],
((u8 __iomem *)amd_spi->io_remap_addr +
AMD_SPI_FIFO_BASE + i));
}
amd_spi_set_tx_count(master, tx_len);
amd_spi_clear_fifo_ptr(master);
/* Execute command */
amd_spi_execute_opcode(master);
}
if (m_cmd & AMD_SPI_XFER_RX) {
/*
* Store no. of bytes to be received from
* FIFO
*/
rx_len = xfer->len;
buf = (u8 *)xfer->rx_buf;
amd_spi_set_rx_count(master, rx_len);
amd_spi_clear_fifo_ptr(master);
/* Execute command */
amd_spi_execute_opcode(master);
/* Read data from FIFO to receive buffer */
for (i = 0; i < rx_len; i++)
buf[i] = amd_spi_readreg8(master,
AMD_SPI_FIFO_BASE +
tx_len + i);
}
}
/* Update statistics */
message->actual_length = tx_len + rx_len + 1;
/* complete the transaction */
message->status = 0;
spi_finalize_current_message(master);
return 0;
}
static int amd_spi_master_transfer(struct spi_master *master,
struct spi_message *msg)
{
struct amd_spi *amd_spi = spi_master_get_devdata(master);
struct spi_device *spi = msg->spi;
amd_spi->chip_select = spi->chip_select;
amd_spi_select_chip(master);
/*
* Extract spi_transfers from the spi message and
* program the controller.
*/
amd_spi_fifo_xfer(amd_spi, master, msg);
return 0;
}
static int amd_spi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct spi_master *master;
struct amd_spi *amd_spi;
struct resource *res;
int err = 0;
/* Allocate storage for spi_master and driver private data */
master = spi_alloc_master(dev, sizeof(struct amd_spi));
if (!master) {
dev_err(dev, "Error allocating SPI master\n");
return -ENOMEM;
}
amd_spi = spi_master_get_devdata(master);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
amd_spi->io_remap_addr = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(amd_spi->io_remap_addr)) {
err = PTR_ERR(amd_spi->io_remap_addr);
dev_err(dev, "error %d ioremap of SPI registers failed\n", err);
goto err_free_master;
}
dev_dbg(dev, "io_remap_address: %p\n", amd_spi->io_remap_addr);
/* Initialize the spi_master fields */
master->bus_num = 0;
master->num_chipselect = 4;
master->mode_bits = 0;
master->flags = SPI_MASTER_HALF_DUPLEX;
master->setup = amd_spi_master_setup;
master->transfer_one_message = amd_spi_master_transfer;
/* Register the controller with SPI framework */
err = devm_spi_register_master(dev, master);
if (err) {
dev_err(dev, "error %d registering SPI controller\n", err);
goto err_free_master;
}
return 0;
err_free_master:
spi_master_put(master);
return err;
}
static const struct acpi_device_id spi_acpi_match[] = {
{ "AMDI0061", 0 },
{},
};
MODULE_DEVICE_TABLE(acpi, spi_acpi_match);
static struct platform_driver amd_spi_driver = {
.driver = {
.name = "amd_spi",
.acpi_match_table = ACPI_PTR(spi_acpi_match),
},
.probe = amd_spi_probe,
};
module_platform_driver(amd_spi_driver);
MODULE_LICENSE("Dual BSD/GPL");
MODULE_AUTHOR("Sanjay Mehta <sanju.mehta@amd.com>");
MODULE_DESCRIPTION("AMD SPI Master Controller Driver");

View File

@ -276,11 +276,11 @@ static int a3700_spi_fifo_flush(struct a3700_spi *a3700_spi)
return -ETIMEDOUT; return -ETIMEDOUT;
} }
static int a3700_spi_init(struct a3700_spi *a3700_spi) static void a3700_spi_init(struct a3700_spi *a3700_spi)
{ {
struct spi_master *master = a3700_spi->master; struct spi_master *master = a3700_spi->master;
u32 val; u32 val;
int i, ret = 0; int i;
/* Reset SPI unit */ /* Reset SPI unit */
val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG); val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG);
@ -311,8 +311,6 @@ static int a3700_spi_init(struct a3700_spi *a3700_spi)
/* Mask the interrupts and clear cause bits */ /* Mask the interrupts and clear cause bits */
spireg_write(a3700_spi, A3700_SPI_INT_MASK_REG, 0); spireg_write(a3700_spi, A3700_SPI_INT_MASK_REG, 0);
spireg_write(a3700_spi, A3700_SPI_INT_STAT_REG, ~0U); spireg_write(a3700_spi, A3700_SPI_INT_STAT_REG, ~0U);
return ret;
} }
static irqreturn_t a3700_spi_interrupt(int irq, void *dev_id) static irqreturn_t a3700_spi_interrupt(int irq, void *dev_id)
@ -886,9 +884,7 @@ static int a3700_spi_probe(struct platform_device *pdev)
master->min_speed_hz = DIV_ROUND_UP(clk_get_rate(spi->clk), master->min_speed_hz = DIV_ROUND_UP(clk_get_rate(spi->clk),
A3700_SPI_MAX_PRESCALE); A3700_SPI_MAX_PRESCALE);
ret = a3700_spi_init(spi); a3700_spi_init(spi);
if (ret)
goto error_clk;
ret = devm_request_irq(dev, spi->irq, a3700_spi_interrupt, 0, ret = devm_request_irq(dev, spi->irq, a3700_spi_interrupt, 0,
dev_name(dev), master); dev_name(dev), master);

View File

@ -706,6 +706,7 @@ static void atmel_spi_next_xfer_pio(struct spi_master *master,
static int atmel_spi_next_xfer_dma_submit(struct spi_master *master, static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
struct spi_transfer *xfer, struct spi_transfer *xfer,
u32 *plen) u32 *plen)
__must_hold(&as->lock)
{ {
struct atmel_spi *as = spi_master_get_devdata(master); struct atmel_spi *as = spi_master_get_devdata(master);
struct dma_chan *rxchan = master->dma_rx; struct dma_chan *rxchan = master->dma_rx;

View File

@ -489,22 +489,6 @@ static int spi_engine_probe(struct platform_device *pdev)
spin_lock_init(&spi_engine->lock); spin_lock_init(&spi_engine->lock);
spi_engine->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(spi_engine->base)) {
ret = PTR_ERR(spi_engine->base);
goto err_put_master;
}
version = readl(spi_engine->base + SPI_ENGINE_REG_VERSION);
if (SPI_ENGINE_VERSION_MAJOR(version) != 1) {
dev_err(&pdev->dev, "Unsupported peripheral version %u.%u.%c\n",
SPI_ENGINE_VERSION_MAJOR(version),
SPI_ENGINE_VERSION_MINOR(version),
SPI_ENGINE_VERSION_PATCH(version));
ret = -ENODEV;
goto err_put_master;
}
spi_engine->clk = devm_clk_get(&pdev->dev, "s_axi_aclk"); spi_engine->clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
if (IS_ERR(spi_engine->clk)) { if (IS_ERR(spi_engine->clk)) {
ret = PTR_ERR(spi_engine->clk); ret = PTR_ERR(spi_engine->clk);
@ -525,6 +509,22 @@ static int spi_engine_probe(struct platform_device *pdev)
if (ret) if (ret)
goto err_clk_disable; goto err_clk_disable;
spi_engine->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(spi_engine->base)) {
ret = PTR_ERR(spi_engine->base);
goto err_ref_clk_disable;
}
version = readl(spi_engine->base + SPI_ENGINE_REG_VERSION);
if (SPI_ENGINE_VERSION_MAJOR(version) != 1) {
dev_err(&pdev->dev, "Unsupported peripheral version %u.%u.%c\n",
SPI_ENGINE_VERSION_MAJOR(version),
SPI_ENGINE_VERSION_MINOR(version),
SPI_ENGINE_VERSION_PATCH(version));
ret = -ENODEV;
goto err_ref_clk_disable;
}
writel_relaxed(0x00, spi_engine->base + SPI_ENGINE_REG_RESET); writel_relaxed(0x00, spi_engine->base + SPI_ENGINE_REG_RESET);
writel_relaxed(0xff, spi_engine->base + SPI_ENGINE_REG_INT_PENDING); writel_relaxed(0xff, spi_engine->base + SPI_ENGINE_REG_INT_PENDING);
writel_relaxed(0x00, spi_engine->base + SPI_ENGINE_REG_INT_ENABLE); writel_relaxed(0x00, spi_engine->base + SPI_ENGINE_REG_INT_ENABLE);

View File

@ -91,6 +91,7 @@
#define MSPI_MSPI_STATUS 0x020 #define MSPI_MSPI_STATUS 0x020
#define MSPI_CPTQP 0x024 #define MSPI_CPTQP 0x024
#define MSPI_SPCR3 0x028 #define MSPI_SPCR3 0x028
#define MSPI_REV 0x02c
#define MSPI_TXRAM 0x040 #define MSPI_TXRAM 0x040
#define MSPI_RXRAM 0x0c0 #define MSPI_RXRAM 0x0c0
#define MSPI_CDRAM 0x140 #define MSPI_CDRAM 0x140
@ -106,14 +107,22 @@
#define MSPI_SPCR2_SPE BIT(6) #define MSPI_SPCR2_SPE BIT(6)
#define MSPI_SPCR2_CONT_AFTER_CMD BIT(7) #define MSPI_SPCR2_CONT_AFTER_CMD BIT(7)
#define MSPI_SPCR3_FASTBR BIT(0)
#define MSPI_SPCR3_FASTDT BIT(1)
#define MSPI_SPCR3_SYSCLKSEL_MASK GENMASK(11, 10)
#define MSPI_SPCR3_SYSCLKSEL_27 (MSPI_SPCR3_SYSCLKSEL_MASK & \
~(BIT(10) | BIT(11)))
#define MSPI_SPCR3_SYSCLKSEL_108 (MSPI_SPCR3_SYSCLKSEL_MASK & \
BIT(11))
#define MSPI_MSPI_STATUS_SPIF BIT(0) #define MSPI_MSPI_STATUS_SPIF BIT(0)
#define INTR_BASE_BIT_SHIFT 0x02 #define INTR_BASE_BIT_SHIFT 0x02
#define INTR_COUNT 0x07 #define INTR_COUNT 0x07
#define NUM_CHIPSELECT 4 #define NUM_CHIPSELECT 4
#define QSPI_SPBR_MIN 8U
#define QSPI_SPBR_MAX 255U #define QSPI_SPBR_MAX 255U
#define MSPI_BASE_FREQ 27000000UL
#define OPCODE_DIOR 0xBB #define OPCODE_DIOR 0xBB
#define OPCODE_QIOR 0xEB #define OPCODE_QIOR 0xEB
@ -217,6 +226,9 @@ struct bcm_qspi {
struct bcm_qspi_dev_id *dev_ids; struct bcm_qspi_dev_id *dev_ids;
struct completion mspi_done; struct completion mspi_done;
struct completion bspi_done; struct completion bspi_done;
u8 mspi_maj_rev;
u8 mspi_min_rev;
bool mspi_spcr3_sysclk;
}; };
static inline bool has_bspi(struct bcm_qspi *qspi) static inline bool has_bspi(struct bcm_qspi *qspi)
@ -224,6 +236,36 @@ static inline bool has_bspi(struct bcm_qspi *qspi)
return qspi->bspi_mode; return qspi->bspi_mode;
} }
/* hardware supports spcr3 and fast baud-rate */
static inline bool bcm_qspi_has_fastbr(struct bcm_qspi *qspi)
{
if (!has_bspi(qspi) &&
((qspi->mspi_maj_rev >= 1) &&
(qspi->mspi_min_rev >= 5)))
return true;
return false;
}
/* hardware supports sys clk 108Mhz */
static inline bool bcm_qspi_has_sysclk_108(struct bcm_qspi *qspi)
{
if (!has_bspi(qspi) && (qspi->mspi_spcr3_sysclk ||
((qspi->mspi_maj_rev >= 1) &&
(qspi->mspi_min_rev >= 6))))
return true;
return false;
}
static inline int bcm_qspi_spbr_min(struct bcm_qspi *qspi)
{
if (bcm_qspi_has_fastbr(qspi))
return 1;
else
return 8;
}
/* Read qspi controller register*/ /* Read qspi controller register*/
static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type, static inline u32 bcm_qspi_read(struct bcm_qspi *qspi, enum base_type type,
unsigned int offset) unsigned int offset)
@ -531,16 +573,39 @@ static void bcm_qspi_hw_set_parms(struct bcm_qspi *qspi,
if (xp->speed_hz) if (xp->speed_hz)
spbr = qspi->base_clk / (2 * xp->speed_hz); spbr = qspi->base_clk / (2 * xp->speed_hz);
spcr = clamp_val(spbr, QSPI_SPBR_MIN, QSPI_SPBR_MAX); spcr = clamp_val(spbr, bcm_qspi_spbr_min(qspi), QSPI_SPBR_MAX);
bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr); bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, spcr);
spcr = MSPI_MASTER_BIT; if (!qspi->mspi_maj_rev)
/* legacy controller */
spcr = MSPI_MASTER_BIT;
else
spcr = 0;
/* for 16 bit the data should be zero */ /* for 16 bit the data should be zero */
if (xp->bits_per_word != 16) if (xp->bits_per_word != 16)
spcr |= xp->bits_per_word << 2; spcr |= xp->bits_per_word << 2;
spcr |= xp->mode & 3; spcr |= xp->mode & 3;
bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr); bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_MSB, spcr);
if (bcm_qspi_has_fastbr(qspi)) {
spcr = 0;
/* enable fastbr */
spcr |= MSPI_SPCR3_FASTBR;
if (bcm_qspi_has_sysclk_108(qspi)) {
/* SYSCLK_108 */
spcr |= MSPI_SPCR3_SYSCLKSEL_108;
qspi->base_clk = MSPI_BASE_FREQ * 4;
/* Change spbr as we changed sysclk */
bcm_qspi_write(qspi, MSPI, MSPI_SPCR0_LSB, 4);
}
bcm_qspi_write(qspi, MSPI, MSPI_SPCR3, spcr);
}
qspi->last_parms = *xp; qspi->last_parms = *xp;
} }
@ -612,19 +677,15 @@ static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
if (qt->trans->cs_change && if (qt->trans->cs_change &&
(flags & TRANS_STATUS_BREAK_CS_CHANGE)) (flags & TRANS_STATUS_BREAK_CS_CHANGE))
ret |= TRANS_STATUS_BREAK_CS_CHANGE; ret |= TRANS_STATUS_BREAK_CS_CHANGE;
if (ret)
goto done;
dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
if (bcm_qspi_mspi_transfer_is_last(qspi, qt)) if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
ret = TRANS_STATUS_BREAK_EOM; ret |= TRANS_STATUS_BREAK_EOM;
else else
ret = TRANS_STATUS_BREAK_NO_BYTES; ret |= TRANS_STATUS_BREAK_NO_BYTES;
qt->trans = NULL; qt->trans = NULL;
} }
done:
dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n", dev_dbg(&qspi->pdev->dev, "trans %p len %d byte %d ret %x\n",
qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret); qt->trans, qt->trans ? qt->trans->len : 0, qt->byte, ret);
return ret; return ret;
@ -670,7 +731,7 @@ static void read_from_hw(struct bcm_qspi *qspi, int slots)
if (buf) if (buf)
buf[tp.byte] = read_rxram_slot_u8(qspi, slot); buf[tp.byte] = read_rxram_slot_u8(qspi, slot);
dev_dbg(&qspi->pdev->dev, "RD %02x\n", dev_dbg(&qspi->pdev->dev, "RD %02x\n",
buf ? buf[tp.byte] : 0xff); buf ? buf[tp.byte] : 0x0);
} else { } else {
u16 *buf = tp.trans->rx_buf; u16 *buf = tp.trans->rx_buf;
@ -678,7 +739,7 @@ static void read_from_hw(struct bcm_qspi *qspi, int slots)
buf[tp.byte / 2] = read_rxram_slot_u16(qspi, buf[tp.byte / 2] = read_rxram_slot_u16(qspi,
slot); slot);
dev_dbg(&qspi->pdev->dev, "RD %04x\n", dev_dbg(&qspi->pdev->dev, "RD %04x\n",
buf ? buf[tp.byte] : 0xffff); buf ? buf[tp.byte / 2] : 0x0);
} }
update_qspi_trans_byte_count(qspi, &tp, update_qspi_trans_byte_count(qspi, &tp,
@ -733,13 +794,13 @@ static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
while (!tstatus && slot < MSPI_NUM_CDRAM) { while (!tstatus && slot < MSPI_NUM_CDRAM) {
if (tp.trans->bits_per_word <= 8) { if (tp.trans->bits_per_word <= 8) {
const u8 *buf = tp.trans->tx_buf; const u8 *buf = tp.trans->tx_buf;
u8 val = buf ? buf[tp.byte] : 0xff; u8 val = buf ? buf[tp.byte] : 0x00;
write_txram_slot_u8(qspi, slot, val); write_txram_slot_u8(qspi, slot, val);
dev_dbg(&qspi->pdev->dev, "WR %02x\n", val); dev_dbg(&qspi->pdev->dev, "WR %02x\n", val);
} else { } else {
const u16 *buf = tp.trans->tx_buf; const u16 *buf = tp.trans->tx_buf;
u16 val = buf ? buf[tp.byte / 2] : 0xffff; u16 val = buf ? buf[tp.byte / 2] : 0x0000;
write_txram_slot_u16(qspi, slot, val); write_txram_slot_u16(qspi, slot, val);
dev_dbg(&qspi->pdev->dev, "WR %04x\n", val); dev_dbg(&qspi->pdev->dev, "WR %04x\n", val);
@ -771,7 +832,16 @@ static int write_to_hw(struct bcm_qspi *qspi, struct spi_device *spi)
bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0); bcm_qspi_write(qspi, MSPI, MSPI_NEWQP, 0);
bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1); bcm_qspi_write(qspi, MSPI, MSPI_ENDQP, slot - 1);
if (tstatus & TRANS_STATUS_BREAK_DESELECT) { /*
* case 1) EOM =1, cs_change =0: SSb inactive
* case 2) EOM =1, cs_change =1: SSb stay active
* case 3) EOM =0, cs_change =0: SSb stay active
* case 4) EOM =0, cs_change =1: SSb inactive
*/
if (((tstatus & TRANS_STATUS_BREAK_DESELECT)
== TRANS_STATUS_BREAK_CS_CHANGE) ||
((tstatus & TRANS_STATUS_BREAK_DESELECT)
== TRANS_STATUS_BREAK_EOM)) {
mspi_cdram = read_cdram_slot(qspi, slot - 1) & mspi_cdram = read_cdram_slot(qspi, slot - 1) &
~MSPI_CDRAM_CONT_BIT; ~MSPI_CDRAM_CONT_BIT;
write_cdram_slot(qspi, slot - 1, mspi_cdram); write_cdram_slot(qspi, slot - 1, mspi_cdram);
@ -1190,8 +1260,51 @@ static const struct spi_controller_mem_ops bcm_qspi_mem_ops = {
.exec_op = bcm_qspi_exec_mem_op, .exec_op = bcm_qspi_exec_mem_op,
}; };
struct bcm_qspi_data {
bool has_mspi_rev;
bool has_spcr3_sysclk;
};
static const struct bcm_qspi_data bcm_qspi_no_rev_data = {
.has_mspi_rev = false,
.has_spcr3_sysclk = false,
};
static const struct bcm_qspi_data bcm_qspi_rev_data = {
.has_mspi_rev = true,
.has_spcr3_sysclk = false,
};
static const struct bcm_qspi_data bcm_qspi_spcr3_data = {
.has_mspi_rev = true,
.has_spcr3_sysclk = true,
};
static const struct of_device_id bcm_qspi_of_match[] = { static const struct of_device_id bcm_qspi_of_match[] = {
{ .compatible = "brcm,spi-bcm-qspi" }, {
.compatible = "brcm,spi-bcm7425-qspi",
.data = &bcm_qspi_no_rev_data,
},
{
.compatible = "brcm,spi-bcm7429-qspi",
.data = &bcm_qspi_no_rev_data,
},
{
.compatible = "brcm,spi-bcm7435-qspi",
.data = &bcm_qspi_no_rev_data,
},
{
.compatible = "brcm,spi-bcm-qspi",
.data = &bcm_qspi_rev_data,
},
{
.compatible = "brcm,spi-bcm7216-qspi",
.data = &bcm_qspi_spcr3_data,
},
{
.compatible = "brcm,spi-bcm7278-qspi",
.data = &bcm_qspi_spcr3_data,
},
{}, {},
}; };
MODULE_DEVICE_TABLE(of, bcm_qspi_of_match); MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
@ -1199,12 +1312,15 @@ MODULE_DEVICE_TABLE(of, bcm_qspi_of_match);
int bcm_qspi_probe(struct platform_device *pdev, int bcm_qspi_probe(struct platform_device *pdev,
struct bcm_qspi_soc_intc *soc_intc) struct bcm_qspi_soc_intc *soc_intc)
{ {
const struct of_device_id *of_id = NULL;
const struct bcm_qspi_data *data;
struct device *dev = &pdev->dev; struct device *dev = &pdev->dev;
struct bcm_qspi *qspi; struct bcm_qspi *qspi;
struct spi_master *master; struct spi_master *master;
struct resource *res; struct resource *res;
int irq, ret = 0, num_ints = 0; int irq, ret = 0, num_ints = 0;
u32 val; u32 val;
u32 rev = 0;
const char *name = NULL; const char *name = NULL;
int num_irqs = ARRAY_SIZE(qspi_irq_tab); int num_irqs = ARRAY_SIZE(qspi_irq_tab);
@ -1212,9 +1328,12 @@ int bcm_qspi_probe(struct platform_device *pdev,
if (!dev->of_node) if (!dev->of_node)
return -ENODEV; return -ENODEV;
if (!of_match_node(bcm_qspi_of_match, dev->of_node)) of_id = of_match_node(bcm_qspi_of_match, dev->of_node);
if (!of_id)
return -ENODEV; return -ENODEV;
data = of_id->data;
master = spi_alloc_master(dev, sizeof(struct bcm_qspi)); master = spi_alloc_master(dev, sizeof(struct bcm_qspi));
if (!master) { if (!master) {
dev_err(dev, "error allocating spi_master\n"); dev_err(dev, "error allocating spi_master\n");
@ -1222,6 +1341,11 @@ int bcm_qspi_probe(struct platform_device *pdev,
} }
qspi = spi_master_get_devdata(master); qspi = spi_master_get_devdata(master);
qspi->clk = devm_clk_get_optional(&pdev->dev, NULL);
if (IS_ERR(qspi->clk))
return PTR_ERR(qspi->clk);
qspi->pdev = pdev; qspi->pdev = pdev;
qspi->trans_pos.trans = NULL; qspi->trans_pos.trans = NULL;
qspi->trans_pos.byte = 0; qspi->trans_pos.byte = 0;
@ -1335,13 +1459,6 @@ int bcm_qspi_probe(struct platform_device *pdev,
qspi->soc_intc = NULL; qspi->soc_intc = NULL;
} }
qspi->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(qspi->clk)) {
dev_warn(dev, "unable to get clock\n");
ret = PTR_ERR(qspi->clk);
goto qspi_probe_err;
}
ret = clk_prepare_enable(qspi->clk); ret = clk_prepare_enable(qspi->clk);
if (ret) { if (ret) {
dev_err(dev, "failed to prepare clock\n"); dev_err(dev, "failed to prepare clock\n");
@ -1349,7 +1466,19 @@ int bcm_qspi_probe(struct platform_device *pdev,
} }
qspi->base_clk = clk_get_rate(qspi->clk); qspi->base_clk = clk_get_rate(qspi->clk);
qspi->max_speed_hz = qspi->base_clk / (QSPI_SPBR_MIN * 2);
if (data->has_mspi_rev) {
rev = bcm_qspi_read(qspi, MSPI, MSPI_REV);
/* some older revs do not have a MSPI_REV register */
if ((rev & 0xff) == 0xff)
rev = 0;
}
qspi->mspi_maj_rev = (rev >> 4) & 0xf;
qspi->mspi_min_rev = rev & 0xf;
qspi->mspi_spcr3_sysclk = data->has_spcr3_sysclk;
qspi->max_speed_hz = qspi->base_clk / (bcm_qspi_spbr_min(qspi) * 2);
bcm_qspi_hw_init(qspi); bcm_qspi_hw_init(qspi);
init_completion(&qspi->mspi_done); init_completion(&qspi->mspi_done);
@ -1406,7 +1535,7 @@ static int __maybe_unused bcm_qspi_suspend(struct device *dev)
bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL); bcm_qspi_read(qspi, BSPI, BSPI_STRAP_OVERRIDE_CTRL);
spi_master_suspend(qspi->master); spi_master_suspend(qspi->master);
clk_disable(qspi->clk); clk_disable_unprepare(qspi->clk);
bcm_qspi_hw_uninit(qspi); bcm_qspi_hw_uninit(qspi);
return 0; return 0;
@ -1424,7 +1553,7 @@ static int __maybe_unused bcm_qspi_resume(struct device *dev)
qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE, qspi->soc_intc->bcm_qspi_int_set(qspi->soc_intc, MSPI_DONE,
true); true);
ret = clk_enable(qspi->clk); ret = clk_prepare_enable(qspi->clk);
if (!ret) if (!ret)
spi_master_resume(qspi->master); spi_master_resume(qspi->master);

