Merge branch 'core-iommu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip

* 'core-iommu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: (59 commits)
  x86/gart: Do not select AGP for GART_IOMMU
  x86/amd-iommu: Initialize passthrough mode when requested
  x86/amd-iommu: Don't detach device from pt domain on driver unbind
  x86/amd-iommu: Make sure a device is assigned in passthrough mode
  x86/amd-iommu: Align locking between attach_device and detach_device
  x86/amd-iommu: Fix device table write order
  x86/amd-iommu: Add passthrough mode initialization functions
  x86/amd-iommu: Add core functions for pd allocation/freeing
  x86/dma: Mark iommu_pass_through as __read_mostly
  x86/amd-iommu: Change iommu_map_page to support multiple page sizes
  x86/amd-iommu: Support higher level PTEs in iommu_page_unmap
  x86/amd-iommu: Remove old page table handling macros
  x86/amd-iommu: Use 2-level page tables for dma_ops domains
  x86/amd-iommu: Remove bus_addr check in iommu_map_page
  x86/amd-iommu: Remove last usages of IOMMU_PTE_L0_INDEX
  x86/amd-iommu: Change alloc_pte to support 64 bit address space
  x86/amd-iommu: Introduce increase_address_space function
  x86/amd-iommu: Flush domains if address space size was increased
  x86/amd-iommu: Introduce set_dte_entry function
  x86/amd-iommu: Add a gneric version of amd_iommu_flush_all_devices
  ...
This commit is contained in:
Linus Torvalds 2009-09-11 13:16:37 -07:00
commit a66a50054e
29 changed files with 724 additions and 967 deletions

View File

@ -44,7 +44,6 @@ static inline void dma_free_coherent(struct device *dev, size_t size,
#define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h)
#define get_dma_ops(dev) platform_dma_get_ops(dev)
#define flush_write_buffers()
#include <asm-generic/dma-mapping-common.h>
@ -69,6 +68,24 @@ dma_set_mask (struct device *dev, u64 mask)
return 0;
}
static inline bool dma_capable(struct device *dev, dma_addr_t addr, size_t size)
{
if (!dev->dma_mask)
return 0;
return addr + size <= *dev->dma_mask;
}
static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr)
{
return paddr;
}
static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t daddr)
{
return daddr;
}
extern int dma_get_cache_alignment(void);
static inline void

View File

@ -424,6 +424,29 @@ static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
#endif
}
static inline bool dma_capable(struct device *dev, dma_addr_t addr, size_t size)
{
struct dma_mapping_ops *ops = get_dma_ops(dev);
if (ops->addr_needs_map && ops->addr_needs_map(dev, addr, size))
return 0;
if (!dev->dma_mask)
return 0;
return addr + size <= *dev->dma_mask;
}
static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr)
{
return paddr + get_dma_direct_offset(dev);
}
static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t daddr)
{
return daddr - get_dma_direct_offset(dev);
}
#define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f)
#define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h)
#ifdef CONFIG_NOT_COHERENT_CACHE