View File

@ -191,12 +191,12 @@ static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
} }
#endif /* CONFIG_DEBUG_FS */ #endif /* CONFIG_DEBUG_FS */
static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned reg) static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
{ {
return readl(bs->regs + reg); return readl(bs->regs + reg);
} }
static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned reg, u32 val) static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
{ {
writel(val, bs->regs + reg); writel(val, bs->regs + reg);
} }
@ -940,6 +940,7 @@ static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) { if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
dev_err(dev, "cannot map zero page - not using DMA mode\n"); dev_err(dev, "cannot map zero page - not using DMA mode\n");
bs->fill_tx_addr = 0; bs->fill_tx_addr = 0;
ret = -ENOMEM;
goto err_release; goto err_release;
} }
@ -949,6 +950,7 @@ static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
DMA_MEM_TO_DEV, 0); DMA_MEM_TO_DEV, 0);
if (!bs->fill_tx_desc) { if (!bs->fill_tx_desc) {
dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n"); dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
ret = -ENOMEM;
goto err_release; goto err_release;
} }
@ -979,6 +981,7 @@ static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
if (dma_mapping_error(ctlr->dma_rx->device->dev, bs->clear_rx_addr)) { if (dma_mapping_error(ctlr->dma_rx->device->dev, bs->clear_rx_addr)) {
dev_err(dev, "cannot map clear_rx_cs - not using DMA mode\n"); dev_err(dev, "cannot map clear_rx_cs - not using DMA mode\n");
bs->clear_rx_addr = 0; bs->clear_rx_addr = 0;
ret = -ENOMEM;
goto err_release; goto err_release;
} }
@ -989,6 +992,7 @@ static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
DMA_MEM_TO_DEV, 0); DMA_MEM_TO_DEV, 0);
if (!bs->clear_rx_desc[i]) { if (!bs->clear_rx_desc[i]) {
dev_err(dev, "cannot prepare clear_rx_desc - not using DMA mode\n"); dev_err(dev, "cannot prepare clear_rx_desc - not using DMA mode\n");
ret = -ENOMEM;
goto err_release; goto err_release;
} }
@ -1347,7 +1351,7 @@ static int bcm2835_spi_probe(struct platform_device *pdev)
goto out_dma_release; goto out_dma_release;
} }
err = devm_spi_register_controller(&pdev->dev, ctlr); err = spi_register_controller(ctlr);
if (err) { if (err) {
dev_err(&pdev->dev, "could not register SPI controller: %d\n", dev_err(&pdev->dev, "could not register SPI controller: %d\n",
err); err);
@ -1374,17 +1378,28 @@ static int bcm2835_spi_remove(struct platform_device *pdev)
bcm2835_debugfs_remove(bs); bcm2835_debugfs_remove(bs);
spi_unregister_controller(ctlr);
bcm2835_dma_release(ctlr, bs);
/* Clear FIFOs, and disable the HW block */ /* Clear FIFOs, and disable the HW block */
bcm2835_wr(bs, BCM2835_SPI_CS, bcm2835_wr(bs, BCM2835_SPI_CS,
BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX); BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
clk_disable_unprepare(bs->clk); clk_disable_unprepare(bs->clk);
bcm2835_dma_release(ctlr, bs);
return 0; return 0;
} }
static void bcm2835_spi_shutdown(struct platform_device *pdev)
{
int ret;
ret = bcm2835_spi_remove(pdev);
if (ret)
dev_err(&pdev->dev, "failed to shutdown\n");
}
static const struct of_device_id bcm2835_spi_match[] = { static const struct of_device_id bcm2835_spi_match[] = {
{ .compatible = "brcm,bcm2835-spi", }, { .compatible = "brcm,bcm2835-spi", },
{} {}
@ -1398,6 +1413,7 @@ static struct platform_driver bcm2835_spi_driver = {
}, },
.probe = bcm2835_spi_probe, .probe = bcm2835_spi_probe,
.remove = bcm2835_spi_remove, .remove = bcm2835_spi_remove,
.shutdown = bcm2835_spi_shutdown,
}; };
module_platform_driver(bcm2835_spi_driver); module_platform_driver(bcm2835_spi_driver);

View File

@ -569,7 +569,7 @@ static int bcm2835aux_spi_probe(struct platform_device *pdev)
goto out_clk_disable; goto out_clk_disable;
} }
err = devm_spi_register_master(&pdev->dev, master); err = spi_register_master(master);
if (err) { if (err) {
dev_err(&pdev->dev, "could not register SPI master: %d\n", err); dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
goto out_clk_disable; goto out_clk_disable;
@ -593,6 +593,8 @@ static int bcm2835aux_spi_remove(struct platform_device *pdev)
bcm2835aux_debugfs_remove(bs); bcm2835aux_debugfs_remove(bs);
spi_unregister_master(master);
bcm2835aux_spi_reset_hw(bs); bcm2835aux_spi_reset_hw(bs);
/* disable the HW block by releasing the clock */ /* disable the HW block by releasing the clock */

View File

@ -24,74 +24,34 @@ struct chip_data {
u8 tmode; /* TR/TO/RO/EEPROM */ u8 tmode; /* TR/TO/RO/EEPROM */
u8 type; /* SPI/SSP/MicroWire */ u8 type; /* SPI/SSP/MicroWire */
u8 poll_mode; /* 1 means use poll mode */
u16 clk_div; /* baud rate divider */ u16 clk_div; /* baud rate divider */
u32 speed_hz; /* baud rate */ u32 speed_hz; /* baud rate */
void (*cs_control)(u32 command);
}; };
#ifdef CONFIG_DEBUG_FS #ifdef CONFIG_DEBUG_FS
#define SPI_REGS_BUFSIZE 1024
static ssize_t dw_spi_show_regs(struct file *file, char __user *user_buf,
size_t count, loff_t *ppos)
{
struct dw_spi *dws = file->private_data;
char *buf;
u32 len = 0;
ssize_t ret;
buf = kzalloc(SPI_REGS_BUFSIZE, GFP_KERNEL); #define DW_SPI_DBGFS_REG(_name, _off) \
if (!buf) { \
return 0; .name = _name, \
.offset = _off, \
len += scnprintf(buf + len, SPI_REGS_BUFSIZE - len,
"%s registers:\n", dev_name(&dws->master->dev));
len += scnprintf(buf + len, SPI_REGS_BUFSIZE - len,
"=================================\n");
len += scnprintf(buf + len, SPI_REGS_BUFSIZE - len,
"CTRL0: \t\t0x%08x\n", dw_readl(dws, DW_SPI_CTRL0));
len += scnprintf(buf + len, SPI_REGS_BUFSIZE - len,
"CTRL1: \t\t0x%08x\n", dw_readl(dws, DW_SPI_CTRL1));
len += scnprintf(buf + len, SPI_REGS_BUFSIZE - len,
"SSIENR: \t0x%08x\n", dw_readl(dws, DW_SPI_SSIENR));
len += scnprintf(buf + len, SPI_REGS_BUFSIZE - len,
"SER: \t\t0x%08x\n", dw_readl(dws, DW_SPI_SER));
len += scnprintf(buf + len, SPI_REGS_BUFSIZE - len,
"BAUDR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_BAUDR));
len += scnprintf(buf + len, SPI_REGS_BUFSIZE - len,
"TXFTLR: \t0x%08x\n", dw_readl(dws, DW_SPI_TXFLTR));
len += scnprintf(buf + len, SPI_REGS_BUFSIZE - len,
"RXFTLR: \t0x%08x\n", dw_readl(dws, DW_SPI_RXFLTR));
len += scnprintf(buf + len, SPI_REGS_BUFSIZE - len,
"TXFLR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_TXFLR));
len += scnprintf(buf + len, SPI_REGS_BUFSIZE - len,
"RXFLR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_RXFLR));
len += scnprintf(buf + len, SPI_REGS_BUFSIZE - len,
"SR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_SR));
len += scnprintf(buf + len, SPI_REGS_BUFSIZE - len,
"IMR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_IMR));
len += scnprintf(buf + len, SPI_REGS_BUFSIZE - len,
"ISR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_ISR));
len += scnprintf(buf + len, SPI_REGS_BUFSIZE - len,
"DMACR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_DMACR));
len += scnprintf(buf + len, SPI_REGS_BUFSIZE - len,
"DMATDLR: \t0x%08x\n", dw_readl(dws, DW_SPI_DMATDLR));
len += scnprintf(buf + len, SPI_REGS_BUFSIZE - len,
"DMARDLR: \t0x%08x\n", dw_readl(dws, DW_SPI_DMARDLR));
len += scnprintf(buf + len, SPI_REGS_BUFSIZE - len,
"=================================\n");
ret = simple_read_from_buffer(user_buf, count, ppos, buf, len);
kfree(buf);
return ret;
} }
static const struct file_operations dw_spi_regs_ops = { static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
.owner = THIS_MODULE, DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
.open = simple_open, DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
.read = dw_spi_show_regs, DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
.llseek = default_llseek, DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
}; };
static int dw_spi_debugfs_init(struct dw_spi *dws) static int dw_spi_debugfs_init(struct dw_spi *dws)
@ -103,8 +63,11 @@ static int dw_spi_debugfs_init(struct dw_spi *dws)
if (!dws->debugfs) if (!dws->debugfs)
return -ENOMEM; return -ENOMEM;
debugfs_create_file("registers", S_IFREG | S_IRUGO, dws->regset.regs = dw_spi_dbgfs_regs;
dws->debugfs, (void *)dws, &dw_spi_regs_ops); dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
dws->regset.base = dws->regs;
debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);
return 0; return 0;
} }
@ -127,13 +90,16 @@ static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
void dw_spi_set_cs(struct spi_device *spi, bool enable) void dw_spi_set_cs(struct spi_device *spi, bool enable)
{ {
struct dw_spi *dws = spi_controller_get_devdata(spi->controller); struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
struct chip_data *chip = spi_get_ctldata(spi); bool cs_high = !!(spi->mode & SPI_CS_HIGH);
/* Chip select logic is inverted from spi_set_cs() */ /*
if (chip && chip->cs_control) * DW SPI controller demands any native CS being set in order to
chip->cs_control(!enable); * proceed with data transfer. So in order to activate the SPI
* communications we must set a corresponding bit in the Slave
if (!enable) * Enable register no matter whether the SPI core is configured to
* support active-high or active-low CS level.
*/
if (cs_high == enable)
dw_writel(dws, DW_SPI_SER, BIT(spi->chip_select)); dw_writel(dws, DW_SPI_SER, BIT(spi->chip_select));
else if (dws->cs_override) else if (dws->cs_override)
dw_writel(dws, DW_SPI_SER, 0); dw_writel(dws, DW_SPI_SER, 0);
@ -265,17 +231,56 @@ static irqreturn_t dw_spi_irq(int irq, void *dev_id)
return dws->transfer_handler(dws); return dws->transfer_handler(dws);
} }
/* Must be called inside pump_transfers() */ /* Configure CTRLR0 for DW_apb_ssi */
static int poll_transfer(struct dw_spi *dws) u32 dw_spi_update_cr0(struct spi_controller *master, struct spi_device *spi,
struct spi_transfer *transfer)
{ {
do { struct chip_data *chip = spi_get_ctldata(spi);
dw_writer(dws); u32 cr0;
dw_reader(dws);
cpu_relax();
} while (dws->rx_end > dws->rx);
return 0; /* Default SPI mode is SCPOL = 0, SCPH = 0 */
cr0 = (transfer->bits_per_word - 1)
| (chip->type << SPI_FRF_OFFSET)
| ((((spi->mode & SPI_CPOL) ? 1 : 0) << SPI_SCOL_OFFSET) |
(((spi->mode & SPI_CPHA) ? 1 : 0) << SPI_SCPH_OFFSET) |
(((spi->mode & SPI_LOOP) ? 1 : 0) << SPI_SRL_OFFSET))
| (chip->tmode << SPI_TMOD_OFFSET);
return cr0;
} }
EXPORT_SYMBOL_GPL(dw_spi_update_cr0);
/* Configure CTRLR0 for DWC_ssi */
u32 dw_spi_update_cr0_v1_01a(struct spi_controller *master,
struct spi_device *spi,
struct spi_transfer *transfer)
{
struct chip_data *chip = spi_get_ctldata(spi);
u32 cr0;
/* CTRLR0[ 4: 0] Data Frame Size */
cr0 = (transfer->bits_per_word - 1);
/* CTRLR0[ 7: 6] Frame Format */
cr0 |= chip->type << DWC_SSI_CTRLR0_FRF_OFFSET;
/*
* SPI mode (SCPOL|SCPH)
* CTRLR0[ 8] Serial Clock Phase
* CTRLR0[ 9] Serial Clock Polarity
*/
cr0 |= ((spi->mode & SPI_CPOL) ? 1 : 0) << DWC_SSI_CTRLR0_SCPOL_OFFSET;
cr0 |= ((spi->mode & SPI_CPHA) ? 1 : 0) << DWC_SSI_CTRLR0_SCPH_OFFSET;
/* CTRLR0[11:10] Transfer Mode */
cr0 |= chip->tmode << DWC_SSI_CTRLR0_TMOD_OFFSET;
/* CTRLR0[13] Shift Register Loop */
cr0 |= ((spi->mode & SPI_LOOP) ? 1 : 0) << DWC_SSI_CTRLR0_SRL_OFFSET;
return cr0;
}
EXPORT_SYMBOL_GPL(dw_spi_update_cr0_v1_01a);
static int dw_spi_transfer_one(struct spi_controller *master, static int dw_spi_transfer_one(struct spi_controller *master,
struct spi_device *spi, struct spi_transfer *transfer) struct spi_device *spi, struct spi_transfer *transfer)
@ -313,34 +318,11 @@ static int dw_spi_transfer_one(struct spi_controller *master,
spi_set_clk(dws, chip->clk_div); spi_set_clk(dws, chip->clk_div);
} }
transfer->effective_speed_hz = dws->max_freq / chip->clk_div;
dws->n_bytes = DIV_ROUND_UP(transfer->bits_per_word, BITS_PER_BYTE); dws->n_bytes = DIV_ROUND_UP(transfer->bits_per_word, BITS_PER_BYTE);
dws->dma_width = DIV_ROUND_UP(transfer->bits_per_word, BITS_PER_BYTE);
/* Default SPI mode is SCPOL = 0, SCPH = 0 */ cr0 = dws->update_cr0(master, spi, transfer);
cr0 = (transfer->bits_per_word - 1) dw_writel(dws, DW_SPI_CTRLR0, cr0);
| (chip->type << SPI_FRF_OFFSET)
| ((((spi->mode & SPI_CPOL) ? 1 : 0) << SPI_SCOL_OFFSET) |
(((spi->mode & SPI_CPHA) ? 1 : 0) << SPI_SCPH_OFFSET) |
(((spi->mode & SPI_LOOP) ? 1 : 0) << SPI_SRL_OFFSET))
| (chip->tmode << SPI_TMOD_OFFSET);
/*
* Adjust transfer mode if necessary. Requires platform dependent
* chipselect mechanism.
*/
if (chip->cs_control) {
if (dws->rx && dws->tx)
chip->tmode = SPI_TMOD_TR;
else if (dws->rx)
chip->tmode = SPI_TMOD_RO;
else
chip->tmode = SPI_TMOD_TO;
cr0 &= ~SPI_TMOD_MASK;
cr0 |= (chip->tmode << SPI_TMOD_OFFSET);
}
dw_writel(dws, DW_SPI_CTRL0, cr0);
/* Check if current transfer is a DMA transaction */ /* Check if current transfer is a DMA transaction */
if (master->can_dma && master->can_dma(master, spi, transfer)) if (master->can_dma && master->can_dma(master, spi, transfer))
@ -359,9 +341,9 @@ static int dw_spi_transfer_one(struct spi_controller *master,
spi_enable_chip(dws, 1); spi_enable_chip(dws, 1);
return ret; return ret;
} }
} else if (!chip->poll_mode) { } else {
txlevel = min_t(u16, dws->fifo_len / 2, dws->len / dws->n_bytes); txlevel = min_t(u16, dws->fifo_len / 2, dws->len / dws->n_bytes);
dw_writel(dws, DW_SPI_TXFLTR, txlevel); dw_writel(dws, DW_SPI_TXFTLR, txlevel);
/* Set the interrupt mask */ /* Set the interrupt mask */
imask |= SPI_INT_TXEI | SPI_INT_TXOI | imask |= SPI_INT_TXEI | SPI_INT_TXOI |
@ -373,14 +355,8 @@ static int dw_spi_transfer_one(struct spi_controller *master,
spi_enable_chip(dws, 1); spi_enable_chip(dws, 1);
if (dws->dma_mapped) { if (dws->dma_mapped)
ret = dws->dma_ops->dma_transfer(dws, transfer); return dws->dma_ops->dma_transfer(dws, transfer);
if (ret < 0)
return ret;
}
if (chip->poll_mode)
return poll_transfer(dws);
return 1; return 1;
} }
@ -399,7 +375,6 @@ static void dw_spi_handle_err(struct spi_controller *master,
/* This may be called twice for each spi dev */ /* This may be called twice for each spi dev */
static int dw_spi_setup(struct spi_device *spi) static int dw_spi_setup(struct spi_device *spi)
{ {
struct dw_spi_chip *chip_info = NULL;
struct chip_data *chip; struct chip_data *chip;
/* Only alloc on first setup */ /* Only alloc on first setup */
@ -411,21 +386,6 @@ static int dw_spi_setup(struct spi_device *spi)
spi_set_ctldata(spi, chip); spi_set_ctldata(spi, chip);
} }
/*
* Protocol drivers may change the chip settings, so...
* if chip_info exists, use it
*/
chip_info = spi->controller_data;
/* chip_info doesn't always exist */
if (chip_info) {
if (chip_info->cs_control)
chip->cs_control = chip_info->cs_control;
chip->poll_mode = chip_info->poll_mode;
chip->type = chip_info->type;
}
chip->tmode = SPI_TMOD_TR; chip->tmode = SPI_TMOD_TR;
return 0; return 0;
@ -452,11 +412,11 @@ static void spi_hw_init(struct device *dev, struct dw_spi *dws)
u32 fifo; u32 fifo;
for (fifo = 1; fifo < 256; fifo++) { for (fifo = 1; fifo < 256; fifo++) {
dw_writel(dws, DW_SPI_TXFLTR, fifo); dw_writel(dws, DW_SPI_TXFTLR, fifo);
if (fifo != dw_readl(dws, DW_SPI_TXFLTR)) if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
break; break;
} }
dw_writel(dws, DW_SPI_TXFLTR, 0); dw_writel(dws, DW_SPI_TXFTLR, 0);
dws->fifo_len = (fifo == 1) ? 0 : fifo; dws->fifo_len = (fifo == 1) ? 0 : fifo;
dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len); dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
@ -481,7 +441,6 @@ int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
dws->master = master; dws->master = master;
dws->type = SSI_MOTO_SPI; dws->type = SSI_MOTO_SPI;
dws->dma_inited = 0;
dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR); dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
spin_lock_init(&dws->buf_lock); spin_lock_init(&dws->buf_lock);
@ -517,16 +476,16 @@ int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
spi_hw_init(dev, dws); spi_hw_init(dev, dws);
if (dws->dma_ops && dws->dma_ops->dma_init) { if (dws->dma_ops && dws->dma_ops->dma_init) {
ret = dws->dma_ops->dma_init(dws); ret = dws->dma_ops->dma_init(dev, dws);
if (ret) { if (ret) {
dev_warn(dev, "DMA init failed\n"); dev_warn(dev, "DMA init failed\n");
dws->dma_inited = 0;
} else { } else {
master->can_dma = dws->dma_ops->can_dma; master->can_dma = dws->dma_ops->can_dma;
master->flags |= SPI_CONTROLLER_MUST_TX;
} }
} }
ret = devm_spi_register_controller(dev, master); ret = spi_register_controller(master);
if (ret) { if (ret) {
dev_err(&master->dev, "problem registering spi master\n"); dev_err(&master->dev, "problem registering spi master\n");
goto err_dma_exit; goto err_dma_exit;
@ -550,6 +509,8 @@ void dw_spi_remove_host(struct dw_spi *dws)
{ {
dw_spi_debugfs_remove(dws); dw_spi_debugfs_remove(dws);
spi_unregister_controller(dws->master);
if (dws->dma_ops && dws->dma_ops->dma_exit) if (dws->dma_ops && dws->dma_ops->dma_exit)
dws->dma_ops->dma_exit(dws); dws->dma_ops->dma_exit(dws);

480
drivers/spi/spi-dw-dma.c Normal file
View File

@ -0,0 +1,480 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Special handling for DW DMA core
*
* Copyright (c) 2009, 2014 Intel Corporation.
*/
#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/irqreturn.h>
#include <linux/jiffies.h>
#include <linux/pci.h>
#include <linux/platform_data/dma-dw.h>
#include <linux/spi/spi.h>
#include <linux/types.h>
#include "spi-dw.h"
#define WAIT_RETRIES 5
#define RX_BUSY 0
#define RX_BURST_LEVEL 16
#define TX_BUSY 1
#define TX_BURST_LEVEL 16
static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
{
struct dw_dma_slave *s = param;
if (s->dma_dev != chan->device->dev)
return false;
chan->private = s;
return true;
}
static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
{
struct dma_slave_caps caps;
u32 max_burst, def_burst;
int ret;
def_burst = dws->fifo_len / 2;
ret = dma_get_slave_caps(dws->rxchan, &caps);
if (!ret && caps.max_burst)
max_burst = caps.max_burst;
else
max_burst = RX_BURST_LEVEL;
dws->rxburst = min(max_burst, def_burst);
ret = dma_get_slave_caps(dws->txchan, &caps);
if (!ret && caps.max_burst)
max_burst = caps.max_burst;
else
max_burst = TX_BURST_LEVEL;
dws->txburst = min(max_burst, def_burst);
}
static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
{
struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
struct pci_dev *dma_dev;
dma_cap_mask_t mask;
/*
* Get pci device for DMA controller, currently it could only
* be the DMA controller of Medfield
*/
dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
if (!dma_dev)
return -ENODEV;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
/* 1. Init rx channel */
rx->dma_dev = &dma_dev->dev;
dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
if (!dws->rxchan)
goto err_exit;
/* 2. Init tx channel */
tx->dma_dev = &dma_dev->dev;
dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
if (!dws->txchan)
goto free_rxchan;
dws->master->dma_rx = dws->rxchan;
dws->master->dma_tx = dws->txchan;
init_completion(&dws->dma_completion);
dw_spi_dma_maxburst_init(dws);
return 0;
free_rxchan:
dma_release_channel(dws->rxchan);
dws->rxchan = NULL;
err_exit:
return -EBUSY;
}
static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
{
dws->rxchan = dma_request_slave_channel(dev, "rx");
if (!dws->rxchan)
return -ENODEV;
dws->txchan = dma_request_slave_channel(dev, "tx");
if (!dws->txchan) {
dma_release_channel(dws->rxchan);
dws->rxchan = NULL;
return -ENODEV;
}
dws->master->dma_rx = dws->rxchan;
dws->master->dma_tx = dws->txchan;
init_completion(&dws->dma_completion);
dw_spi_dma_maxburst_init(dws);
return 0;
}
static void dw_spi_dma_exit(struct dw_spi *dws)
{
if (dws->txchan) {
dmaengine_terminate_sync(dws->txchan);
dma_release_channel(dws->txchan);
}
if (dws->rxchan) {
dmaengine_terminate_sync(dws->rxchan);
dma_release_channel(dws->rxchan);
}
dw_writel(dws, DW_SPI_DMACR, 0);
}
static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
{
u16 irq_status = dw_readl(dws, DW_SPI_ISR);
if (!irq_status)
return IRQ_NONE;
dw_readl(dws, DW_SPI_ICR);
spi_reset_chip(dws);
dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__);
dws->master->cur_msg->status = -EIO;
complete(&dws->dma_completion);
return IRQ_HANDLED;
}
static bool dw_spi_can_dma(struct spi_controller *master,
struct spi_device *spi, struct spi_transfer *xfer)
{
struct dw_spi *dws = spi_controller_get_devdata(master);
return xfer->len > dws->fifo_len;
}
static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
{
if (n_bytes == 1)
return DMA_SLAVE_BUSWIDTH_1_BYTE;
else if (n_bytes == 2)
return DMA_SLAVE_BUSWIDTH_2_BYTES;
return DMA_SLAVE_BUSWIDTH_UNDEFINED;
}
static int dw_spi_dma_wait(struct dw_spi *dws, struct spi_transfer *xfer)
{
unsigned long long ms;
ms = xfer->len * MSEC_PER_SEC * BITS_PER_BYTE;
do_div(ms, xfer->effective_speed_hz);
ms += ms + 200;
if (ms > UINT_MAX)
ms = UINT_MAX;
ms = wait_for_completion_timeout(&dws->dma_completion,
msecs_to_jiffies(ms));
if (ms == 0) {
dev_err(&dws->master->cur_msg->spi->dev,
"DMA transaction timed out\n");
return -ETIMEDOUT;
}
return 0;
}
static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
{
return !(dw_readl(dws, DW_SPI_SR) & SR_TF_EMPT);
}
static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
struct spi_transfer *xfer)
{
int retry = WAIT_RETRIES;
struct spi_delay delay;
u32 nents;
nents = dw_readl(dws, DW_SPI_TXFLR);
delay.unit = SPI_DELAY_UNIT_SCK;
delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
while (dw_spi_dma_tx_busy(dws) && retry--)
spi_delay_exec(&delay, xfer);
if (retry < 0) {
dev_err(&dws->master->dev, "Tx hanged up\n");
return -EIO;
}
return 0;
}
/*
* dws->dma_chan_busy is set before the dma transfer starts, callback for tx
* channel will clear a corresponding bit.
*/
static void dw_spi_dma_tx_done(void *arg)
{
struct dw_spi *dws = arg;
clear_bit(TX_BUSY, &dws->dma_chan_busy);
if (test_bit(RX_BUSY, &dws->dma_chan_busy))
return;
dw_writel(dws, DW_SPI_DMACR, 0);
complete(&dws->dma_completion);
}
static struct dma_async_tx_descriptor *
dw_spi_dma_prepare_tx(struct dw_spi *dws, struct spi_transfer *xfer)
{
struct dma_slave_config txconf;
struct dma_async_tx_descriptor *txdesc;
if (!xfer->tx_buf)
return NULL;
memset(&txconf, 0, sizeof(txconf));
txconf.direction = DMA_MEM_TO_DEV;
txconf.dst_addr = dws->dma_addr;
txconf.dst_maxburst = dws->txburst;
txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
txconf.device_fc = false;
dmaengine_slave_config(dws->txchan, &txconf);
txdesc = dmaengine_prep_slave_sg(dws->txchan,
xfer->tx_sg.sgl,
xfer->tx_sg.nents,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!txdesc)
return NULL;
txdesc->callback = dw_spi_dma_tx_done;
txdesc->callback_param = dws;
return txdesc;
}
static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
{
return !!(dw_readl(dws, DW_SPI_SR) & SR_RF_NOT_EMPT);
}
static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
{
int retry = WAIT_RETRIES;
struct spi_delay delay;
unsigned long ns, us;
u32 nents;
/*
* It's unlikely that DMA engine is still doing the data fetching, but
* if it's let's give it some reasonable time. The timeout calculation
* is based on the synchronous APB/SSI reference clock rate, on a
* number of data entries left in the Rx FIFO, times a number of clock
* periods normally needed for a single APB read/write transaction
* without PREADY signal utilized (which is true for the DW APB SSI
* controller).
*/
nents = dw_readl(dws, DW_SPI_RXFLR);
ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
if (ns <= NSEC_PER_USEC) {
delay.unit = SPI_DELAY_UNIT_NSECS;
delay.value = ns;
} else {
us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
delay.unit = SPI_DELAY_UNIT_USECS;
delay.value = clamp_val(us, 0, USHRT_MAX);
}
while (dw_spi_dma_rx_busy(dws) && retry--)
spi_delay_exec(&delay, NULL);
if (retry < 0) {
dev_err(&dws->master->dev, "Rx hanged up\n");
return -EIO;
}
return 0;
}
/*
* dws->dma_chan_busy is set before the dma transfer starts, callback for rx
* channel will clear a corresponding bit.
*/
static void dw_spi_dma_rx_done(void *arg)
{
struct dw_spi *dws = arg;
clear_bit(RX_BUSY, &dws->dma_chan_busy);
if (test_bit(TX_BUSY, &dws->dma_chan_busy))
return;
dw_writel(dws, DW_SPI_DMACR, 0);
complete(&dws->dma_completion);
}
static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws,
struct spi_transfer *xfer)
{
struct dma_slave_config rxconf;
struct dma_async_tx_descriptor *rxdesc;
if (!xfer->rx_buf)
return NULL;
memset(&rxconf, 0, sizeof(rxconf));
rxconf.direction = DMA_DEV_TO_MEM;
rxconf.src_addr = dws->dma_addr;
rxconf.src_maxburst = dws->rxburst;
rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
rxconf.device_fc = false;
dmaengine_slave_config(dws->rxchan, &rxconf);
rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
xfer->rx_sg.sgl,
xfer->rx_sg.nents,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!rxdesc)
return NULL;
rxdesc->callback = dw_spi_dma_rx_done;
rxdesc->callback_param = dws;
return rxdesc;
}
static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
{
u16 imr = 0, dma_ctrl = 0;
dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
dw_writel(dws, DW_SPI_DMATDLR, dws->fifo_len - dws->txburst);
if (xfer->tx_buf)
dma_ctrl |= SPI_DMA_TDMAE;
if (xfer->rx_buf)
dma_ctrl |= SPI_DMA_RDMAE;
dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
/* Set the interrupt mask */
if (xfer->tx_buf)
imr |= SPI_INT_TXOI;
if (xfer->rx_buf)
imr |= SPI_INT_RXUI | SPI_INT_RXOI;
spi_umask_intr(dws, imr);
reinit_completion(&dws->dma_completion);
dws->transfer_handler = dw_spi_dma_transfer_handler;
return 0;
}
static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
{
struct dma_async_tx_descriptor *txdesc, *rxdesc;
int ret;
/* Prepare the TX dma transfer */
txdesc = dw_spi_dma_prepare_tx(dws, xfer);
/* Prepare the RX dma transfer */
rxdesc = dw_spi_dma_prepare_rx(dws, xfer);
/* rx must be started before tx due to spi instinct */
if (rxdesc) {
set_bit(RX_BUSY, &dws->dma_chan_busy);
dmaengine_submit(rxdesc);
dma_async_issue_pending(dws->rxchan);
}
if (txdesc) {
set_bit(TX_BUSY, &dws->dma_chan_busy);
dmaengine_submit(txdesc);
dma_async_issue_pending(dws->txchan);
}
ret = dw_spi_dma_wait(dws, xfer);
if (ret)
return ret;
if (txdesc && dws->master->cur_msg->status == -EINPROGRESS) {
ret = dw_spi_dma_wait_tx_done(dws, xfer);
if (ret)
return ret;
}
if (rxdesc && dws->master->cur_msg->status == -EINPROGRESS)
ret = dw_spi_dma_wait_rx_done(dws);
return ret;
}
static void dw_spi_dma_stop(struct dw_spi *dws)
{
if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
dmaengine_terminate_sync(dws->txchan);
clear_bit(TX_BUSY, &dws->dma_chan_busy);
}
if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
dmaengine_terminate_sync(dws->rxchan);
clear_bit(RX_BUSY, &dws->dma_chan_busy);
}
dw_writel(dws, DW_SPI_DMACR, 0);
}
static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
.dma_init = dw_spi_dma_init_mfld,
.dma_exit = dw_spi_dma_exit,
.dma_setup = dw_spi_dma_setup,
.can_dma = dw_spi_can_dma,
.dma_transfer = dw_spi_dma_transfer,
.dma_stop = dw_spi_dma_stop,
};
void dw_spi_dma_setup_mfld(struct dw_spi *dws)
{
dws->dma_ops = &dw_spi_dma_mfld_ops;
}
EXPORT_SYMBOL_GPL(dw_spi_dma_setup_mfld);
static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
.dma_init = dw_spi_dma_init_generic,
.dma_exit = dw_spi_dma_exit,
.dma_setup = dw_spi_dma_setup,
.can_dma = dw_spi_can_dma,
.dma_transfer = dw_spi_dma_transfer,
.dma_stop = dw_spi_dma_stop,
};
void dw_spi_dma_setup_generic(struct dw_spi *dws)
{
dws->dma_ops = &dw_spi_dma_generic_ops;
}
EXPORT_SYMBOL_GPL(dw_spi_dma_setup_generic);