View File

@ -24,50 +24,12 @@
int swiotlb __read_mostly;
unsigned int ppc_swiotlb_enable;
void *swiotlb_bus_to_virt(struct device *hwdev, dma_addr_t addr)
{
unsigned long pfn = PFN_DOWN(swiotlb_bus_to_phys(hwdev, addr));
void *pageaddr = page_address(pfn_to_page(pfn));
if (pageaddr != NULL)
return pageaddr + (addr % PAGE_SIZE);
return NULL;
}
dma_addr_t swiotlb_phys_to_bus(struct device *hwdev, phys_addr_t paddr)
{
return paddr + get_dma_direct_offset(hwdev);
}
phys_addr_t swiotlb_bus_to_phys(struct device *hwdev, dma_addr_t baddr)
{
return baddr - get_dma_direct_offset(hwdev);
}
/*
* Determine if an address needs bounce buffering via swiotlb.
* Going forward I expect the swiotlb code to generalize on using
* a dma_ops->addr_needs_map, and this function will move from here to the
* generic swiotlb code.
*/
int
swiotlb_arch_address_needs_mapping(struct device *hwdev, dma_addr_t addr,
size_t size)
{
struct dma_mapping_ops *dma_ops = get_dma_ops(hwdev);
BUG_ON(!dma_ops);
return dma_ops->addr_needs_map(hwdev, addr, size);
}
/*
* Determine if an address is reachable by a pci device, or if we must bounce.
*/
static int
swiotlb_pci_addr_needs_map(struct device *hwdev, dma_addr_t addr, size_t size)
{
u64 mask = dma_get_mask(hwdev);
dma_addr_t max;
struct pci_controller *hose;
struct pci_dev *pdev = to_pci_dev(hwdev);
@ -79,16 +41,9 @@ swiotlb_pci_addr_needs_map(struct device *hwdev, dma_addr_t addr, size_t size)
if ((addr + size > max) | (addr < hose->dma_window_base_cur))
return 1;
return !is_buffer_dma_capable(mask, addr, size);
return 0;
}
static int
swiotlb_addr_needs_map(struct device *hwdev, dma_addr_t addr, size_t size)
{
return !is_buffer_dma_capable(dma_get_mask(hwdev), addr, size);
}
/*
* At the moment, all platforms that use this code only require
* swiotlb to be used if we're operating on HIGHMEM. Since
@ -104,7 +59,6 @@ struct dma_mapping_ops swiotlb_dma_ops = {
.dma_supported = swiotlb_dma_supported,
.map_page = swiotlb_map_page,
.unmap_page = swiotlb_unmap_page,
.addr_needs_map = swiotlb_addr_needs_map,
.sync_single_range_for_cpu = swiotlb_sync_single_range_for_cpu,
.sync_single_range_for_device = swiotlb_sync_single_range_for_device,
.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,

View File

@ -25,6 +25,8 @@ config SPARC
select ARCH_WANT_OPTIONAL_GPIOLIB
select RTC_CLASS
select RTC_DRV_M48T59
select HAVE_DMA_ATTRS
select HAVE_DMA_API_DEBUG
config SPARC32
def_bool !64BIT

View File

@ -3,6 +3,7 @@
#include <linux/scatterlist.h>
#include <linux/mm.h>
#include <linux/dma-debug.h>
#define DMA_ERROR_CODE (~(dma_addr_t)0x0)
@ -13,142 +14,40 @@ extern int dma_set_mask(struct device *dev, u64 dma_mask);
#define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h)
#define dma_is_consistent(d, h) (1)
struct dma_ops {
void *(*alloc_coherent)(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag);
void (*free_coherent)(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_handle);
dma_addr_t (*map_page)(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction direction);
void (*unmap_page)(struct device *dev, dma_addr_t dma_addr,
size_t size,
enum dma_data_direction direction);
int (*map_sg)(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction direction);
void (*unmap_sg)(struct device *dev, struct scatterlist *sg,
int nhwentries,
enum dma_data_direction direction);
void (*sync_single_for_cpu)(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction direction);
void (*sync_single_for_device)(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction direction);
void (*sync_sg_for_cpu)(struct device *dev, struct scatterlist *sg,