View File

@ -1,322 +0,0 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* Special handling for DW core on Intel MID platform
*
* Copyright (c) 2009, 2014 Intel Corporation.
*/
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/types.h>
#include "spi-dw.h"
#ifdef CONFIG_SPI_DW_MID_DMA
#include <linux/pci.h>
#include <linux/platform_data/dma-dw.h>
#define RX_BUSY 0
#define TX_BUSY 1
static struct dw_dma_slave mid_dma_tx = { .dst_id = 1 };
static struct dw_dma_slave mid_dma_rx = { .src_id = 0 };
static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param)
{
struct dw_dma_slave *s = param;
if (s->dma_dev != chan->device->dev)
return false;
chan->private = s;
return true;
}
static int mid_spi_dma_init(struct dw_spi *dws)
{
struct pci_dev *dma_dev;
struct dw_dma_slave *tx = dws->dma_tx;
struct dw_dma_slave *rx = dws->dma_rx;
dma_cap_mask_t mask;
/*
* Get pci device for DMA controller, currently it could only
* be the DMA controller of Medfield
*/
dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
if (!dma_dev)
return -ENODEV;
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
/* 1. Init rx channel */
rx->dma_dev = &dma_dev->dev;
dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, rx);
if (!dws->rxchan)
goto err_exit;
dws->master->dma_rx = dws->rxchan;
/* 2. Init tx channel */
tx->dma_dev = &dma_dev->dev;
dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, tx);
if (!dws->txchan)
goto free_rxchan;
dws->master->dma_tx = dws->txchan;
dws->dma_inited = 1;
return 0;
free_rxchan:
dma_release_channel(dws->rxchan);
err_exit:
return -EBUSY;
}
static void mid_spi_dma_exit(struct dw_spi *dws)
{
if (!dws->dma_inited)
return;
dmaengine_terminate_sync(dws->txchan);
dma_release_channel(dws->txchan);
dmaengine_terminate_sync(dws->rxchan);
dma_release_channel(dws->rxchan);
}
static irqreturn_t dma_transfer(struct dw_spi *dws)
{
u16 irq_status = dw_readl(dws, DW_SPI_ISR);
if (!irq_status)
return IRQ_NONE;
dw_readl(dws, DW_SPI_ICR);
spi_reset_chip(dws);
dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__);
dws->master->cur_msg->status = -EIO;
spi_finalize_current_transfer(dws->master);
return IRQ_HANDLED;
}
static bool mid_spi_can_dma(struct spi_controller *master,
struct spi_device *spi, struct spi_transfer *xfer)
{
struct dw_spi *dws = spi_controller_get_devdata(master);
if (!dws->dma_inited)
return false;
return xfer->len > dws->fifo_len;
}
static enum dma_slave_buswidth convert_dma_width(u32 dma_width) {
if (dma_width == 1)
return DMA_SLAVE_BUSWIDTH_1_BYTE;
else if (dma_width == 2)
return DMA_SLAVE_BUSWIDTH_2_BYTES;
return DMA_SLAVE_BUSWIDTH_UNDEFINED;
}
/*
* dws->dma_chan_busy is set before the dma transfer starts, callback for tx
* channel will clear a corresponding bit.
*/
static void dw_spi_dma_tx_done(void *arg)
{
struct dw_spi *dws = arg;
clear_bit(TX_BUSY, &dws->dma_chan_busy);
if (test_bit(RX_BUSY, &dws->dma_chan_busy))
return;
spi_finalize_current_transfer(dws->master);
}
static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws,
struct spi_transfer *xfer)
{
struct dma_slave_config txconf;
struct dma_async_tx_descriptor *txdesc;
if (!xfer->tx_buf)
return NULL;
txconf.direction = DMA_MEM_TO_DEV;
txconf.dst_addr = dws->dma_addr;
txconf.dst_maxburst = 16;
txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
txconf.dst_addr_width = convert_dma_width(dws->dma_width);
txconf.device_fc = false;
dmaengine_slave_config(dws->txchan, &txconf);
txdesc = dmaengine_prep_slave_sg(dws->txchan,
xfer->tx_sg.sgl,
xfer->tx_sg.nents,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!txdesc)
return NULL;
txdesc->callback = dw_spi_dma_tx_done;
txdesc->callback_param = dws;
return txdesc;
}
/*
* dws->dma_chan_busy is set before the dma transfer starts, callback for rx
* channel will clear a corresponding bit.
*/
static void dw_spi_dma_rx_done(void *arg)
{
struct dw_spi *dws = arg;
clear_bit(RX_BUSY, &dws->dma_chan_busy);
if (test_bit(TX_BUSY, &dws->dma_chan_busy))
return;
spi_finalize_current_transfer(dws->master);
}
static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws,
struct spi_transfer *xfer)
{
struct dma_slave_config rxconf;
struct dma_async_tx_descriptor *rxdesc;
if (!xfer->rx_buf)
return NULL;
rxconf.direction = DMA_DEV_TO_MEM;
rxconf.src_addr = dws->dma_addr;
rxconf.src_maxburst = 16;
rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
rxconf.src_addr_width = convert_dma_width(dws->dma_width);
rxconf.device_fc = false;
dmaengine_slave_config(dws->rxchan, &rxconf);
rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
xfer->rx_sg.sgl,
xfer->rx_sg.nents,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!rxdesc)
return NULL;
rxdesc->callback = dw_spi_dma_rx_done;
rxdesc->callback_param = dws;
return rxdesc;
}
static int mid_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
{
u16 dma_ctrl = 0;
dw_writel(dws, DW_SPI_DMARDLR, 0xf);
dw_writel(dws, DW_SPI_DMATDLR, 0x10);
if (xfer->tx_buf)
dma_ctrl |= SPI_DMA_TDMAE;
if (xfer->rx_buf)
dma_ctrl |= SPI_DMA_RDMAE;
dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
/* Set the interrupt mask */
spi_umask_intr(dws, SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI);
dws->transfer_handler = dma_transfer;
return 0;
}
static int mid_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
{
struct dma_async_tx_descriptor *txdesc, *rxdesc;
/* Prepare the TX dma transfer */
txdesc = dw_spi_dma_prepare_tx(dws, xfer);
/* Prepare the RX dma transfer */
rxdesc = dw_spi_dma_prepare_rx(dws, xfer);
/* rx must be started before tx due to spi instinct */
if (rxdesc) {
set_bit(RX_BUSY, &dws->dma_chan_busy);
dmaengine_submit(rxdesc);
dma_async_issue_pending(dws->rxchan);
}
if (txdesc) {
set_bit(TX_BUSY, &dws->dma_chan_busy);
dmaengine_submit(txdesc);
dma_async_issue_pending(dws->txchan);
}
return 0;
}
static void mid_spi_dma_stop(struct dw_spi *dws)
{
if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
dmaengine_terminate_sync(dws->txchan);
clear_bit(TX_BUSY, &dws->dma_chan_busy);
}
if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
dmaengine_terminate_sync(dws->rxchan);
clear_bit(RX_BUSY, &dws->dma_chan_busy);
}
}
static const struct dw_spi_dma_ops mid_dma_ops = {
.dma_init = mid_spi_dma_init,
.dma_exit = mid_spi_dma_exit,
.dma_setup = mid_spi_dma_setup,
.can_dma = mid_spi_can_dma,
.dma_transfer = mid_spi_dma_transfer,
.dma_stop = mid_spi_dma_stop,
};
#endif
/* Some specific info for SPI0 controller on Intel MID */
/* HW info for MRST Clk Control Unit, 32b reg per controller */
#define MRST_SPI_CLK_BASE 100000000 /* 100m */
#define MRST_CLK_SPI_REG 0xff11d86c
#define CLK_SPI_BDIV_OFFSET 0
#define CLK_SPI_BDIV_MASK 0x00000007
#define CLK_SPI_CDIV_OFFSET 9
#define CLK_SPI_CDIV_MASK 0x00000e00
#define CLK_SPI_DISABLE_OFFSET 8
int dw_spi_mid_init(struct dw_spi *dws)
{
void __iomem *clk_reg;
u32 clk_cdiv;
clk_reg = ioremap(MRST_CLK_SPI_REG, 16);
if (!clk_reg)
return -ENOMEM;
/* Get SPI controller operating freq info */
clk_cdiv = readl(clk_reg + dws->bus_num * sizeof(u32));
clk_cdiv &= CLK_SPI_CDIV_MASK;
clk_cdiv >>= CLK_SPI_CDIV_OFFSET;
dws->max_freq = MRST_SPI_CLK_BASE / (clk_cdiv + 1);
iounmap(clk_reg);
#ifdef CONFIG_SPI_DW_MID_DMA
dws->dma_tx = &mid_dma_tx;
dws->dma_rx = &mid_dma_rx;
dws->dma_ops = &mid_dma_ops;
#endif
return 0;
}

View File

@ -7,7 +7,6 @@
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/err.h> #include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/pm_runtime.h> #include <linux/pm_runtime.h>
#include <linux/slab.h> #include <linux/slab.h>
@ -20,6 +19,7 @@
#include <linux/acpi.h> #include <linux/acpi.h>
#include <linux/property.h> #include <linux/property.h>
#include <linux/regmap.h> #include <linux/regmap.h>
#include <linux/reset.h>
#include "spi-dw.h" #include "spi-dw.h"
@ -30,6 +30,7 @@ struct dw_spi_mmio {
struct clk *clk; struct clk *clk;
struct clk *pclk; struct clk *pclk;
void *priv; void *priv;
struct reset_control *rstc;
}; };
#define MSCC_CPU_SYSTEM_CTRL_GENERAL_CTRL 0x24 #define MSCC_CPU_SYSTEM_CTRL_GENERAL_CTRL 0x24
@ -44,6 +45,13 @@ struct dw_spi_mmio {
#define MSCC_SPI_MST_SW_MODE_SW_PIN_CTRL_MODE BIT(13) #define MSCC_SPI_MST_SW_MODE_SW_PIN_CTRL_MODE BIT(13)
#define MSCC_SPI_MST_SW_MODE_SW_SPI_CS(x) (x << 5) #define MSCC_SPI_MST_SW_MODE_SW_SPI_CS(x) (x << 5)
/*
* For Keem Bay, CTRLR0[31] is used to select controller mode.
* 0: SSI is slave
* 1: SSI is master
*/
#define KEEMBAY_CTRLR0_SSIC_IS_MST BIT(31)
struct dw_spi_mscc { struct dw_spi_mscc {
struct regmap *syscon; struct regmap *syscon;
void __iomem *spi_mst; void __iomem *spi_mst;
@ -106,6 +114,9 @@ static int dw_spi_mscc_init(struct platform_device *pdev,
dwsmmio->dws.set_cs = dw_spi_mscc_set_cs; dwsmmio->dws.set_cs = dw_spi_mscc_set_cs;
dwsmmio->priv = dwsmscc; dwsmmio->priv = dwsmscc;
/* Register hook to configure CTRLR0 */
dwsmmio->dws.update_cr0 = dw_spi_update_cr0;
return 0; return 0;
} }
@ -128,6 +139,49 @@ static int dw_spi_alpine_init(struct platform_device *pdev,
{ {
dwsmmio->dws.cs_override = 1; dwsmmio->dws.cs_override = 1;
/* Register hook to configure CTRLR0 */
dwsmmio->dws.update_cr0 = dw_spi_update_cr0;
return 0;
}
static int dw_spi_dw_apb_init(struct platform_device *pdev,
struct dw_spi_mmio *dwsmmio)
{
/* Register hook to configure CTRLR0 */
dwsmmio->dws.update_cr0 = dw_spi_update_cr0;
dw_spi_dma_setup_generic(&dwsmmio->dws);
return 0;
}
static int dw_spi_dwc_ssi_init(struct platform_device *pdev,
struct dw_spi_mmio *dwsmmio)
{
/* Register hook to configure CTRLR0 */
dwsmmio->dws.update_cr0 = dw_spi_update_cr0_v1_01a;
dw_spi_dma_setup_generic(&dwsmmio->dws);
return 0;
}
static u32 dw_spi_update_cr0_keembay(struct spi_controller *master,
struct spi_device *spi,
struct spi_transfer *transfer)
{
u32 cr0 = dw_spi_update_cr0_v1_01a(master, spi, transfer);
return cr0 | KEEMBAY_CTRLR0_SSIC_IS_MST;
}
static int dw_spi_keembay_init(struct platform_device *pdev,
struct dw_spi_mmio *dwsmmio)
{
/* Register hook to configure CTRLR0 */
dwsmmio->dws.update_cr0 = dw_spi_update_cr0_keembay;
return 0; return 0;
} }
@ -136,6 +190,7 @@ static int dw_spi_mmio_probe(struct platform_device *pdev)
int (*init_func)(struct platform_device *pdev, int (*init_func)(struct platform_device *pdev,
struct dw_spi_mmio *dwsmmio); struct dw_spi_mmio *dwsmmio);
struct dw_spi_mmio *dwsmmio; struct dw_spi_mmio *dwsmmio;
struct resource *mem;
struct dw_spi *dws; struct dw_spi *dws;
int ret; int ret;
int num_cs; int num_cs;
@ -148,11 +203,11 @@ static int dw_spi_mmio_probe(struct platform_device *pdev)
dws = &dwsmmio->dws; dws = &dwsmmio->dws;
/* Get basic io resource and map it */ /* Get basic io resource and map it */
dws->regs = devm_platform_ioremap_resource(pdev, 0); dws->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &mem);
if (IS_ERR(dws->regs)) { if (IS_ERR(dws->regs))
dev_err(&pdev->dev, "SPI region map failed\n");
return PTR_ERR(dws->regs); return PTR_ERR(dws->regs);
}
dws->paddr = mem->start;
dws->irq = platform_get_irq(pdev, 0); dws->irq = platform_get_irq(pdev, 0);
if (dws->irq < 0) if (dws->irq < 0)
@ -175,6 +230,14 @@ static int dw_spi_mmio_probe(struct platform_device *pdev)
if (ret) if (ret)
goto out_clk; goto out_clk;
/* find an optional reset controller */
dwsmmio->rstc = devm_reset_control_get_optional_exclusive(&pdev->dev, "spi");
if (IS_ERR(dwsmmio->rstc)) {
ret = PTR_ERR(dwsmmio->rstc);
goto out_clk;
}
reset_control_deassert(dwsmmio->rstc);
dws->bus_num = pdev->id; dws->bus_num = pdev->id;
dws->max_freq = clk_get_rate(dwsmmio->clk); dws->max_freq = clk_get_rate(dwsmmio->clk);
@ -208,6 +271,8 @@ out:
clk_disable_unprepare(dwsmmio->pclk); clk_disable_unprepare(dwsmmio->pclk);
out_clk: out_clk:
clk_disable_unprepare(dwsmmio->clk); clk_disable_unprepare(dwsmmio->clk);
reset_control_assert(dwsmmio->rstc);
return ret; return ret;
} }
@ -219,25 +284,30 @@ static int dw_spi_mmio_remove(struct platform_device *pdev)
pm_runtime_disable(&pdev->dev); pm_runtime_disable(&pdev->dev);
clk_disable_unprepare(dwsmmio->pclk); clk_disable_unprepare(dwsmmio->pclk);
clk_disable_unprepare(dwsmmio->clk); clk_disable_unprepare(dwsmmio->clk);
reset_control_assert(dwsmmio->rstc);
return 0; return 0;
} }
static const struct of_device_id dw_spi_mmio_of_match[] = { static const struct of_device_id dw_spi_mmio_of_match[] = {
{ .compatible = "snps,dw-apb-ssi", }, { .compatible = "snps,dw-apb-ssi", .data = dw_spi_dw_apb_init},
{ .compatible = "mscc,ocelot-spi", .data = dw_spi_mscc_ocelot_init}, { .compatible = "mscc,ocelot-spi", .data = dw_spi_mscc_ocelot_init},
{ .compatible = "mscc,jaguar2-spi", .data = dw_spi_mscc_jaguar2_init}, { .compatible = "mscc,jaguar2-spi", .data = dw_spi_mscc_jaguar2_init},
{ .compatible = "amazon,alpine-dw-apb-ssi", .data = dw_spi_alpine_init}, { .compatible = "amazon,alpine-dw-apb-ssi", .data = dw_spi_alpine_init},
{ .compatible = "renesas,rzn1-spi", }, { .compatible = "renesas,rzn1-spi", .data = dw_spi_dw_apb_init},
{ .compatible = "snps,dwc-ssi-1.01a", .data = dw_spi_dwc_ssi_init},
{ .compatible = "intel,keembay-ssi", .data = dw_spi_keembay_init},
{ /* end of table */} { /* end of table */}
}; };
MODULE_DEVICE_TABLE(of, dw_spi_mmio_of_match); MODULE_DEVICE_TABLE(of, dw_spi_mmio_of_match);
#ifdef CONFIG_ACPI
static const struct acpi_device_id dw_spi_mmio_acpi_match[] = { static const struct acpi_device_id dw_spi_mmio_acpi_match[] = {
{"HISI0173", 0}, {"HISI0173", (kernel_ulong_t)dw_spi_dw_apb_init},
{}, {},
}; };
MODULE_DEVICE_TABLE(acpi, dw_spi_mmio_acpi_match); MODULE_DEVICE_TABLE(acpi, dw_spi_mmio_acpi_match);
#endif
static struct platform_driver dw_spi_mmio_driver = { static struct platform_driver dw_spi_mmio_driver = {
.probe = dw_spi_mmio_probe, .probe = dw_spi_mmio_probe,

View File

@ -5,7 +5,6 @@
* Copyright (c) 2009, 2014 Intel Corporation. * Copyright (c) 2009, 2014 Intel Corporation.
*/ */
#include <linux/interrupt.h>
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/pm_runtime.h> #include <linux/pm_runtime.h>
#include <linux/slab.h> #include <linux/slab.h>
@ -16,6 +15,15 @@
#define DRIVER_NAME "dw_spi_pci" #define DRIVER_NAME "dw_spi_pci"
/* HW info for MRST Clk Control Unit, 32b reg per controller */
#define MRST_SPI_CLK_BASE 100000000 /* 100m */
#define MRST_CLK_SPI_REG 0xff11d86c
#define CLK_SPI_BDIV_OFFSET 0
#define CLK_SPI_BDIV_MASK 0x00000007
#define CLK_SPI_CDIV_OFFSET 9
#define CLK_SPI_CDIV_MASK 0x00000e00
#define CLK_SPI_DISABLE_OFFSET 8
struct spi_pci_desc { struct spi_pci_desc {
int (*setup)(struct dw_spi *); int (*setup)(struct dw_spi *);
u16 num_cs; u16 num_cs;
@ -23,19 +31,55 @@ struct spi_pci_desc {
u32 max_freq; u32 max_freq;
}; };
static int spi_mid_init(struct dw_spi *dws)
{
void __iomem *clk_reg;
u32 clk_cdiv;
clk_reg = ioremap(MRST_CLK_SPI_REG, 16);
if (!clk_reg)
return -ENOMEM;
/* Get SPI controller operating freq info */
clk_cdiv = readl(clk_reg + dws->bus_num * sizeof(u32));
clk_cdiv &= CLK_SPI_CDIV_MASK;
clk_cdiv >>= CLK_SPI_CDIV_OFFSET;
dws->max_freq = MRST_SPI_CLK_BASE / (clk_cdiv + 1);
iounmap(clk_reg);
/* Register hook to configure CTRLR0 */
dws->update_cr0 = dw_spi_update_cr0;
dw_spi_dma_setup_mfld(dws);
return 0;
}
static int spi_generic_init(struct dw_spi *dws)
{
/* Register hook to configure CTRLR0 */
dws->update_cr0 = dw_spi_update_cr0;
dw_spi_dma_setup_generic(dws);
return 0;
}
static struct spi_pci_desc spi_pci_mid_desc_1 = { static struct spi_pci_desc spi_pci_mid_desc_1 = {
.setup = dw_spi_mid_init, .setup = spi_mid_init,
.num_cs = 5, .num_cs = 5,
.bus_num = 0, .bus_num = 0,
}; };
static struct spi_pci_desc spi_pci_mid_desc_2 = { static struct spi_pci_desc spi_pci_mid_desc_2 = {
.setup = dw_spi_mid_init, .setup = spi_mid_init,
.num_cs = 2, .num_cs = 2,
.bus_num = 1, .bus_num = 1,
}; };
static struct spi_pci_desc spi_pci_ehl_desc = { static struct spi_pci_desc spi_pci_ehl_desc = {
.setup = spi_generic_init,
.num_cs = 2, .num_cs = 2,
.bus_num = -1, .bus_num = -1,
.max_freq = 100000000, .max_freq = 100000000,

View File

@ -2,18 +2,21 @@
#ifndef DW_SPI_HEADER_H #ifndef DW_SPI_HEADER_H
#define DW_SPI_HEADER_H #define DW_SPI_HEADER_H
#include <linux/completion.h>
#include <linux/debugfs.h>
#include <linux/irqreturn.h>
#include <linux/io.h> #include <linux/io.h>
#include <linux/scatterlist.h> #include <linux/scatterlist.h>
/* Register offsets */ /* Register offsets */
#define DW_SPI_CTRL0 0x00 #define DW_SPI_CTRLR0 0x00
#define DW_SPI_CTRL1 0x04 #define DW_SPI_CTRLR1 0x04
#define DW_SPI_SSIENR 0x08 #define DW_SPI_SSIENR 0x08
#define DW_SPI_MWCR 0x0c #define DW_SPI_MWCR 0x0c
#define DW_SPI_SER 0x10 #define DW_SPI_SER 0x10
#define DW_SPI_BAUDR 0x14 #define DW_SPI_BAUDR 0x14
#define DW_SPI_TXFLTR 0x18 #define DW_SPI_TXFTLR 0x18
#define DW_SPI_RXFLTR 0x1c #define DW_SPI_RXFTLR 0x1c
#define DW_SPI_TXFLR 0x20 #define DW_SPI_TXFLR 0x20
#define DW_SPI_RXFLR 0x24 #define DW_SPI_RXFLR 0x24
#define DW_SPI_SR 0x28 #define DW_SPI_SR 0x28
@ -57,6 +60,15 @@
#define SPI_SRL_OFFSET 11 #define SPI_SRL_OFFSET 11
#define SPI_CFS_OFFSET 12 #define SPI_CFS_OFFSET 12
/* Bit fields in CTRLR0 based on DWC_ssi_databook.pdf v1.01a */
#define DWC_SSI_CTRLR0_SRL_OFFSET 13
#define DWC_SSI_CTRLR0_TMOD_OFFSET 10
#define DWC_SSI_CTRLR0_TMOD_MASK GENMASK(11, 10)
#define DWC_SSI_CTRLR0_SCPOL_OFFSET 9
#define DWC_SSI_CTRLR0_SCPH_OFFSET 8
#define DWC_SSI_CTRLR0_FRF_OFFSET 6
#define DWC_SSI_CTRLR0_DFS_OFFSET 0
/* Bit fields in SR, 7 bits */ /* Bit fields in SR, 7 bits */
#define SR_MASK 0x7f /* cover 7 bits */ #define SR_MASK 0x7f /* cover 7 bits */
#define SR_BUSY (1 << 0) #define SR_BUSY (1 << 0)
@ -90,7 +102,7 @@ enum dw_ssi_type {
struct dw_spi; struct dw_spi;
struct dw_spi_dma_ops { struct dw_spi_dma_ops {
int (*dma_init)(struct dw_spi *dws); int (*dma_init)(struct device *dev, struct dw_spi *dws);
void (*dma_exit)(struct dw_spi *dws); void (*dma_exit)(struct dw_spi *dws);
int (*dma_setup)(struct dw_spi *dws, struct spi_transfer *xfer); int (*dma_setup)(struct dw_spi *dws, struct spi_transfer *xfer);
bool (*can_dma)(struct spi_controller *master, struct spi_device *spi, bool (*can_dma)(struct spi_controller *master, struct spi_device *spi,
@ -114,6 +126,8 @@ struct dw_spi {
u16 bus_num; u16 bus_num;
u16 num_cs; /* supported slave numbers */ u16 num_cs; /* supported slave numbers */
void (*set_cs)(struct spi_device *spi, bool enable); void (*set_cs)(struct spi_device *spi, bool enable);
u32 (*update_cr0)(struct spi_controller *master, struct spi_device *spi,
struct spi_transfer *transfer);
/* Current message transfer state info */ /* Current message transfer state info */
size_t len; size_t len;
@ -124,24 +138,22 @@ struct dw_spi {
void *rx_end; void *rx_end;
int dma_mapped; int dma_mapped;
u8 n_bytes; /* current is a 1/2 bytes op */ u8 n_bytes; /* current is a 1/2 bytes op */
u32 dma_width;
irqreturn_t (*transfer_handler)(struct dw_spi *dws); irqreturn_t (*transfer_handler)(struct dw_spi *dws);
u32 current_freq; /* frequency in hz */ u32 current_freq; /* frequency in hz */
/* DMA info */ /* DMA info */
int dma_inited;
struct dma_chan *txchan; struct dma_chan *txchan;
u32 txburst;
struct dma_chan *rxchan; struct dma_chan *rxchan;
u32 rxburst;
unsigned long dma_chan_busy; unsigned long dma_chan_busy;
dma_addr_t dma_addr; /* phy address of the Data register */ dma_addr_t dma_addr; /* phy address of the Data register */
const struct dw_spi_dma_ops *dma_ops; const struct dw_spi_dma_ops *dma_ops;
void *dma_tx; struct completion dma_completion;
void *dma_rx;
/* Bus interface info */
void *priv;
#ifdef CONFIG_DEBUG_FS #ifdef CONFIG_DEBUG_FS
struct dentry *debugfs; struct dentry *debugfs;
struct debugfs_regset32 regset;
#endif #endif
}; };
@ -235,24 +247,28 @@ static inline void spi_shutdown_chip(struct dw_spi *dws)
spi_set_clk(dws, 0); spi_set_clk(dws, 0);
} }
/*
* Each SPI slave device to work with dw_api controller should
* has such a structure claiming its working mode (poll or PIO/DMA),
* which can be save in the "controller_data" member of the
* struct spi_device.
*/
struct dw_spi_chip {
u8 poll_mode; /* 1 for controller polling mode */
u8 type; /* SPI/SSP/MicroWire */
void (*cs_control)(u32 command);
};
extern void dw_spi_set_cs(struct spi_device *spi, bool enable); extern void dw_spi_set_cs(struct spi_device *spi, bool enable);
extern int dw_spi_add_host(struct device *dev, struct dw_spi *dws); extern int dw_spi_add_host(struct device *dev, struct dw_spi *dws);
extern void dw_spi_remove_host(struct dw_spi *dws); extern void dw_spi_remove_host(struct dw_spi *dws);
extern int dw_spi_suspend_host(struct dw_spi *dws); extern int dw_spi_suspend_host(struct dw_spi *dws);
extern int dw_spi_resume_host(struct dw_spi *dws); extern int dw_spi_resume_host(struct dw_spi *dws);
extern u32 dw_spi_update_cr0(struct spi_controller *master,
struct spi_device *spi,
struct spi_transfer *transfer);
extern u32 dw_spi_update_cr0_v1_01a(struct spi_controller *master,
struct spi_device *spi,
struct spi_transfer *transfer);
#ifdef CONFIG_SPI_DW_DMA
extern void dw_spi_dma_setup_mfld(struct dw_spi *dws);
extern void dw_spi_dma_setup_generic(struct dw_spi *dws);
#else
static inline void dw_spi_dma_setup_mfld(struct dw_spi *dws) {}
static inline void dw_spi_dma_setup_generic(struct dw_spi *dws) {}
#endif /* !CONFIG_SPI_DW_DMA */
/* platform related setup */
extern int dw_spi_mid_init(struct dw_spi *dws); /* Intel MID platforms */
#endif /* DW_SPI_HEADER_H */ #endif /* DW_SPI_HEADER_H */

View File

@ -31,7 +31,8 @@
#include <linux/platform_data/spi-ep93xx.h> #include <linux/platform_data/spi-ep93xx.h>
#define SSPCR0 0x0000 #define SSPCR0 0x0000
#define SSPCR0_MODE_SHIFT 6 #define SSPCR0_SPO BIT(6)
#define SSPCR0_SPH BIT(7)
#define SSPCR0_SCR_SHIFT 8 #define SSPCR0_SCR_SHIFT 8
#define SSPCR1 0x0004 #define SSPCR1 0x0004
@ -159,7 +160,10 @@ static int ep93xx_spi_chip_setup(struct spi_master *master,
return err; return err;
cr0 = div_scr << SSPCR0_SCR_SHIFT; cr0 = div_scr << SSPCR0_SCR_SHIFT;
cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT; if (spi->mode & SPI_CPOL)
cr0 |= SSPCR0_SPO;
if (spi->mode & SPI_CPHA)
cr0 |= SSPCR0_SPH;
cr0 |= dss; cr0 |= dss;
dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n", dev_dbg(&master->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",

View File

@ -1,6 +1,7 @@
// SPDX-License-Identifier: GPL-2.0+ // SPDX-License-Identifier: GPL-2.0+
// //
// Copyright 2013 Freescale Semiconductor, Inc. // Copyright 2013 Freescale Semiconductor, Inc.
// Copyright 2020 NXP
// //
// Freescale DSPI driver // Freescale DSPI driver
// This file contains a driver for the Freescale DSPI // This file contains a driver for the Freescale DSPI
@ -26,6 +27,9 @@
#define SPI_MCR_CLR_TXF BIT(11) #define SPI_MCR_CLR_TXF BIT(11)
#define SPI_MCR_CLR_RXF BIT(10) #define SPI_MCR_CLR_RXF BIT(10)
#define SPI_MCR_XSPI BIT(3) #define SPI_MCR_XSPI BIT(3)
#define SPI_MCR_DIS_TXF BIT(13)
#define SPI_MCR_DIS_RXF BIT(12)
#define SPI_MCR_HALT BIT(0)
#define SPI_TCR 0x08 #define SPI_TCR 0x08
#define SPI_TCR_GET_TCNT(x) (((x) & GENMASK(31, 16)) >> 16) #define SPI_TCR_GET_TCNT(x) (((x) & GENMASK(31, 16)) >> 16)
@ -246,13 +250,33 @@ struct fsl_dspi {
static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata) static void dspi_native_host_to_dev(struct fsl_dspi *dspi, u32 *txdata)
{ {
memcpy(txdata, dspi->tx, dspi->oper_word_size); switch (dspi->oper_word_size) {
case 1:
*txdata = *(u8 *)dspi->tx;
break;
case 2:
*txdata = *(u16 *)dspi->tx;
break;
case 4:
*txdata = *(u32 *)dspi->tx;
break;
}
dspi->tx += dspi->oper_word_size; dspi->tx += dspi->oper_word_size;
} }
static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata) static void dspi_native_dev_to_host(struct fsl_dspi *dspi, u32 rxdata)
{ {
memcpy(dspi->rx, &rxdata, dspi->oper_word_size); switch (dspi->oper_word_size) {
case 1:
*(u8 *)dspi->rx = rxdata;
break;
case 2:
*(u16 *)dspi->rx = rxdata;
break;
case 4:
*(u32 *)dspi->rx = rxdata;
break;
}
dspi->rx += dspi->oper_word_size; dspi->rx += dspi->oper_word_size;
} }
@ -1417,6 +1441,24 @@ static int dspi_remove(struct platform_device *pdev)
return 0; return 0;
} }
static void dspi_shutdown(struct platform_device *pdev)
{
struct spi_controller *ctlr = platform_get_drvdata(pdev);
struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
/* Disable RX and TX */
regmap_update_bits(dspi->regmap, SPI_MCR,
SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF,
SPI_MCR_DIS_TXF | SPI_MCR_DIS_RXF);
/* Stop Running */
regmap_update_bits(dspi->regmap, SPI_MCR, SPI_MCR_HALT, SPI_MCR_HALT);
dspi_release_dma(dspi);
clk_disable_unprepare(dspi->clk);
spi_unregister_controller(dspi->ctlr);
}
static struct platform_driver fsl_dspi_driver = { static struct platform_driver fsl_dspi_driver = {
.driver.name = DRIVER_NAME, .driver.name = DRIVER_NAME,
.driver.of_match_table = fsl_dspi_dt_ids, .driver.of_match_table = fsl_dspi_dt_ids,
@ -1424,6 +1466,7 @@ static struct platform_driver fsl_dspi_driver = {
.driver.pm = &dspi_pm, .driver.pm = &dspi_pm,
.probe = dspi_probe, .probe = dspi_probe,
.remove = dspi_remove, .remove = dspi_remove,
.shutdown = dspi_shutdown,
}; };
module_platform_driver(fsl_dspi_driver); module_platform_driver(fsl_dspi_driver);

View File

@ -186,14 +186,13 @@ static bool fsl_lpspi_can_dma(struct spi_controller *controller,
bytes_per_word = fsl_lpspi_bytes_per_word(transfer->bits_per_word); bytes_per_word = fsl_lpspi_bytes_per_word(transfer->bits_per_word);
switch (bytes_per_word) switch (bytes_per_word) {
{ case 1:
case 1: case 2:
case 2: case 4:
case 4: break;
break; default:
default: return false;
return false;
} }
return true; return true;
@ -941,7 +940,7 @@ static int fsl_lpspi_probe(struct platform_device *pdev)
ret = pm_runtime_get_sync(fsl_lpspi->dev); ret = pm_runtime_get_sync(fsl_lpspi->dev);
if (ret < 0) { if (ret < 0) {
dev_err(fsl_lpspi->dev, "failed to enable clock\n"); dev_err(fsl_lpspi->dev, "failed to enable clock\n");
goto out_controller_put; goto out_pm_get;
} }
temp = readl(fsl_lpspi->base + IMX7ULP_PARAM); temp = readl(fsl_lpspi->base + IMX7ULP_PARAM);
@ -950,13 +949,15 @@ static int fsl_lpspi_probe(struct platform_device *pdev)
ret = fsl_lpspi_dma_init(&pdev->dev, fsl_lpspi, controller); ret = fsl_lpspi_dma_init(&pdev->dev, fsl_lpspi, controller);
if (ret == -EPROBE_DEFER) if (ret == -EPROBE_DEFER)
goto out_controller_put; goto out_pm_get;
if (ret < 0) if (ret < 0)
dev_err(&pdev->dev, "dma setup error %d, use pio\n", ret); dev_err(&pdev->dev, "dma setup error %d, use pio\n", ret);
return 0; return 0;
out_pm_get:
pm_runtime_put_noidle(fsl_lpspi->dev);
out_controller_put: out_controller_put:
spi_controller_put(controller); spi_controller_put(controller);

View File

@ -876,14 +876,15 @@ static int fsl_qspi_probe(struct platform_device *pdev)
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"QuadSPI-memory"); "QuadSPI-memory");
q->ahb_addr = devm_ioremap_resource(dev, res); q->memmap_phy = res->start;
if (IS_ERR(q->ahb_addr)) { /* Since there are 4 cs, map size required is 4 times ahb_buf_size */
ret = PTR_ERR(q->ahb_addr); q->ahb_addr = devm_ioremap(dev, q->memmap_phy,
(q->devtype_data->ahb_buf_size * 4));
if (!q->ahb_addr) {
ret = -ENOMEM;
goto err_put_ctrl; goto err_put_ctrl;
} }
q->memmap_phy = res->start;
/* find the clocks */ /* find the clocks */
q->clk_en = devm_clk_get(dev, "qspi_en"); q->clk_en = devm_clk_get(dev, "qspi_en");
if (IS_ERR(q->clk_en)) { if (IS_ERR(q->clk_en)) {

View File

@ -588,7 +588,7 @@ static void fsl_spi_grlib_probe(struct device *dev)
pdata->cs_control = fsl_spi_grlib_cs_control; pdata->cs_control = fsl_spi_grlib_cs_control;
} }
static struct spi_master * fsl_spi_probe(struct device *dev, static struct spi_master *fsl_spi_probe(struct device *dev,
struct resource *mem, unsigned int irq) struct resource *mem, unsigned int irq)
{ {
struct fsl_spi_platform_data *pdata = dev_get_platdata(dev); struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);

View File

@ -17,6 +17,11 @@
#define HISI_SFC_V3XX_VERSION (0x1f8) #define HISI_SFC_V3XX_VERSION (0x1f8)
#define HISI_SFC_V3XX_INT_STAT (0x120)
#define HISI_SFC_V3XX_INT_STAT_PP_ERR BIT(2)
#define HISI_SFC_V3XX_INT_STAT_ADDR_IACCES BIT(5)
#define HISI_SFC_V3XX_INT_CLR (0x12c)
#define HISI_SFC_V3XX_INT_CLR_CLEAR (0xff)
#define HISI_SFC_V3XX_CMD_CFG (0x300) #define HISI_SFC_V3XX_CMD_CFG (0x300)
#define HISI_SFC_V3XX_CMD_CFG_DUAL_IN_DUAL_OUT (1 << 17) #define HISI_SFC_V3XX_CMD_CFG_DUAL_IN_DUAL_OUT (1 << 17)
#define HISI_SFC_V3XX_CMD_CFG_DUAL_IO (2 << 17) #define HISI_SFC_V3XX_CMD_CFG_DUAL_IO (2 << 17)
@ -163,7 +168,7 @@ static int hisi_sfc_v3xx_generic_exec_op(struct hisi_sfc_v3xx_host *host,
u8 chip_select) u8 chip_select)
{ {
int ret, len = op->data.nbytes; int ret, len = op->data.nbytes;
u32 config = 0; u32 int_stat, config = 0;
if (op->addr.nbytes) if (op->addr.nbytes)
config |= HISI_SFC_V3XX_CMD_CFG_ADDR_EN_MSK; config |= HISI_SFC_V3XX_CMD_CFG_ADDR_EN_MSK;
@ -228,6 +233,25 @@ static int hisi_sfc_v3xx_generic_exec_op(struct hisi_sfc_v3xx_host *host,
if (ret) if (ret)
return ret; return ret;
/*
* The interrupt status register indicates whether an error occurs
* after per operation. Check it, and clear the interrupts for
* next time judgement.
*/
int_stat = readl(host->regbase + HISI_SFC_V3XX_INT_STAT);
writel(HISI_SFC_V3XX_INT_CLR_CLEAR,
host->regbase + HISI_SFC_V3XX_INT_CLR);
if (int_stat & HISI_SFC_V3XX_INT_STAT_ADDR_IACCES) {
dev_err(host->dev, "fail to access protected address\n");
return -EIO;
}
if (int_stat & HISI_SFC_V3XX_INT_STAT_PP_ERR) {
dev_err(host->dev, "page program operation failed\n");
return -EIO;
}
if (op->data.dir == SPI_MEM_DATA_IN) if (op->data.dir == SPI_MEM_DATA_IN)
hisi_sfc_v3xx_read_databuf(host, op->data.buf.in, len); hisi_sfc_v3xx_read_databuf(host, op->data.buf.in, len);

View File

@ -71,6 +71,7 @@ struct spi_imx_devtype_data {
void (*reset)(struct spi_imx_data *); void (*reset)(struct spi_imx_data *);
void (*setup_wml)(struct spi_imx_data *); void (*setup_wml)(struct spi_imx_data *);
void (*disable)(struct spi_imx_data *); void (*disable)(struct spi_imx_data *);
void (*disable_dma)(struct spi_imx_data *);
bool has_dmamode; bool has_dmamode;
bool has_slavemode; bool has_slavemode;
unsigned int fifo_size; unsigned int fifo_size;
@ -485,6 +486,11 @@ static void mx51_ecspi_trigger(struct spi_imx_data *spi_imx)
writel(reg, spi_imx->base + MX51_ECSPI_CTRL); writel(reg, spi_imx->base + MX51_ECSPI_CTRL);
} }
static void mx51_disable_dma(struct spi_imx_data *spi_imx)
{
writel(0, spi_imx->base + MX51_ECSPI_DMA);
}
static void mx51_ecspi_disable(struct spi_imx_data *spi_imx) static void mx51_ecspi_disable(struct spi_imx_data *spi_imx)
{ {
u32 ctrl; u32 ctrl;
@ -987,6 +993,7 @@ static struct spi_imx_devtype_data imx51_ecspi_devtype_data = {
.rx_available = mx51_ecspi_rx_available, .rx_available = mx51_ecspi_rx_available,
.reset = mx51_ecspi_reset, .reset = mx51_ecspi_reset,
.setup_wml = mx51_setup_wml, .setup_wml = mx51_setup_wml,
.disable_dma = mx51_disable_dma,
.fifo_size = 64, .fifo_size = 64,
.has_dmamode = true, .has_dmamode = true,
.dynamic_burst = true, .dynamic_burst = true,
@ -1001,6 +1008,7 @@ static struct spi_imx_devtype_data imx53_ecspi_devtype_data = {
.prepare_transfer = mx51_ecspi_prepare_transfer, .prepare_transfer = mx51_ecspi_prepare_transfer,
.trigger = mx51_ecspi_trigger, .trigger = mx51_ecspi_trigger,
.rx_available = mx51_ecspi_rx_available, .rx_available = mx51_ecspi_rx_available,
.disable_dma = mx51_disable_dma,
.reset = mx51_ecspi_reset, .reset = mx51_ecspi_reset,
.fifo_size = 64, .fifo_size = 64,
.has_dmamode = true, .has_dmamode = true,
@ -1385,6 +1393,7 @@ static int spi_imx_dma_transfer(struct spi_imx_data *spi_imx,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK); DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!desc_tx) { if (!desc_tx) {
dmaengine_terminate_all(master->dma_tx); dmaengine_terminate_all(master->dma_tx);
dmaengine_terminate_all(master->dma_rx);
return -EINVAL; return -EINVAL;
} }
@ -1498,6 +1507,7 @@ static int spi_imx_transfer(struct spi_device *spi,
struct spi_transfer *transfer) struct spi_transfer *transfer)
{ {
struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master); struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
int ret;
/* flush rxfifo before transfer */ /* flush rxfifo before transfer */
while (spi_imx->devtype_data->rx_available(spi_imx)) while (spi_imx->devtype_data->rx_available(spi_imx))
@ -1506,10 +1516,23 @@ static int spi_imx_transfer(struct spi_device *spi,
if (spi_imx->slave_mode) if (spi_imx->slave_mode)
return spi_imx_pio_transfer_slave(spi, transfer); return spi_imx_pio_transfer_slave(spi, transfer);
if (spi_imx->usedma) /*
return spi_imx_dma_transfer(spi_imx, transfer); * fallback PIO mode if dma setup error happen, for example sdma
else * firmware may not be updated as ERR009165 required.
return spi_imx_pio_transfer(spi, transfer); */
if (spi_imx->usedma) {
ret = spi_imx_dma_transfer(spi_imx, transfer);
if (ret != -EINVAL)
return ret;
spi_imx->devtype_data->disable_dma(spi_imx);
spi_imx->usedma = false;
spi_imx->dynamic_burst = spi_imx->devtype_data->dynamic_burst;
dev_dbg(&spi->dev, "Fallback to PIO mode\n");
}
return spi_imx_pio_transfer(spi, transfer);
} }
static int spi_imx_setup(struct spi_device *spi) static int spi_imx_setup(struct spi_device *spi)

View File

@ -108,15 +108,17 @@ static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
return 0; return 0;
case 2: case 2:
if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) || if ((tx &&
(!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD)))) (mode & (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL))) ||
(!tx &&
(mode & (SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL))))
return 0; return 0;
break; break;
case 4: case 4:
if ((tx && (mode & SPI_TX_QUAD)) || if ((tx && (mode & (SPI_TX_QUAD | SPI_TX_OCTAL))) ||
(!tx && (mode & SPI_RX_QUAD))) (!tx && (mode & (SPI_RX_QUAD | SPI_RX_OCTAL))))
return 0; return 0;
break; break;

View File

@ -391,7 +391,7 @@ static int mtk_nor_pp_unbuffered(struct mtk_nor *sp,
return mtk_nor_cmd_exec(sp, MTK_NOR_CMD_WRITE, 6 * BITS_PER_BYTE); return mtk_nor_cmd_exec(sp, MTK_NOR_CMD_WRITE, 6 * BITS_PER_BYTE);
} }
int mtk_nor_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) static int mtk_nor_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{ {
struct mtk_nor *sp = spi_controller_get_devdata(mem->spi->master); struct mtk_nor *sp = spi_controller_get_devdata(mem->spi->master);
int ret; int ret;