int nelems,
enum dma_data_direction direction);
void (*sync_sg_for_device)(struct device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction dir);
};
extern const struct dma_ops *dma_ops;
extern struct dma_map_ops *dma_ops, pci32_dma_ops;
extern struct bus_type pci_bus_type;
static inline struct dma_map_ops *get_dma_ops(struct device *dev)
{
#if defined(CONFIG_SPARC32) && defined(CONFIG_PCI)
if (dev->bus == &pci_bus_type)
return &pci32_dma_ops;
#endif
return dma_ops;
}
#include <asm-generic/dma-mapping-common.h>
static inline void *dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag)
{
return dma_ops->alloc_coherent(dev, size, dma_handle, flag);
struct dma_map_ops *ops = get_dma_ops(dev);
void *cpu_addr;
cpu_addr = ops->alloc_coherent(dev, size, dma_handle, flag);
debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
return cpu_addr;
}
static inline void dma_free_coherent(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_handle)
{
dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
}
struct dma_map_ops *ops = get_dma_ops(dev);
static inline dma_addr_t dma_map_single(struct device *dev, void *cpu_addr,
size_t size,
enum dma_data_direction direction)
{
return dma_ops->map_page(dev, virt_to_page(cpu_addr),
(unsigned long)cpu_addr & ~PAGE_MASK, size,
direction);
debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
ops->free_coherent(dev, size, cpu_addr, dma_handle);
}
static inline void dma_unmap_single(struct device *dev, dma_addr_t dma_addr,
size_t size,
enum dma_data_direction direction)
{
dma_ops->unmap_page(dev, dma_addr, size, direction);
}
static inline dma_addr_t dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction direction)
{
return dma_ops->map_page(dev, page, offset, size, direction);
}
static inline void dma_unmap_page(struct device *dev, dma_addr_t dma_address,
size_t size,
enum dma_data_direction direction)
{
dma_ops->unmap_page(dev, dma_address, size, direction);
}
static inline int dma_map_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction direction)
{
return dma_ops->map_sg(dev, sg, nents, direction);
}
static inline void dma_unmap_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction direction)
{
dma_ops->unmap_sg(dev, sg, nents, direction);
}
static inline void dma_sync_single_for_cpu(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction direction)
{
dma_ops->sync_single_for_cpu(dev, dma_handle, size, direction);
}
static inline void dma_sync_single_for_device(struct device *dev,
dma_addr_t dma_handle,
size_t size,
enum dma_data_direction direction)
{
if (dma_ops->sync_single_for_device)
dma_ops->sync_single_for_device(dev, dma_handle, size,
direction);
}
static inline void dma_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sg, int nelems,
enum dma_data_direction direction)
{
dma_ops->sync_sg_for_cpu(dev, sg, nelems, direction);
}
static inline void dma_sync_sg_for_device(struct device *dev,
struct scatterlist *sg, int nelems,
enum dma_data_direction direction)
{
if (dma_ops->sync_sg_for_device)
dma_ops->sync_sg_for_device(dev, sg, nelems, direction);
}
static inline void dma_sync_single_range_for_cpu(struct device *dev,
dma_addr_t dma_handle,
unsigned long offset,
size_t size,
enum dma_data_direction dir)
{
dma_sync_single_for_cpu(dev, dma_handle+offset, size, dir);
}
static inline void dma_sync_single_range_for_device(struct device *dev,
dma_addr_t dma_handle,
unsigned long offset,
size_t size,
enum dma_data_direction dir)
{
dma_sync_single_for_device(dev, dma_handle+offset, size, dir);
}
static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return (dma_addr == DMA_ERROR_CODE);