View File

@ -51,6 +51,10 @@ static int spi_mux_select(struct spi_device *spi)
struct spi_mux_priv *priv = spi_controller_get_devdata(spi->controller); struct spi_mux_priv *priv = spi_controller_get_devdata(spi->controller);
int ret; int ret;
ret = mux_control_select(priv->mux, spi->chip_select);
if (ret)
return ret;
if (priv->current_cs == spi->chip_select) if (priv->current_cs == spi->chip_select)
return 0; return 0;
@ -62,10 +66,6 @@ static int spi_mux_select(struct spi_device *spi)
priv->spi->mode = spi->mode; priv->spi->mode = spi->mode;
priv->spi->bits_per_word = spi->bits_per_word; priv->spi->bits_per_word = spi->bits_per_word;
ret = mux_control_select(priv->mux, spi->chip_select);
if (ret)
return ret;
priv->current_cs = spi->chip_select; priv->current_cs = spi->chip_select;
return 0; return 0;

View File

@ -17,10 +17,8 @@
#include <linux/of.h> #include <linux/of.h>
#include <linux/of_address.h> #include <linux/of_address.h>
#include <linux/of_device.h> #include <linux/of_device.h>
#include <linux/of_gpio.h>
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/sizes.h> #include <linux/sizes.h>
#include <linux/gpio.h>
#include <asm/unaligned.h> #include <asm/unaligned.h>
#define DRIVER_NAME "orion_spi" #define DRIVER_NAME "orion_spi"
@ -98,7 +96,6 @@ struct orion_spi {
struct clk *clk; struct clk *clk;
struct clk *axi_clk; struct clk *axi_clk;
const struct orion_spi_dev *devdata; const struct orion_spi_dev *devdata;
int unused_hw_gpio;
struct orion_child_options child[ORION_NUM_CHIPSELECTS]; struct orion_child_options child[ORION_NUM_CHIPSELECTS];
}; };
@ -325,20 +322,27 @@ orion_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
static void orion_spi_set_cs(struct spi_device *spi, bool enable) static void orion_spi_set_cs(struct spi_device *spi, bool enable)
{ {
struct orion_spi *orion_spi; struct orion_spi *orion_spi;
int cs;
orion_spi = spi_master_get_devdata(spi->master); orion_spi = spi_master_get_devdata(spi->master);
if (gpio_is_valid(spi->cs_gpio)) /*
cs = orion_spi->unused_hw_gpio; * If this line is using a GPIO to control chip select, this internal
else * .set_cs() function will still be called, so we clear any previous
cs = spi->chip_select; * chip select. The CS we activate will not have any elecrical effect,
* as it is handled by a GPIO, but that doesn't matter. What we need
* is to deassert the old chip select and assert some other chip select.
*/
orion_spi_clrbits(orion_spi, ORION_SPI_IF_CTRL_REG, ORION_SPI_CS_MASK); orion_spi_clrbits(orion_spi, ORION_SPI_IF_CTRL_REG, ORION_SPI_CS_MASK);
orion_spi_setbits(orion_spi, ORION_SPI_IF_CTRL_REG, orion_spi_setbits(orion_spi, ORION_SPI_IF_CTRL_REG,
ORION_SPI_CS(cs)); ORION_SPI_CS(spi->chip_select));
/* Chip select logic is inverted from spi_set_cs */ /*
* Chip select logic is inverted from spi_set_cs(). For lines using a
* GPIO to do chip select SPI_CS_HIGH is enforced and inversion happens
* in the GPIO library, but we don't care about that, because in those
* cases we are dealing with an unused native CS anyways so the polarity
* doesn't matter.
*/
if (!enable) if (!enable)
orion_spi_setbits(orion_spi, ORION_SPI_IF_CTRL_REG, 0x1); orion_spi_setbits(orion_spi, ORION_SPI_IF_CTRL_REG, 0x1);
else else
@ -503,9 +507,6 @@ static int orion_spi_transfer_one(struct spi_master *master,
static int orion_spi_setup(struct spi_device *spi) static int orion_spi_setup(struct spi_device *spi)
{ {
if (gpio_is_valid(spi->cs_gpio)) {
gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH));
}
return orion_spi_setup_transfer(spi, NULL); return orion_spi_setup_transfer(spi, NULL);
} }
@ -622,13 +623,13 @@ static int orion_spi_probe(struct platform_device *pdev)
master->setup = orion_spi_setup; master->setup = orion_spi_setup;
master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16); master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
master->auto_runtime_pm = true; master->auto_runtime_pm = true;
master->use_gpio_descriptors = true;
master->flags = SPI_MASTER_GPIO_SS; master->flags = SPI_MASTER_GPIO_SS;
platform_set_drvdata(pdev, master); platform_set_drvdata(pdev, master);
spi = spi_master_get_devdata(master); spi = spi_master_get_devdata(master);
spi->master = master; spi->master = master;
spi->unused_hw_gpio = -1;
of_id = of_match_device(orion_spi_of_match_table, &pdev->dev); of_id = of_match_device(orion_spi_of_match_table, &pdev->dev);
devdata = (of_id) ? of_id->data : &orion_spi_dev_data; devdata = (of_id) ? of_id->data : &orion_spi_dev_data;
@ -683,7 +684,6 @@ static int orion_spi_probe(struct platform_device *pdev)
for_each_available_child_of_node(pdev->dev.of_node, np) { for_each_available_child_of_node(pdev->dev.of_node, np) {
struct orion_direct_acc *dir_acc; struct orion_direct_acc *dir_acc;
u32 cs; u32 cs;
int cs_gpio;
/* Get chip-select number from the "reg" property */ /* Get chip-select number from the "reg" property */
status = of_property_read_u32(np, "reg", &cs); status = of_property_read_u32(np, "reg", &cs);
@ -694,44 +694,6 @@ static int orion_spi_probe(struct platform_device *pdev)
continue; continue;
} }
/*
* Initialize the CS GPIO:
* - properly request the actual GPIO signal
* - de-assert the logical signal so that all GPIO CS lines
* are inactive when probing for slaves
* - find an unused physical CS which will be driven for any
* slave which uses a CS GPIO
*/
cs_gpio = of_get_named_gpio(pdev->dev.of_node, "cs-gpios", cs);
if (cs_gpio > 0) {
char *gpio_name;
int cs_flags;
if (spi->unused_hw_gpio == -1) {
dev_info(&pdev->dev,
"Selected unused HW CS#%d for any GPIO CSes\n",
cs);
spi->unused_hw_gpio = cs;
}
gpio_name = devm_kasprintf(&pdev->dev, GFP_KERNEL,
"%s-CS%d", dev_name(&pdev->dev), cs);
if (!gpio_name) {
status = -ENOMEM;
goto out_rel_axi_clk;
}
cs_flags = of_property_read_bool(np, "spi-cs-high") ?
GPIOF_OUT_INIT_LOW : GPIOF_OUT_INIT_HIGH;
status = devm_gpio_request_one(&pdev->dev, cs_gpio,
cs_flags, gpio_name);
if (status) {
dev_err(&pdev->dev,
"Can't request GPIO for CS %d\n", cs);
goto out_rel_axi_clk;
}
}
/* /*
* Check if an address is configured for this SPI device. If * Check if an address is configured for this SPI device. If
* not, the MBus mapping via the 'ranges' property in the 'soc' * not, the MBus mapping via the 'ranges' property in the 'soc'

View File

@ -150,6 +150,7 @@ static const struct lpss_config lpss_platforms[] = {
.tx_threshold_hi = 48, .tx_threshold_hi = 48,
.cs_sel_shift = 8, .cs_sel_shift = 8,
.cs_sel_mask = 3 << 8, .cs_sel_mask = 3 << 8,
.cs_clk_stays_gated = true,
}, },
{ /* LPSS_CNL_SSP */ { /* LPSS_CNL_SSP */
.offset = 0x200, .offset = 0x200,
@ -1884,7 +1885,7 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
/* Register with the SPI framework */ /* Register with the SPI framework */
platform_set_drvdata(pdev, drv_data); platform_set_drvdata(pdev, drv_data);
status = devm_spi_register_controller(&pdev->dev, controller); status = spi_register_controller(controller);
if (status != 0) { if (status != 0) {
dev_err(&pdev->dev, "problem registering spi controller\n"); dev_err(&pdev->dev, "problem registering spi controller\n");
goto out_error_pm_runtime_enabled; goto out_error_pm_runtime_enabled;
@ -1893,7 +1894,6 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
return status; return status;
out_error_pm_runtime_enabled: out_error_pm_runtime_enabled:
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev); pm_runtime_disable(&pdev->dev);
out_error_clock_enabled: out_error_clock_enabled:
@ -1916,6 +1916,8 @@ static int pxa2xx_spi_remove(struct platform_device *pdev)
pm_runtime_get_sync(&pdev->dev); pm_runtime_get_sync(&pdev->dev);
spi_unregister_controller(drv_data->controller);
/* Disable the SSP at the peripheral and SOC level */ /* Disable the SSP at the peripheral and SOC level */
pxa2xx_spi_write(drv_data, SSCR0, 0); pxa2xx_spi_write(drv_data, SSCR0, 0);
clk_disable_unprepare(ssp->clk); clk_disable_unprepare(ssp->clk);

View File

@ -14,6 +14,7 @@
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/clk.h> #include <linux/clk.h>
#include <linux/spi/spi.h> #include <linux/spi/spi.h>
#include <linux/of.h>
#include <asm/mach-ath79/ar71xx_regs.h> #include <asm/mach-ath79/ar71xx_regs.h>
@ -150,6 +151,7 @@ static int rb4xx_spi_probe(struct platform_device *pdev)
if (IS_ERR(ahb_clk)) if (IS_ERR(ahb_clk))
return PTR_ERR(ahb_clk); return PTR_ERR(ahb_clk);
master->dev.of_node = pdev->dev.of_node;
master->bus_num = 0; master->bus_num = 0;
master->num_chipselect = 3; master->num_chipselect = 3;
master->mode_bits = SPI_TX_DUAL; master->mode_bits = SPI_TX_DUAL;
@ -158,6 +160,11 @@ static int rb4xx_spi_probe(struct platform_device *pdev)
master->transfer_one = rb4xx_transfer_one; master->transfer_one = rb4xx_transfer_one;
master->set_cs = rb4xx_set_cs; master->set_cs = rb4xx_set_cs;
rbspi = spi_master_get_devdata(master);
rbspi->base = spi_base;
rbspi->clk = ahb_clk;
platform_set_drvdata(pdev, rbspi);
err = devm_spi_register_master(&pdev->dev, master); err = devm_spi_register_master(&pdev->dev, master);
if (err) { if (err) {
dev_err(&pdev->dev, "failed to register SPI master\n"); dev_err(&pdev->dev, "failed to register SPI master\n");
@ -168,11 +175,6 @@ static int rb4xx_spi_probe(struct platform_device *pdev)
if (err) if (err)
return err; return err;
rbspi = spi_master_get_devdata(master);
rbspi->base = spi_base;
rbspi->clk = ahb_clk;
platform_set_drvdata(pdev, rbspi);
/* Enable SPI */ /* Enable SPI */
rb4xx_write(rbspi, AR71XX_SPI_REG_FS, AR71XX_SPI_FS_GPIO); rb4xx_write(rbspi, AR71XX_SPI_REG_FS, AR71XX_SPI_FS_GPIO);
@ -188,11 +190,18 @@ static int rb4xx_spi_remove(struct platform_device *pdev)
return 0; return 0;
} }
static const struct of_device_id rb4xx_spi_dt_match[] = {
{ .compatible = "mikrotik,rb4xx-spi" },
{ },
};
MODULE_DEVICE_TABLE(of, rb4xx_spi_dt_match);
static struct platform_driver rb4xx_spi_drv = { static struct platform_driver rb4xx_spi_drv = {
.probe = rb4xx_spi_probe, .probe = rb4xx_spi_probe,
.remove = rb4xx_spi_remove, .remove = rb4xx_spi_remove,
.driver = { .driver = {
.name = "rb4xx-spi", .name = "rb4xx-spi",
.of_match_table = of_match_ptr(rb4xx_spi_dt_match),
}, },
}; };