View File

@ -5,4 +5,7 @@
#else
#include <asm/pci_32.h>
#endif
#include <asm-generic/pci-dma-compat.h>
#endif

View File

@ -31,42 +31,8 @@ static inline void pcibios_penalize_isa_irq(int irq, int active)
*/
#define PCI_DMA_BUS_IS_PHYS (0)
#include <asm/scatterlist.h>
struct pci_dev;
/* Allocate and map kernel buffer using consistent mode DMA for a device.
* hwdev should be valid struct pci_dev pointer for PCI devices.
*/
extern void *pci_alloc_consistent(struct pci_dev *hwdev, size_t size, dma_addr_t *dma_handle);
/* Free and unmap a consistent DMA buffer.
* cpu_addr is what was returned from pci_alloc_consistent,
* size must be the same as what as passed into pci_alloc_consistent,
* and likewise dma_addr must be the same as what *dma_addrp was set to.
*
* References to the memory and mappings assosciated with cpu_addr/dma_addr
* past this call are illegal.
*/
extern void pci_free_consistent(struct pci_dev *hwdev, size_t size, void *vaddr, dma_addr_t dma_handle);
/* Map a single buffer of the indicated size for DMA in streaming mode.
* The 32-bit bus address to use is returned.
*
* Once the device is given the dma address, the device owns this memory
* until either pci_unmap_single or pci_dma_sync_single_for_cpu is performed.
*/
extern dma_addr_t pci_map_single(struct pci_dev *hwdev, void *ptr, size_t size, int direction);
/* Unmap a single streaming mode DMA translation. The dma_addr and size
* must match what was provided for in a previous pci_map_single call. All
* other usages are undefined.
*
* After this call, reads by the cpu to the buffer are guaranteed to see
* whatever the device wrote there.
*/
extern void pci_unmap_single(struct pci_dev *hwdev, dma_addr_t dma_addr, size_t size, int direction);
/* pci_unmap_{single,page} is not a nop, thus... */
#define DECLARE_PCI_UNMAP_ADDR(ADDR_NAME) \
dma_addr_t ADDR_NAME;
@ -81,69 +47,6 @@ extern void pci_unmap_single(struct pci_dev *hwdev, dma_addr_t dma_addr, size_t
#define pci_unmap_len_set(PTR, LEN_NAME, VAL) \
(((PTR)->LEN_NAME) = (VAL))
/*
* Same as above, only with pages instead of mapped addresses.
*/
extern dma_addr_t pci_map_page(struct pci_dev *hwdev, struct page *page,
unsigned long offset, size_t size, int direction);
extern void pci_unmap_page(struct pci_dev *hwdev,
dma_addr_t dma_address, size_t size, int direction);
/* Map a set of buffers described by scatterlist in streaming
* mode for DMA. This is the scather-gather version of the
* above pci_map_single interface. Here the scatter gather list
* elements are each tagged with the appropriate dma address
* and length. They are obtained via sg_dma_{address,length}(SG).
*
* NOTE: An implementation may be able to use a smaller number of
* DMA address/length pairs than there are SG table elements.
* (for example via virtual mapping capabilities)
* The routine returns the number of addr/length pairs actually
* used, at most nents.
*
* Device ownership issues as mentioned above for pci_map_single are
* the same here.
*/
extern int pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nents, int direction);
/* Unmap a set of streaming mode DMA translations.
* Again, cpu read rules concerning calls here are the same as for
* pci_unmap_single() above.
*/
extern void pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sg, int nhwents, int direction);
/* Make physical memory consistent for a single
* streaming mode DMA translation after a transfer.
*
* If you perform a pci_map_single() but wish to interrogate the
* buffer using the cpu, yet do not wish to teardown the PCI dma
* mapping, you must call this function before doing so. At the
* next point you give the PCI dma address back to the card, you
* must first perform a pci_dma_sync_for_device, and then the device
* again owns the buffer.
*/
extern void pci_dma_sync_single_for_cpu(struct pci_dev *hwdev, dma_addr_t dma_handle, size_t size, int direction);
extern void pci_dma_sync_single_for_device(struct pci_dev *hwdev, dma_addr_t dma_handle, size_t size, int direction);
/* Make physical memory consistent for a set of streaming
* mode DMA translations after a transfer.
*
* The same as pci_dma_sync_single_* but for a scatter-gather list,
* same rules and usage.
*/
extern void pci_dma_sync_sg_for_cpu(struct pci_dev *hwdev, struct scatterlist *sg, int nelems, int direction);
extern void pci_dma_sync_sg_for_device(struct pci_dev *hwdev, struct scatterlist *sg, int nelems, int direction);
/* Return whether the given PCI device DMA address mask can
* be supported properly. For example, if your device can
* only drive the low 24-bits during PCI bus mastering, then
* you would pass 0x00ffffff as the mask to this function.
*/
static inline int pci_dma_supported(struct pci_dev *hwdev, u64 mask)
{
return 1;
}
#ifdef CONFIG_PCI
static inline void pci_dma_burst_advice(struct pci_dev *pdev,
enum pci_dma_burst_strategy *strat,
@ -154,14 +57,6 @@ static inline void pci_dma_burst_advice(struct pci_dev *pdev,
}
#endif
#define PCI_DMA_ERROR_CODE (~(dma_addr_t)0x0)
static inline int pci_dma_mapping_error(struct pci_dev *pdev,
dma_addr_t dma_addr)
{
return (dma_addr == PCI_DMA_ERROR_CODE);
}
struct device_node;
extern struct device_node *pci_device_to_OF_node(struct pci_dev *pdev);