View File

@ -183,6 +183,8 @@ struct rockchip_spi {
u8 rsd; u8 rsd;
bool cs_asserted[ROCKCHIP_SPI_MAX_CS_NUM]; bool cs_asserted[ROCKCHIP_SPI_MAX_CS_NUM];
bool slave_abort;
}; };
static inline void spi_enable_chip(struct rockchip_spi *rs, bool enable) static inline void spi_enable_chip(struct rockchip_spi *rs, bool enable)
@ -219,8 +221,8 @@ static u32 get_fifo_len(struct rockchip_spi *rs)
static void rockchip_spi_set_cs(struct spi_device *spi, bool enable) static void rockchip_spi_set_cs(struct spi_device *spi, bool enable)
{ {
struct spi_master *master = spi->master; struct spi_controller *ctlr = spi->controller;
struct rockchip_spi *rs = spi_master_get_devdata(master); struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
bool cs_asserted = !enable; bool cs_asserted = !enable;
/* Return immediately for no-op */ /* Return immediately for no-op */
@ -244,10 +246,10 @@ static void rockchip_spi_set_cs(struct spi_device *spi, bool enable)
rs->cs_asserted[spi->chip_select] = cs_asserted; rs->cs_asserted[spi->chip_select] = cs_asserted;
} }
static void rockchip_spi_handle_err(struct spi_master *master, static void rockchip_spi_handle_err(struct spi_controller *ctlr,
struct spi_message *msg) struct spi_message *msg)
{ {
struct rockchip_spi *rs = spi_master_get_devdata(master); struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
/* stop running spi transfer /* stop running spi transfer
* this also flushes both rx and tx fifos * this also flushes both rx and tx fifos
@ -258,10 +260,10 @@ static void rockchip_spi_handle_err(struct spi_master *master,
writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR); writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
if (atomic_read(&rs->state) & TXDMA) if (atomic_read(&rs->state) & TXDMA)
dmaengine_terminate_async(master->dma_tx); dmaengine_terminate_async(ctlr->dma_tx);
if (atomic_read(&rs->state) & RXDMA) if (atomic_read(&rs->state) & RXDMA)
dmaengine_terminate_async(master->dma_rx); dmaengine_terminate_async(ctlr->dma_rx);
} }
static void rockchip_spi_pio_writer(struct rockchip_spi *rs) static void rockchip_spi_pio_writer(struct rockchip_spi *rs)
@ -319,8 +321,8 @@ static void rockchip_spi_pio_reader(struct rockchip_spi *rs)
static irqreturn_t rockchip_spi_isr(int irq, void *dev_id) static irqreturn_t rockchip_spi_isr(int irq, void *dev_id)
{ {
struct spi_master *master = dev_id; struct spi_controller *ctlr = dev_id;
struct rockchip_spi *rs = spi_master_get_devdata(master); struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
if (rs->tx_left) if (rs->tx_left)
rockchip_spi_pio_writer(rs); rockchip_spi_pio_writer(rs);
@ -329,7 +331,7 @@ static irqreturn_t rockchip_spi_isr(int irq, void *dev_id)
if (!rs->rx_left) { if (!rs->rx_left) {
spi_enable_chip(rs, false); spi_enable_chip(rs, false);
writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR); writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR);
spi_finalize_current_transfer(master); spi_finalize_current_transfer(ctlr);
} }
return IRQ_HANDLED; return IRQ_HANDLED;
@ -355,35 +357,35 @@ static int rockchip_spi_prepare_irq(struct rockchip_spi *rs,
static void rockchip_spi_dma_rxcb(void *data) static void rockchip_spi_dma_rxcb(void *data)
{ {
struct spi_master *master = data; struct spi_controller *ctlr = data;
struct rockchip_spi *rs = spi_master_get_devdata(master); struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
int state = atomic_fetch_andnot(RXDMA, &rs->state); int state = atomic_fetch_andnot(RXDMA, &rs->state);
if (state & TXDMA) if (state & TXDMA && !rs->slave_abort)
return; return;
spi_enable_chip(rs, false); spi_enable_chip(rs, false);
spi_finalize_current_transfer(master); spi_finalize_current_transfer(ctlr);
} }
static void rockchip_spi_dma_txcb(void *data) static void rockchip_spi_dma_txcb(void *data)
{ {
struct spi_master *master = data; struct spi_controller *ctlr = data;
struct rockchip_spi *rs = spi_master_get_devdata(master); struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
int state = atomic_fetch_andnot(TXDMA, &rs->state); int state = atomic_fetch_andnot(TXDMA, &rs->state);
if (state & RXDMA) if (state & RXDMA && !rs->slave_abort)
return; return;
/* Wait until the FIFO data completely. */ /* Wait until the FIFO data completely. */
wait_for_idle(rs); wait_for_idle(rs);
spi_enable_chip(rs, false); spi_enable_chip(rs, false);
spi_finalize_current_transfer(master); spi_finalize_current_transfer(ctlr);
} }
static int rockchip_spi_prepare_dma(struct rockchip_spi *rs, static int rockchip_spi_prepare_dma(struct rockchip_spi *rs,
struct spi_master *master, struct spi_transfer *xfer) struct spi_controller *ctlr, struct spi_transfer *xfer)
{ {
struct dma_async_tx_descriptor *rxdesc, *txdesc; struct dma_async_tx_descriptor *rxdesc, *txdesc;
@ -398,17 +400,17 @@ static int rockchip_spi_prepare_dma(struct rockchip_spi *rs,
.src_maxburst = 1, .src_maxburst = 1,
}; };
dmaengine_slave_config(master->dma_rx, &rxconf); dmaengine_slave_config(ctlr->dma_rx, &rxconf);
rxdesc = dmaengine_prep_slave_sg( rxdesc = dmaengine_prep_slave_sg(
master->dma_rx, ctlr->dma_rx,
xfer->rx_sg.sgl, xfer->rx_sg.nents, xfer->rx_sg.sgl, xfer->rx_sg.nents,
DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
if (!rxdesc) if (!rxdesc)
return -EINVAL; return -EINVAL;
rxdesc->callback = rockchip_spi_dma_rxcb; rxdesc->callback = rockchip_spi_dma_rxcb;
rxdesc->callback_param = master; rxdesc->callback_param = ctlr;
} }
txdesc = NULL; txdesc = NULL;
@ -420,27 +422,27 @@ static int rockchip_spi_prepare_dma(struct rockchip_spi *rs,
.dst_maxburst = rs->fifo_len / 4, .dst_maxburst = rs->fifo_len / 4,
}; };
dmaengine_slave_config(master->dma_tx, &txconf); dmaengine_slave_config(ctlr->dma_tx, &txconf);
txdesc = dmaengine_prep_slave_sg( txdesc = dmaengine_prep_slave_sg(
master->dma_tx, ctlr->dma_tx,
xfer->tx_sg.sgl, xfer->tx_sg.nents, xfer->tx_sg.sgl, xfer->tx_sg.nents,
DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT);
if (!txdesc) { if (!txdesc) {
if (rxdesc) if (rxdesc)
dmaengine_terminate_sync(master->dma_rx); dmaengine_terminate_sync(ctlr->dma_rx);
return -EINVAL; return -EINVAL;
} }
txdesc->callback = rockchip_spi_dma_txcb; txdesc->callback = rockchip_spi_dma_txcb;
txdesc->callback_param = master; txdesc->callback_param = ctlr;
} }
/* rx must be started before tx due to spi instinct */ /* rx must be started before tx due to spi instinct */
if (rxdesc) { if (rxdesc) {
atomic_or(RXDMA, &rs->state); atomic_or(RXDMA, &rs->state);
dmaengine_submit(rxdesc); dmaengine_submit(rxdesc);
dma_async_issue_pending(master->dma_rx); dma_async_issue_pending(ctlr->dma_rx);
} }
spi_enable_chip(rs, true); spi_enable_chip(rs, true);
@ -448,7 +450,7 @@ static int rockchip_spi_prepare_dma(struct rockchip_spi *rs,
if (txdesc) { if (txdesc) {
atomic_or(TXDMA, &rs->state); atomic_or(TXDMA, &rs->state);
dmaengine_submit(txdesc); dmaengine_submit(txdesc);
dma_async_issue_pending(master->dma_tx); dma_async_issue_pending(ctlr->dma_tx);
} }
/* 1 means the transfer is in progress */ /* 1 means the transfer is in progress */
@ -457,7 +459,7 @@ static int rockchip_spi_prepare_dma(struct rockchip_spi *rs,
static void rockchip_spi_config(struct rockchip_spi *rs, static void rockchip_spi_config(struct rockchip_spi *rs,
struct spi_device *spi, struct spi_transfer *xfer, struct spi_device *spi, struct spi_transfer *xfer,
bool use_dma) bool use_dma, bool slave_mode)
{ {
u32 cr0 = CR0_FRF_SPI << CR0_FRF_OFFSET u32 cr0 = CR0_FRF_SPI << CR0_FRF_OFFSET
| CR0_BHT_8BIT << CR0_BHT_OFFSET | CR0_BHT_8BIT << CR0_BHT_OFFSET
@ -466,6 +468,10 @@ static void rockchip_spi_config(struct rockchip_spi *rs,
u32 cr1; u32 cr1;
u32 dmacr = 0; u32 dmacr = 0;
if (slave_mode)
cr0 |= CR0_OPM_SLAVE << CR0_OPM_OFFSET;
rs->slave_abort = false;
cr0 |= rs->rsd << CR0_RSD_OFFSET; cr0 |= rs->rsd << CR0_RSD_OFFSET;
cr0 |= (spi->mode & 0x3U) << CR0_SCPH_OFFSET; cr0 |= (spi->mode & 0x3U) << CR0_SCPH_OFFSET;
if (spi->mode & SPI_LSB_FIRST) if (spi->mode & SPI_LSB_FIRST)
@ -493,7 +499,7 @@ static void rockchip_spi_config(struct rockchip_spi *rs,
break; break;
default: default:
/* we only whitelist 4, 8 and 16 bit words in /* we only whitelist 4, 8 and 16 bit words in
* master->bits_per_word_mask, so this shouldn't * ctlr->bits_per_word_mask, so this shouldn't
* happen * happen
*/ */
unreachable(); unreachable();
@ -535,12 +541,22 @@ static size_t rockchip_spi_max_transfer_size(struct spi_device *spi)
return ROCKCHIP_SPI_MAX_TRANLEN; return ROCKCHIP_SPI_MAX_TRANLEN;
} }
static int rockchip_spi_slave_abort(struct spi_controller *ctlr)
{
struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
rs->slave_abort = true;
complete(&ctlr->xfer_completion);
return 0;
}
static int rockchip_spi_transfer_one( static int rockchip_spi_transfer_one(
struct spi_master *master, struct spi_controller *ctlr,
struct spi_device *spi, struct spi_device *spi,
struct spi_transfer *xfer) struct spi_transfer *xfer)
{ {
struct rockchip_spi *rs = spi_master_get_devdata(master); struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
bool use_dma; bool use_dma;
WARN_ON(readl_relaxed(rs->regs + ROCKCHIP_SPI_SSIENR) && WARN_ON(readl_relaxed(rs->regs + ROCKCHIP_SPI_SSIENR) &&
@ -558,21 +574,21 @@ static int rockchip_spi_transfer_one(
rs->n_bytes = xfer->bits_per_word <= 8 ? 1 : 2; rs->n_bytes = xfer->bits_per_word <= 8 ? 1 : 2;
use_dma = master->can_dma ? master->can_dma(master, spi, xfer) : false; use_dma = ctlr->can_dma ? ctlr->can_dma(ctlr, spi, xfer) : false;
rockchip_spi_config(rs, spi, xfer, use_dma); rockchip_spi_config(rs, spi, xfer, use_dma, ctlr->slave);
if (use_dma) if (use_dma)
return rockchip_spi_prepare_dma(rs, master, xfer); return rockchip_spi_prepare_dma(rs, ctlr, xfer);
return rockchip_spi_prepare_irq(rs, xfer); return rockchip_spi_prepare_irq(rs, xfer);
} }
static bool rockchip_spi_can_dma(struct spi_master *master, static bool rockchip_spi_can_dma(struct spi_controller *ctlr,
struct spi_device *spi, struct spi_device *spi,
struct spi_transfer *xfer) struct spi_transfer *xfer)
{ {
struct rockchip_spi *rs = spi_master_get_devdata(master); struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
unsigned int bytes_per_word = xfer->bits_per_word <= 8 ? 1 : 2; unsigned int bytes_per_word = xfer->bits_per_word <= 8 ? 1 : 2;
/* if the numbor of spi words to transfer is less than the fifo /* if the numbor of spi words to transfer is less than the fifo
@ -586,44 +602,55 @@ static int rockchip_spi_probe(struct platform_device *pdev)
{ {
int ret; int ret;
struct rockchip_spi *rs; struct rockchip_spi *rs;
struct spi_master *master; struct spi_controller *ctlr;
struct resource *mem; struct resource *mem;
struct device_node *np = pdev->dev.of_node;
u32 rsd_nsecs; u32 rsd_nsecs;
bool slave_mode;
master = spi_alloc_master(&pdev->dev, sizeof(struct rockchip_spi)); slave_mode = of_property_read_bool(np, "spi-slave");
if (!master)
if (slave_mode)
ctlr = spi_alloc_slave(&pdev->dev,
sizeof(struct rockchip_spi));
else
ctlr = spi_alloc_master(&pdev->dev,
sizeof(struct rockchip_spi));
if (!ctlr)
return -ENOMEM; return -ENOMEM;
platform_set_drvdata(pdev, master); platform_set_drvdata(pdev, ctlr);
rs = spi_master_get_devdata(master); rs = spi_controller_get_devdata(ctlr);
ctlr->slave = slave_mode;
/* Get basic io resource and map it */ /* Get basic io resource and map it */
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
rs->regs = devm_ioremap_resource(&pdev->dev, mem); rs->regs = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(rs->regs)) { if (IS_ERR(rs->regs)) {
ret = PTR_ERR(rs->regs); ret = PTR_ERR(rs->regs);
goto err_put_master; goto err_put_ctlr;
} }
rs->apb_pclk = devm_clk_get(&pdev->dev, "apb_pclk"); rs->apb_pclk = devm_clk_get(&pdev->dev, "apb_pclk");
if (IS_ERR(rs->apb_pclk)) { if (IS_ERR(rs->apb_pclk)) {
dev_err(&pdev->dev, "Failed to get apb_pclk\n"); dev_err(&pdev->dev, "Failed to get apb_pclk\n");
ret = PTR_ERR(rs->apb_pclk); ret = PTR_ERR(rs->apb_pclk);
goto err_put_master; goto err_put_ctlr;
} }
rs->spiclk = devm_clk_get(&pdev->dev, "spiclk"); rs->spiclk = devm_clk_get(&pdev->dev, "spiclk");
if (IS_ERR(rs->spiclk)) { if (IS_ERR(rs->spiclk)) {
dev_err(&pdev->dev, "Failed to get spi_pclk\n"); dev_err(&pdev->dev, "Failed to get spi_pclk\n");
ret = PTR_ERR(rs->spiclk); ret = PTR_ERR(rs->spiclk);
goto err_put_master; goto err_put_ctlr;
} }
ret = clk_prepare_enable(rs->apb_pclk); ret = clk_prepare_enable(rs->apb_pclk);
if (ret < 0) { if (ret < 0) {
dev_err(&pdev->dev, "Failed to enable apb_pclk\n"); dev_err(&pdev->dev, "Failed to enable apb_pclk\n");
goto err_put_master; goto err_put_ctlr;
} }
ret = clk_prepare_enable(rs->spiclk); ret = clk_prepare_enable(rs->spiclk);
@ -639,7 +666,7 @@ static int rockchip_spi_probe(struct platform_device *pdev)
goto err_disable_spiclk; goto err_disable_spiclk;
ret = devm_request_threaded_irq(&pdev->dev, ret, rockchip_spi_isr, NULL, ret = devm_request_threaded_irq(&pdev->dev, ret, rockchip_spi_isr, NULL,
IRQF_ONESHOT, dev_name(&pdev->dev), master); IRQF_ONESHOT, dev_name(&pdev->dev), ctlr);
if (ret) if (ret)
goto err_disable_spiclk; goto err_disable_spiclk;
@ -673,78 +700,90 @@ static int rockchip_spi_probe(struct platform_device *pdev)
pm_runtime_set_active(&pdev->dev); pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev); pm_runtime_enable(&pdev->dev);
master->auto_runtime_pm = true; ctlr->auto_runtime_pm = true;
master->bus_num = pdev->id; ctlr->bus_num = pdev->id;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_LSB_FIRST; ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_LSB_FIRST;
master->num_chipselect = ROCKCHIP_SPI_MAX_CS_NUM; if (slave_mode) {
master->dev.of_node = pdev->dev.of_node; ctlr->mode_bits |= SPI_NO_CS;
master->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8) | SPI_BPW_MASK(4); ctlr->slave_abort = rockchip_spi_slave_abort;
master->min_speed_hz = rs->freq / BAUDR_SCKDV_MAX; } else {
master->max_speed_hz = min(rs->freq / BAUDR_SCKDV_MIN, MAX_SCLK_OUT); ctlr->flags = SPI_MASTER_GPIO_SS;
ctlr->max_native_cs = ROCKCHIP_SPI_MAX_CS_NUM;
/*
* rk spi0 has two native cs, spi1..5 one cs only
* if num-cs is missing in the dts, default to 1
*/
if (of_property_read_u16(np, "num-cs", &ctlr->num_chipselect))
ctlr->num_chipselect = 1;
ctlr->use_gpio_descriptors = true;
}
ctlr->dev.of_node = pdev->dev.of_node;
ctlr->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8) | SPI_BPW_MASK(4);
ctlr->min_speed_hz = rs->freq / BAUDR_SCKDV_MAX;
ctlr->max_speed_hz = min(rs->freq / BAUDR_SCKDV_MIN, MAX_SCLK_OUT);
master->set_cs = rockchip_spi_set_cs; ctlr->set_cs = rockchip_spi_set_cs;
master->transfer_one = rockchip_spi_transfer_one; ctlr->transfer_one = rockchip_spi_transfer_one;
master->max_transfer_size = rockchip_spi_max_transfer_size; ctlr->max_transfer_size = rockchip_spi_max_transfer_size;
master->handle_err = rockchip_spi_handle_err; ctlr->handle_err = rockchip_spi_handle_err;
master->flags = SPI_MASTER_GPIO_SS;
master->dma_tx = dma_request_chan(rs->dev, "tx"); ctlr->dma_tx = dma_request_chan(rs->dev, "tx");
if (IS_ERR(master->dma_tx)) { if (IS_ERR(ctlr->dma_tx)) {
/* Check tx to see if we need defer probing driver */ /* Check tx to see if we need defer probing driver */
if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) { if (PTR_ERR(ctlr->dma_tx) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER; ret = -EPROBE_DEFER;
goto err_disable_pm_runtime; goto err_disable_pm_runtime;
} }
dev_warn(rs->dev, "Failed to request TX DMA channel\n"); dev_warn(rs->dev, "Failed to request TX DMA channel\n");
master->dma_tx = NULL; ctlr->dma_tx = NULL;
} }
master->dma_rx = dma_request_chan(rs->dev, "rx"); ctlr->dma_rx = dma_request_chan(rs->dev, "rx");
if (IS_ERR(master->dma_rx)) { if (IS_ERR(ctlr->dma_rx)) {
if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) { if (PTR_ERR(ctlr->dma_rx) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER; ret = -EPROBE_DEFER;
goto err_free_dma_tx; goto err_free_dma_tx;
} }
dev_warn(rs->dev, "Failed to request RX DMA channel\n"); dev_warn(rs->dev, "Failed to request RX DMA channel\n");
master->dma_rx = NULL; ctlr->dma_rx = NULL;
} }
if (master->dma_tx && master->dma_rx) { if (ctlr->dma_tx && ctlr->dma_rx) {
rs->dma_addr_tx = mem->start + ROCKCHIP_SPI_TXDR; rs->dma_addr_tx = mem->start + ROCKCHIP_SPI_TXDR;
rs->dma_addr_rx = mem->start + ROCKCHIP_SPI_RXDR; rs->dma_addr_rx = mem->start + ROCKCHIP_SPI_RXDR;
master->can_dma = rockchip_spi_can_dma; ctlr->can_dma = rockchip_spi_can_dma;
} }
ret = devm_spi_register_master(&pdev->dev, master); ret = devm_spi_register_controller(&pdev->dev, ctlr);
if (ret < 0) { if (ret < 0) {
dev_err(&pdev->dev, "Failed to register master\n"); dev_err(&pdev->dev, "Failed to register controller\n");
goto err_free_dma_rx; goto err_free_dma_rx;
} }
return 0; return 0;
err_free_dma_rx: err_free_dma_rx:
if (master->dma_rx) if (ctlr->dma_rx)
dma_release_channel(master->dma_rx); dma_release_channel(ctlr->dma_rx);
err_free_dma_tx: err_free_dma_tx:
if (master->dma_tx) if (ctlr->dma_tx)
dma_release_channel(master->dma_tx); dma_release_channel(ctlr->dma_tx);
err_disable_pm_runtime: err_disable_pm_runtime:
pm_runtime_disable(&pdev->dev); pm_runtime_disable(&pdev->dev);
err_disable_spiclk: err_disable_spiclk:
clk_disable_unprepare(rs->spiclk); clk_disable_unprepare(rs->spiclk);
err_disable_apbclk: err_disable_apbclk:
clk_disable_unprepare(rs->apb_pclk); clk_disable_unprepare(rs->apb_pclk);
err_put_master: err_put_ctlr:
spi_master_put(master); spi_controller_put(ctlr);
return ret; return ret;
} }
static int rockchip_spi_remove(struct platform_device *pdev) static int rockchip_spi_remove(struct platform_device *pdev)
{ {
struct spi_master *master = spi_master_get(platform_get_drvdata(pdev)); struct spi_controller *ctlr = spi_controller_get(platform_get_drvdata(pdev));
struct rockchip_spi *rs = spi_master_get_devdata(master); struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
pm_runtime_get_sync(&pdev->dev); pm_runtime_get_sync(&pdev->dev);
@ -755,12 +794,12 @@ static int rockchip_spi_remove(struct platform_device *pdev)
pm_runtime_disable(&pdev->dev); pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev); pm_runtime_set_suspended(&pdev->dev);
if (master->dma_tx) if (ctlr->dma_tx)
dma_release_channel(master->dma_tx); dma_release_channel(ctlr->dma_tx);
if (master->dma_rx) if (ctlr->dma_rx)
dma_release_channel(master->dma_rx); dma_release_channel(ctlr->dma_rx);
spi_master_put(master); spi_controller_put(ctlr);
return 0; return 0;
} }
@ -769,9 +808,9 @@ static int rockchip_spi_remove(struct platform_device *pdev)
static int rockchip_spi_suspend(struct device *dev) static int rockchip_spi_suspend(struct device *dev)
{ {
int ret; int ret;
struct spi_master *master = dev_get_drvdata(dev); struct spi_controller *ctlr = dev_get_drvdata(dev);
ret = spi_master_suspend(master); ret = spi_controller_suspend(ctlr);
if (ret < 0) if (ret < 0)
return ret; return ret;
@ -787,8 +826,8 @@ static int rockchip_spi_suspend(struct device *dev)
static int rockchip_spi_resume(struct device *dev) static int rockchip_spi_resume(struct device *dev)
{ {
int ret; int ret;
struct spi_master *master = dev_get_drvdata(dev); struct spi_controller *ctlr = dev_get_drvdata(dev);
struct rockchip_spi *rs = spi_master_get_devdata(master); struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
pinctrl_pm_select_default_state(dev); pinctrl_pm_select_default_state(dev);
@ -796,7 +835,7 @@ static int rockchip_spi_resume(struct device *dev)
if (ret < 0) if (ret < 0)
return ret; return ret;
ret = spi_master_resume(master); ret = spi_controller_resume(ctlr);
if (ret < 0) { if (ret < 0) {
clk_disable_unprepare(rs->spiclk); clk_disable_unprepare(rs->spiclk);
clk_disable_unprepare(rs->apb_pclk); clk_disable_unprepare(rs->apb_pclk);
@ -809,8 +848,8 @@ static int rockchip_spi_resume(struct device *dev)
#ifdef CONFIG_PM #ifdef CONFIG_PM
static int rockchip_spi_runtime_suspend(struct device *dev) static int rockchip_spi_runtime_suspend(struct device *dev)
{ {
struct spi_master *master = dev_get_drvdata(dev); struct spi_controller *ctlr = dev_get_drvdata(dev);
struct rockchip_spi *rs = spi_master_get_devdata(master); struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
clk_disable_unprepare(rs->spiclk); clk_disable_unprepare(rs->spiclk);
clk_disable_unprepare(rs->apb_pclk); clk_disable_unprepare(rs->apb_pclk);
@ -821,8 +860,8 @@ static int rockchip_spi_runtime_suspend(struct device *dev)
static int rockchip_spi_runtime_resume(struct device *dev) static int rockchip_spi_runtime_resume(struct device *dev)
{ {
int ret; int ret;
struct spi_master *master = dev_get_drvdata(dev); struct spi_controller *ctlr = dev_get_drvdata(dev);
struct rockchip_spi *rs = spi_master_get_devdata(master); struct rockchip_spi *rs = spi_controller_get_devdata(ctlr);
ret = clk_prepare_enable(rs->apb_pclk); ret = clk_prepare_enable(rs->apb_pclk);
if (ret < 0) if (ret < 0)

View File

@ -345,6 +345,6 @@ static struct i2c_driver sc18is602_driver = {
module_i2c_driver(sc18is602_driver); module_i2c_driver(sc18is602_driver);
MODULE_DESCRIPTION("SC18IC602/603 SPI Master Driver"); MODULE_DESCRIPTION("SC18IS602/603 SPI Master Driver");
MODULE_AUTHOR("Guenter Roeck"); MODULE_AUTHOR("Guenter Roeck");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");

View File

@ -1398,7 +1398,7 @@ static int sh_msiof_spi_resume(struct device *dev)
static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend, static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
sh_msiof_spi_resume); sh_msiof_spi_resume);
#define DEV_PM_OPS &sh_msiof_spi_pm_ops #define DEV_PM_OPS (&sh_msiof_spi_pm_ops)
#else #else
#define DEV_PM_OPS NULL #define DEV_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */ #endif /* CONFIG_PM_SLEEP */

View File

@ -319,7 +319,7 @@ static int sprd_adi_transfer_one(struct spi_controller *ctlr,
static void sprd_adi_set_wdt_rst_mode(struct sprd_adi *sadi) static void sprd_adi_set_wdt_rst_mode(struct sprd_adi *sadi)
{ {
#ifdef CONFIG_SPRD_WATCHDOG #if IS_ENABLED(CONFIG_SPRD_WATCHDOG)
u32 val; u32 val;
/* Set default watchdog reboot mode */ /* Set default watchdog reboot mode */