View File

@ -35,37 +35,6 @@ static inline void pcibios_penalize_isa_irq(int irq, int active)
*/
#define PCI_DMA_BUS_IS_PHYS (0)
static inline void *pci_alloc_consistent(struct pci_dev *pdev, size_t size,
dma_addr_t *dma_handle)
{
return dma_alloc_coherent(&pdev->dev, size, dma_handle, GFP_ATOMIC);
}
static inline void pci_free_consistent(struct pci_dev *pdev, size_t size,
void *vaddr, dma_addr_t dma_handle)
{
return dma_free_coherent(&pdev->dev, size, vaddr, dma_handle);
}
static inline dma_addr_t pci_map_single(struct pci_dev *pdev, void *ptr,
size_t size, int direction)
{
return dma_map_single(&pdev->dev, ptr, size,
(enum dma_data_direction) direction);
}
static inline void pci_unmap_single(struct pci_dev *pdev, dma_addr_t dma_addr,
size_t size, int direction)
{
dma_unmap_single(&pdev->dev, dma_addr, size,
(enum dma_data_direction) direction);
}
#define pci_map_page(dev, page, off, size, dir) \
pci_map_single(dev, (page_address(page) + (off)), size, dir)
#define pci_unmap_page(dev,addr,sz,dir) \
pci_unmap_single(dev,addr,sz,dir)
/* pci_unmap_{single,page} is not a nop, thus... */
#define DECLARE_PCI_UNMAP_ADDR(ADDR_NAME) \
dma_addr_t ADDR_NAME;
@ -80,57 +49,6 @@ static inline void pci_unmap_single(struct pci_dev *pdev, dma_addr_t dma_addr,
#define pci_unmap_len_set(PTR, LEN_NAME, VAL) \
(((PTR)->LEN_NAME) = (VAL))
static inline int pci_map_sg(struct pci_dev *pdev, struct scatterlist *sg,
int nents, int direction)
{
return dma_map_sg(&pdev->dev, sg, nents,
(enum dma_data_direction) direction);
}
static inline void pci_unmap_sg(struct pci_dev *pdev, struct scatterlist *sg,
int nents, int direction)
{
dma_unmap_sg(&pdev->dev, sg, nents,
(enum dma_data_direction) direction);
}
static inline void pci_dma_sync_single_for_cpu(struct pci_dev *pdev,
dma_addr_t dma_handle,
size_t size, int direction)
{
dma_sync_single_for_cpu(&pdev->dev, dma_handle, size,
(enum dma_data_direction) direction);
}
static inline void pci_dma_sync_single_for_device(struct pci_dev *pdev,
dma_addr_t dma_handle,
size_t size, int direction)
{
/* No flushing needed to sync cpu writes to the device. */
}
static inline void pci_dma_sync_sg_for_cpu(struct pci_dev *pdev,
struct scatterlist *sg,
int nents, int direction)
{
dma_sync_sg_for_cpu(&pdev->dev, sg, nents,
(enum dma_data_direction) direction);
}
static inline void pci_dma_sync_sg_for_device(struct pci_dev *pdev,
struct scatterlist *sg,
int nelems, int direction)
{
/* No flushing needed to sync cpu writes to the device. */
}
/* Return whether the given PCI device DMA address mask can
* be supported properly. For example, if your device can
* only drive the low 24-bits during PCI bus mastering, then
* you would pass 0x00ffffff as the mask to this function.
*/
extern int pci_dma_supported(struct pci_dev *hwdev, u64 mask);
/* PCI IOMMU mapping bypass support. */
/* PCI 64-bit addressing works for all slots on all controller
@ -140,12 +58,6 @@ extern int pci_dma_supported(struct pci_dev *hwdev, u64 mask);
#define PCI64_REQUIRED_MASK (~(dma64_addr_t)0)
#define PCI64_ADDR_BASE 0xfffc000000000000UL
static inline int pci_dma_mapping_error(struct pci_dev *pdev,
dma_addr_t dma_addr)
{
return dma_mapping_error(&pdev->dev, dma_addr);
}
#ifdef CONFIG_PCI
static inline void pci_dma_burst_advice(struct pci_dev *pdev,
enum pci_dma_burst_strategy *strat,

View File

@ -61,7 +61,7 @@ obj-$(CONFIG_SPARC64_SMP) += cpumap.o
obj-$(CONFIG_SPARC32) += devres.o
devres-y := ../../../kernel/irq/devres.o
obj-$(CONFIG_SPARC32) += dma.o
obj-y += dma.o
obj-$(CONFIG_SPARC32_PCI) += pcic.o

View File

@ -1,178 +1,13 @@
/* dma.c: PCI and SBUS DMA accessors for 32-bit sparc.
*
* Copyright (C) 2008 David S. Miller <davem@davemloft.net>
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/scatterlist.h>
#include <linux/mm.h>
#include <linux/dma-debug.h>
#ifdef CONFIG_PCI
#include <linux/pci.h>
#endif
#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 15)
#include "dma.h"
int dma_supported(struct device *dev, u64 mask)
static int __init dma_init(void)
{
#ifdef CONFIG_PCI
if (dev->bus == &pci_bus_type)
return pci_dma_supported(to_pci_dev(dev), mask);
#endif
dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
return 0;
}
EXPORT_SYMBOL(dma_supported);
int dma_set_mask(struct device *dev, u64 dma_mask)
{
#ifdef CONFIG_PCI
if (dev->bus == &pci_bus_type)
return pci_set_dma_mask(to_pci_dev(dev), dma_mask);
#endif
return -EOPNOTSUPP;
}
EXPORT_SYMBOL(dma_set_mask);
static void *dma32_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag)
{
#ifdef CONFIG_PCI
if (dev->bus == &pci_bus_type)
return pci_alloc_consistent(to_pci_dev(dev), size, dma_handle);
#endif
return sbus_alloc_consistent(dev, size, dma_handle);
}
static void dma32_free_coherent(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_handle)
{
#ifdef CONFIG_PCI
if (dev->bus == &pci_bus_type) {
pci_free_consistent(to_pci_dev(dev), size,
cpu_addr, dma_handle);
return;
}
#endif
sbus_free_consistent(dev, size, cpu_addr, dma_handle);
}
static dma_addr_t dma32_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction direction)
{
#ifdef CONFIG_PCI
if (dev->bus == &pci_bus_type)
return pci_map_page(to_pci_dev(dev), page, offset,
size, (int)direction);
#endif
return sbus_map_single(dev, page_address(page) + offset,
size, (int)direction);
}
static void dma32_unmap_page(struct device *dev, dma_addr_t dma_address,
size_t size, enum dma_data_direction direction)
{
#ifdef CONFIG_PCI
if (dev->bus == &pci_bus_type) {
pci_unmap_page(to_pci_dev(dev), dma_address,
size, (int)direction);
return;
}
#endif
sbus_unmap_single(dev, dma_address, size, (int)direction);
}
static int dma32_map_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction direction)
{
#ifdef CONFIG_PCI
if (dev->bus == &pci_bus_type)
return pci_map_sg(to_pci_dev(dev), sg, nents, (int)direction);
#endif
return sbus_map_sg(dev, sg, nents, direction);
}
void dma32_unmap_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction direction)
{
#ifdef CONFIG_PCI
if (dev->bus == &pci_bus_type) {
pci_unmap_sg(to_pci_dev(dev), sg, nents, (int)direction);
return;
}
#endif
sbus_unmap_sg(dev, sg, nents, (int)direction);
}
static void dma32_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
size_t size,
enum dma_data_direction direction)
{
#ifdef CONFIG_PCI
if (dev->bus == &pci_bus_type) {
pci_dma_sync_single_for_cpu(to_pci_dev(dev), dma_handle,
size, (int)direction);
return;
}
#endif
sbus_dma_sync_single_for_cpu(dev, dma_handle, size, (int) direction);
}
static void dma32_sync_single_for_device(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction direction)
{
#ifdef CONFIG_PCI
if (dev->bus == &pci_bus_type) {
pci_dma_sync_single_for_device(to_pci_dev(dev), dma_handle,
size, (int)direction);
return;
}
#endif
sbus_dma_sync_single_for_device(dev, dma_handle, size, (int) direction);
}
static void dma32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
int nelems, enum dma_data_direction direction)
{
#ifdef CONFIG_PCI
if (dev->bus == &pci_bus_type) {
pci_dma_sync_sg_for_cpu(to_pci_dev(dev), sg,
nelems, (int)direction);
return;
}
#endif
BUG();
}
static void dma32_sync_sg_for_device(struct device *dev,
struct scatterlist *sg, int nelems,
enum dma_data_direction direction)
{
#ifdef CONFIG_PCI
if (dev->bus == &pci_bus_type) {
pci_dma_sync_sg_for_device(to_pci_dev(dev), sg,
nelems, (int)direction);
return;
}
#endif
BUG();
}
static const struct dma_ops dma32_dma_ops = {
.alloc_coherent = dma32_alloc_coherent,
.free_coherent = dma32_free_coherent,
.map_page = dma32_map_page,
.unmap_page = dma32_unmap_page,
.map_sg = dma32_map_sg,
.unmap_sg = dma32_unmap_sg,
.sync_single_for_cpu = dma32_sync_single_for_cpu,
.sync_single_for_device = dma32_sync_single_for_device,
.sync_sg_for_cpu = dma32_sync_sg_for_cpu,
.sync_sg_for_device = dma32_sync_sg_for_device,
};
const struct dma_ops *dma_ops = &dma32_dma_ops;
EXPORT_SYMBOL(dma_ops);
fs_initcall(dma_init);