View File

@ -16,6 +16,7 @@
#include <linux/of.h> #include <linux/of.h>
#include <linux/of_device.h> #include <linux/of_device.h>
#include <linux/pinctrl/consumer.h> #include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/platform_device.h> #include <linux/platform_device.h>
#include <linux/reset.h> #include <linux/reset.h>
#include <linux/sizes.h> #include <linux/sizes.h>
@ -87,6 +88,7 @@
#define STM32_BUSY_TIMEOUT_US 100000 #define STM32_BUSY_TIMEOUT_US 100000
#define STM32_ABT_TIMEOUT_US 100000 #define STM32_ABT_TIMEOUT_US 100000
#define STM32_COMP_TIMEOUT_MS 1000 #define STM32_COMP_TIMEOUT_MS 1000
#define STM32_AUTOSUSPEND_DELAY -1
struct stm32_qspi_flash { struct stm32_qspi_flash {
struct stm32_qspi *qspi; struct stm32_qspi *qspi;
@ -431,10 +433,17 @@ static int stm32_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master); struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->master);
int ret; int ret;
ret = pm_runtime_get_sync(qspi->dev);
if (ret < 0)
return ret;
mutex_lock(&qspi->lock); mutex_lock(&qspi->lock);
ret = stm32_qspi_send(mem, op); ret = stm32_qspi_send(mem, op);
mutex_unlock(&qspi->lock); mutex_unlock(&qspi->lock);
pm_runtime_mark_last_busy(qspi->dev);
pm_runtime_put_autosuspend(qspi->dev);
return ret; return ret;
} }
@ -444,6 +453,7 @@ static int stm32_qspi_setup(struct spi_device *spi)
struct stm32_qspi *qspi = spi_controller_get_devdata(ctrl); struct stm32_qspi *qspi = spi_controller_get_devdata(ctrl);
struct stm32_qspi_flash *flash; struct stm32_qspi_flash *flash;
u32 presc; u32 presc;
int ret;
if (ctrl->busy) if (ctrl->busy)
return -EBUSY; return -EBUSY;
@ -451,6 +461,10 @@ static int stm32_qspi_setup(struct spi_device *spi)
if (!spi->max_speed_hz) if (!spi->max_speed_hz)
return -EINVAL; return -EINVAL;
ret = pm_runtime_get_sync(qspi->dev);
if (ret < 0)
return ret;
presc = DIV_ROUND_UP(qspi->clk_rate, spi->max_speed_hz) - 1; presc = DIV_ROUND_UP(qspi->clk_rate, spi->max_speed_hz) - 1;
flash = &qspi->flash[spi->chip_select]; flash = &qspi->flash[spi->chip_select];
@ -467,6 +481,9 @@ static int stm32_qspi_setup(struct spi_device *spi)
writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR); writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR);
mutex_unlock(&qspi->lock); mutex_unlock(&qspi->lock);
pm_runtime_mark_last_busy(qspi->dev);
pm_runtime_put_autosuspend(qspi->dev);
return 0; return 0;
} }
@ -538,10 +555,15 @@ static const struct spi_controller_mem_ops stm32_qspi_mem_ops = {
static void stm32_qspi_release(struct stm32_qspi *qspi) static void stm32_qspi_release(struct stm32_qspi *qspi)
{ {
pm_runtime_get_sync(qspi->dev);
/* disable qspi */ /* disable qspi */
writel_relaxed(0, qspi->io_base + QSPI_CR); writel_relaxed(0, qspi->io_base + QSPI_CR);
stm32_qspi_dma_free(qspi); stm32_qspi_dma_free(qspi);
mutex_destroy(&qspi->lock); mutex_destroy(&qspi->lock);
pm_runtime_put_noidle(qspi->dev);
pm_runtime_disable(qspi->dev);
pm_runtime_set_suspended(qspi->dev);
pm_runtime_dont_use_autosuspend(qspi->dev);
clk_disable_unprepare(qspi->clk); clk_disable_unprepare(qspi->clk);
} }
@ -643,9 +665,20 @@ static int stm32_qspi_probe(struct platform_device *pdev)
ctrl->num_chipselect = STM32_QSPI_MAX_NORCHIP; ctrl->num_chipselect = STM32_QSPI_MAX_NORCHIP;
ctrl->dev.of_node = dev->of_node; ctrl->dev.of_node = dev->of_node;
pm_runtime_set_autosuspend_delay(dev, STM32_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(dev);
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
pm_runtime_get_noresume(dev);
ret = devm_spi_register_master(dev, ctrl); ret = devm_spi_register_master(dev, ctrl);
if (!ret) if (ret)
return 0; goto err_qspi_release;
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
err_qspi_release: err_qspi_release:
stm32_qspi_release(qspi); stm32_qspi_release(qspi);
@ -660,14 +693,28 @@ static int stm32_qspi_remove(struct platform_device *pdev)
struct stm32_qspi *qspi = platform_get_drvdata(pdev); struct stm32_qspi *qspi = platform_get_drvdata(pdev);
stm32_qspi_release(qspi); stm32_qspi_release(qspi);
return 0; return 0;
} }
static int __maybe_unused stm32_qspi_suspend(struct device *dev) static int __maybe_unused stm32_qspi_runtime_suspend(struct device *dev)
{ {
struct stm32_qspi *qspi = dev_get_drvdata(dev); struct stm32_qspi *qspi = dev_get_drvdata(dev);
clk_disable_unprepare(qspi->clk); clk_disable_unprepare(qspi->clk);
return 0;
}
static int __maybe_unused stm32_qspi_runtime_resume(struct device *dev)
{
struct stm32_qspi *qspi = dev_get_drvdata(dev);
return clk_prepare_enable(qspi->clk);
}
static int __maybe_unused stm32_qspi_suspend(struct device *dev)
{
pinctrl_pm_select_sleep_state(dev); pinctrl_pm_select_sleep_state(dev);
return 0; return 0;
@ -683,10 +730,17 @@ static int __maybe_unused stm32_qspi_resume(struct device *dev)
writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR); writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR);
writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR); writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR);
pm_runtime_mark_last_busy(qspi->dev);
pm_runtime_put_autosuspend(qspi->dev);
return 0; return 0;
} }
static SIMPLE_DEV_PM_OPS(stm32_qspi_pm_ops, stm32_qspi_suspend, stm32_qspi_resume); static const struct dev_pm_ops stm32_qspi_pm_ops = {
SET_RUNTIME_PM_OPS(stm32_qspi_runtime_suspend,
stm32_qspi_runtime_resume, NULL)
SET_SYSTEM_SLEEP_PM_OPS(stm32_qspi_suspend, stm32_qspi_resume)
};
static const struct of_device_id stm32_qspi_match[] = { static const struct of_device_id stm32_qspi_match[] = {
{.compatible = "st,stm32f469-qspi"}, {.compatible = "st,stm32f469-qspi"},

View File

@ -811,7 +811,9 @@ static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
mask |= STM32F4_SPI_SR_TXE; mask |= STM32F4_SPI_SR_TXE;
} }
if (!spi->cur_usedma && spi->cur_comm == SPI_FULL_DUPLEX) { if (!spi->cur_usedma && (spi->cur_comm == SPI_FULL_DUPLEX ||
spi->cur_comm == SPI_SIMPLEX_RX ||
spi->cur_comm == SPI_3WIRE_RX)) {
/* TXE flag is set and is handled when RXNE flag occurs */ /* TXE flag is set and is handled when RXNE flag occurs */
sr &= ~STM32F4_SPI_SR_TXE; sr &= ~STM32F4_SPI_SR_TXE;
mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR; mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
@ -850,7 +852,7 @@ static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
stm32f4_spi_read_rx(spi); stm32f4_spi_read_rx(spi);
if (spi->rx_len == 0) if (spi->rx_len == 0)
end = true; end = true;
else /* Load data for discontinuous mode */ else if (spi->tx_buf)/* Load data for discontinuous mode */
stm32f4_spi_write_tx(spi); stm32f4_spi_write_tx(spi);
} }
@ -1151,7 +1153,9 @@ static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
/* Enable the interrupts relative to the current communication mode */ /* Enable the interrupts relative to the current communication mode */
if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) { if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
cr2 |= STM32F4_SPI_CR2_TXEIE; cr2 |= STM32F4_SPI_CR2_TXEIE;
} else if (spi->cur_comm == SPI_FULL_DUPLEX) { } else if (spi->cur_comm == SPI_FULL_DUPLEX ||
spi->cur_comm == SPI_SIMPLEX_RX ||
spi->cur_comm == SPI_3WIRE_RX) {
/* In transmit-only mode, the OVR flag is set in the SR register /* In transmit-only mode, the OVR flag is set in the SR register
* since the received data are never read. Therefore set OVR * since the received data are never read. Therefore set OVR
* interrupt only when rx buffer is available. * interrupt only when rx buffer is available.
@ -1462,10 +1466,16 @@ static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
stm32_spi_set_bits(spi, STM32F4_SPI_CR1, stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
STM32F4_SPI_CR1_BIDIMODE | STM32F4_SPI_CR1_BIDIMODE |
STM32F4_SPI_CR1_BIDIOE); STM32F4_SPI_CR1_BIDIOE);
} else if (comm_type == SPI_FULL_DUPLEX) { } else if (comm_type == SPI_FULL_DUPLEX ||
comm_type == SPI_SIMPLEX_RX) {
stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
STM32F4_SPI_CR1_BIDIMODE | STM32F4_SPI_CR1_BIDIMODE |
STM32F4_SPI_CR1_BIDIOE); STM32F4_SPI_CR1_BIDIOE);
} else if (comm_type == SPI_3WIRE_RX) {
stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
STM32F4_SPI_CR1_BIDIMODE);
stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
STM32F4_SPI_CR1_BIDIOE);
} else { } else {
return -EINVAL; return -EINVAL;
} }
@ -1906,6 +1916,7 @@ static int stm32_spi_probe(struct platform_device *pdev)
master->prepare_message = stm32_spi_prepare_msg; master->prepare_message = stm32_spi_prepare_msg;
master->transfer_one = stm32_spi_transfer_one; master->transfer_one = stm32_spi_transfer_one;
master->unprepare_message = stm32_spi_unprepare_msg; master->unprepare_message = stm32_spi_unprepare_msg;
master->flags = SPI_MASTER_MUST_TX;
spi->dma_tx = dma_request_chan(spi->dev, "tx"); spi->dma_tx = dma_request_chan(spi->dev, "tx");
if (IS_ERR(spi->dma_tx)) { if (IS_ERR(spi->dma_tx)) {

View File

@ -470,6 +470,7 @@ static int sun6i_spi_probe(struct platform_device *pdev)
master->max_speed_hz = 100 * 1000 * 1000; master->max_speed_hz = 100 * 1000 * 1000;
master->min_speed_hz = 3 * 1000; master->min_speed_hz = 3 * 1000;
master->use_gpio_descriptors = true;
master->set_cs = sun6i_spi_set_cs; master->set_cs = sun6i_spi_set_cs;
master->transfer_one = sun6i_spi_transfer_one; master->transfer_one = sun6i_spi_transfer_one;
master->num_chipselect = 4; master->num_chipselect = 4;

View File

@ -1398,6 +1398,7 @@ static int tegra_spi_probe(struct platform_device *pdev)
ret = pm_runtime_get_sync(&pdev->dev); ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0) { if (ret < 0) {
dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret); dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
pm_runtime_put_noidle(&pdev->dev);
goto exit_pm_disable; goto exit_pm_disable;
} }

View File

@ -491,6 +491,7 @@ static int tegra_sflash_probe(struct platform_device *pdev)
ret = pm_runtime_get_sync(&pdev->dev); ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0) { if (ret < 0) {
dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret); dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
pm_runtime_put_noidle(&pdev->dev);
goto exit_pm_disable; goto exit_pm_disable;
} }

View File

@ -1118,6 +1118,7 @@ static int tegra_slink_probe(struct platform_device *pdev)
ret = pm_runtime_get_sync(&pdev->dev); ret = pm_runtime_get_sync(&pdev->dev);
if (ret < 0) { if (ret < 0) {
dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret); dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
pm_runtime_put_noidle(&pdev->dev);
goto exit_pm_disable; goto exit_pm_disable;
} }
tspi->def_command_reg = SLINK_M_S; tspi->def_command_reg = SLINK_M_S;

View File

@ -659,8 +659,7 @@ static int uniphier_spi_probe(struct platform_device *pdev)
priv->master = master; priv->master = master;
priv->is_save_param = false; priv->is_save_param = false;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0); priv->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
priv->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(priv->base)) { if (IS_ERR(priv->base)) {
ret = PTR_ERR(priv->base); ret = PTR_ERR(priv->base);
goto out_master_put; goto out_master_put;
@ -716,8 +715,10 @@ static int uniphier_spi_probe(struct platform_device *pdev)
master->dma_tx = dma_request_chan(&pdev->dev, "tx"); master->dma_tx = dma_request_chan(&pdev->dev, "tx");
if (IS_ERR_OR_NULL(master->dma_tx)) { if (IS_ERR_OR_NULL(master->dma_tx)) {
if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) if (PTR_ERR(master->dma_tx) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
goto out_disable_clk; goto out_disable_clk;
}
master->dma_tx = NULL; master->dma_tx = NULL;
dma_tx_burst = INT_MAX; dma_tx_burst = INT_MAX;
} else { } else {
@ -732,8 +733,10 @@ static int uniphier_spi_probe(struct platform_device *pdev)
master->dma_rx = dma_request_chan(&pdev->dev, "rx"); master->dma_rx = dma_request_chan(&pdev->dev, "rx");
if (IS_ERR_OR_NULL(master->dma_rx)) { if (IS_ERR_OR_NULL(master->dma_rx)) {
if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) if (PTR_ERR(master->dma_rx) == -EPROBE_DEFER) {
ret = -EPROBE_DEFER;
goto out_disable_clk; goto out_disable_clk;
}
master->dma_rx = NULL; master->dma_rx = NULL;
dma_rx_burst = INT_MAX; dma_rx_burst = INT_MAX;
} else { } else {

View File

@ -1023,7 +1023,8 @@ static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
void *tmp; void *tmp;
unsigned int max_tx, max_rx; unsigned int max_tx, max_rx;
if (ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX)) { if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
&& !(msg->spi->mode & SPI_3WIRE)) {
max_tx = 0; max_tx = 0;
max_rx = 0; max_rx = 0;
@ -1075,7 +1076,7 @@ static int spi_transfer_wait(struct spi_controller *ctlr,
{ {
struct spi_statistics *statm = &ctlr->statistics; struct spi_statistics *statm = &ctlr->statistics;
struct spi_statistics *stats = &msg->spi->statistics; struct spi_statistics *stats = &msg->spi->statistics;
unsigned long long ms = 1; unsigned long long ms;
if (spi_controller_is_slave(ctlr)) { if (spi_controller_is_slave(ctlr)) {
if (wait_for_completion_interruptible(&ctlr->xfer_completion)) { if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
@ -1160,6 +1161,8 @@ int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
{ {
int delay; int delay;
might_sleep();
if (!_delay) if (!_delay)
return -EINVAL; return -EINVAL;
@ -2111,6 +2114,7 @@ static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
} }
lookup->max_speed_hz = sb->connection_speed; lookup->max_speed_hz = sb->connection_speed;
lookup->bits_per_word = sb->data_bit_length;
if (sb->clock_phase == ACPI_SPI_SECOND_PHASE) if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
lookup->mode |= SPI_CPHA; lookup->mode |= SPI_CPHA;
@ -2760,6 +2764,8 @@ void spi_unregister_controller(struct spi_controller *ctlr)
struct spi_controller *found; struct spi_controller *found;
int id = ctlr->bus_num; int id = ctlr->bus_num;
device_for_each_child(&ctlr->dev, NULL, __unregister);
/* First make sure that this controller was ever added */ /* First make sure that this controller was ever added */
mutex_lock(&board_lock); mutex_lock(&board_lock);
found = idr_find(&spi_master_idr, id); found = idr_find(&spi_master_idr, id);
@ -2772,7 +2778,6 @@ void spi_unregister_controller(struct spi_controller *ctlr)
list_del(&ctlr->list); list_del(&ctlr->list);
mutex_unlock(&board_lock); mutex_unlock(&board_lock);
device_for_each_child(&ctlr->dev, NULL, __unregister);
device_unregister(&ctlr->dev); device_unregister(&ctlr->dev);
/* free bus id */ /* free bus id */
mutex_lock(&board_lock); mutex_lock(&board_lock);
@ -3853,8 +3858,7 @@ static u8 *buf;
* is zero for success, else a negative errno status code. * is zero for success, else a negative errno status code.
* This call may only be used from a context that may sleep. * This call may only be used from a context that may sleep.
* *
* Parameters to this routine are always copied using a small buffer; * Parameters to this routine are always copied using a small buffer.
* portable code should never use this for more than 32 bytes.
* Performance-sensitive or bulk transfer code should instead use * Performance-sensitive or bulk transfer code should instead use
* spi_{async,sync}() calls with dma-safe buffers. * spi_{async,sync}() calls with dma-safe buffers.
* *

View File

@ -62,7 +62,8 @@ static DECLARE_BITMAP(minors, N_SPI_MINORS);
#define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \ #define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \
| SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \ | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \
| SPI_NO_CS | SPI_READY | SPI_TX_DUAL \ | SPI_NO_CS | SPI_READY | SPI_TX_DUAL \
| SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD) | SPI_TX_QUAD | SPI_TX_OCTAL | SPI_RX_DUAL \
| SPI_RX_QUAD | SPI_RX_OCTAL)
struct spidev_data { struct spidev_data {
dev_t devt; dev_t devt;

View File

@ -52,7 +52,9 @@ $(OUTPUT)spidev_fdx: $(SPIDEV_FDX_IN)
clean: clean:
rm -f $(ALL_PROGRAMS) rm -f $(ALL_PROGRAMS)
rm -rf $(OUTPUT)include/ rm -rf $(OUTPUT)include/
find $(if $(OUTPUT),$(OUTPUT),.) -name '*.o' -delete -o -name '\.*.d' -delete find $(if $(OUTPUT),$(OUTPUT),.) -name '*.o' -delete
find $(if $(OUTPUT),$(OUTPUT),.) -name '\.*.o.d' -delete
find $(if $(OUTPUT),$(OUTPUT),.) -name '\.*.o.cmd' -delete
install: $(ALL_PROGRAMS) install: $(ALL_PROGRAMS)
install -d -m 755 $(DESTDIR)$(bindir); \ install -d -m 755 $(DESTDIR)$(bindir); \

View File

@ -128,18 +128,22 @@ static void transfer(int fd, uint8_t const *tx, uint8_t const *rx, size_t len)
.bits_per_word = bits, .bits_per_word = bits,
}; };
if (mode & SPI_TX_QUAD) if (mode & SPI_TX_OCTAL)
tr.tx_nbits = 8;
else if (mode & SPI_TX_QUAD)
tr.tx_nbits = 4; tr.tx_nbits = 4;
else if (mode & SPI_TX_DUAL) else if (mode & SPI_TX_DUAL)
tr.tx_nbits = 2; tr.tx_nbits = 2;
if (mode & SPI_RX_QUAD) if (mode & SPI_RX_OCTAL)
tr.rx_nbits = 8;
else if (mode & SPI_RX_QUAD)
tr.rx_nbits = 4; tr.rx_nbits = 4;
else if (mode & SPI_RX_DUAL) else if (mode & SPI_RX_DUAL)
tr.rx_nbits = 2; tr.rx_nbits = 2;
if (!(mode & SPI_LOOP)) { if (!(mode & SPI_LOOP)) {
if (mode & (SPI_TX_QUAD | SPI_TX_DUAL)) if (mode & (SPI_TX_OCTAL | SPI_TX_QUAD | SPI_TX_DUAL))
tr.rx_buf = 0; tr.rx_buf = 0;
else if (mode & (SPI_RX_QUAD | SPI_RX_DUAL)) else if (mode & (SPI_RX_OCTAL | SPI_RX_QUAD | SPI_RX_DUAL))
tr.tx_buf = 0; tr.tx_buf = 0;
} }
@ -187,6 +191,7 @@ static void print_usage(const char *prog)
" -R --ready slave pulls low to pause\n" " -R --ready slave pulls low to pause\n"
" -2 --dual dual transfer\n" " -2 --dual dual transfer\n"
" -4 --quad quad transfer\n" " -4 --quad quad transfer\n"
" -8 --octal octal transfer\n"
" -S --size transfer size\n" " -S --size transfer size\n"
" -I --iter iterations\n"); " -I --iter iterations\n");
exit(1); exit(1);
@ -213,13 +218,14 @@ static void parse_opts(int argc, char *argv[])
{ "dual", 0, 0, '2' }, { "dual", 0, 0, '2' },
{ "verbose", 0, 0, 'v' }, { "verbose", 0, 0, 'v' },
{ "quad", 0, 0, '4' }, { "quad", 0, 0, '4' },
{ "octal", 0, 0, '8' },
{ "size", 1, 0, 'S' }, { "size", 1, 0, 'S' },
{ "iter", 1, 0, 'I' }, { "iter", 1, 0, 'I' },
{ NULL, 0, 0, 0 }, { NULL, 0, 0, 0 },
}; };
int c; int c;
c = getopt_long(argc, argv, "D:s:d:b:i:o:lHOLC3NR24p:vS:I:", c = getopt_long(argc, argv, "D:s:d:b:i:o:lHOLC3NR248p:vS:I:",
lopts, NULL); lopts, NULL);
if (c == -1) if (c == -1)
@ -280,6 +286,9 @@ static void parse_opts(int argc, char *argv[])
case '4': case '4':
mode |= SPI_TX_QUAD; mode |= SPI_TX_QUAD;
break; break;
case '8':
mode |= SPI_TX_OCTAL;
break;
case 'S': case 'S':
transfer_size = atoi(optarg); transfer_size = atoi(optarg);
break; break;
@ -295,6 +304,8 @@ static void parse_opts(int argc, char *argv[])
mode |= SPI_RX_DUAL; mode |= SPI_RX_DUAL;
if (mode & SPI_TX_QUAD) if (mode & SPI_TX_QUAD)
mode |= SPI_RX_QUAD; mode |= SPI_RX_QUAD;
if (mode & SPI_TX_OCTAL)
mode |= SPI_RX_OCTAL;
} }
} }