View File

@ -1,14 +0,0 @@
void *sbus_alloc_consistent(struct device *dev, long len, u32 *dma_addrp);
void sbus_free_consistent(struct device *dev, long n, void *p, u32 ba);
dma_addr_t sbus_map_single(struct device *dev, void *va,
size_t len, int direction);
void sbus_unmap_single(struct device *dev, dma_addr_t ba,
size_t n, int direction);
int sbus_map_sg(struct device *dev, struct scatterlist *sg,
int n, int direction);
void sbus_unmap_sg(struct device *dev, struct scatterlist *sg,
int n, int direction);
void sbus_dma_sync_single_for_cpu(struct device *dev, dma_addr_t ba,
size_t size, int direction);
void sbus_dma_sync_single_for_device(struct device *dev, dma_addr_t ba,
size_t size, int direction);

View File

@ -353,7 +353,8 @@ static void dma_4u_free_coherent(struct device *dev, size_t size,
static dma_addr_t dma_4u_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t sz,
enum dma_data_direction direction)
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct iommu *iommu;
struct strbuf *strbuf;
@ -474,7 +475,8 @@ do_flush_sync:
}
static void dma_4u_unmap_page(struct device *dev, dma_addr_t bus_addr,
size_t sz, enum dma_data_direction direction)
size_t sz, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct iommu *iommu;
struct strbuf *strbuf;
@ -520,7 +522,8 @@ static void dma_4u_unmap_page(struct device *dev, dma_addr_t bus_addr,
}
static int dma_4u_map_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction)
int nelems, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct scatterlist *s, *outs, *segstart;
unsigned long flags, handle, prot, ctx;
@ -691,7 +694,8 @@ static unsigned long fetch_sg_ctx(struct iommu *iommu, struct scatterlist *sg)
}
static void dma_4u_unmap_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction)
int nelems, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
unsigned long flags, ctx;
struct scatterlist *sg;
@ -822,7 +826,7 @@ static void dma_4u_sync_sg_for_cpu(struct device *dev,
spin_unlock_irqrestore(&iommu->lock, flags);
}
static const struct dma_ops sun4u_dma_ops = {
static struct dma_map_ops sun4u_dma_ops = {
.alloc_coherent = dma_4u_alloc_coherent,
.free_coherent = dma_4u_free_coherent,
.map_page = dma_4u_map_page,
@ -833,9 +837,11 @@ static const struct dma_ops sun4u_dma_ops = {
.sync_sg_for_cpu = dma_4u_sync_sg_for_cpu,
};
const struct dma_ops *dma_ops = &sun4u_dma_ops;
struct dma_map_ops *dma_ops = &sun4u_dma_ops;
EXPORT_SYMBOL(dma_ops);
extern int pci64_dma_supported(struct pci_dev *pdev, u64 device_mask);
int dma_supported(struct device *dev, u64 device_mask)
{
struct iommu *iommu = dev->archdata.iommu;
@ -849,7 +855,7 @@ int dma_supported(struct device *dev, u64 device_mask)
#ifdef CONFIG_PCI
if (dev->bus == &pci_bus_type)
return pci_dma_supported(to_pci_dev(dev), device_mask);
return pci64_dma_supported(to_pci_dev(dev), device_mask);
#endif
return 0;

View File

@ -48,8 +48,6 @@
#include <asm/iommu.h>
#include <asm/io-unit.h>
#include "dma.h"
#define mmu_inval_dma_area(p, l) /* Anton pulled it out for 2.4.0-xx */
static struct resource *_sparc_find_resource(struct resource *r,
@ -246,7 +244,8 @@ EXPORT_SYMBOL(sbus_set_sbus64);
* Typically devices use them for control blocks.
* CPU may access them without any explicit flushing.
*/
void *sbus_alloc_consistent(struct device *dev, long len, u32 *dma_addrp)
static void *sbus_alloc_coherent(struct device *dev, size_t len,
dma_addr_t *dma_addrp, gfp_t gfp)
{
struct of_device *op = to_of_device(dev);
unsigned long len_total = (len + PAGE_SIZE-1) & PAGE_MASK;
@ -299,7 +298,8 @@ err_nopages:
return NULL;
}
void sbus_free_consistent(struct device *dev, long n, void *p, u32 ba)
static void sbus_free_coherent(struct device *dev, size_t n, void *p,
dma_addr_t ba)
{
struct resource *res;
struct page *pgv;
@ -317,7 +317,7 @@ void sbus_free_consistent(struct device *dev, long n, void *p, u32 ba)
n = (n + PAGE_SIZE-1) & PAGE_MASK;
if ((res->end-res->start)+1 != n) {
printk("sbus_free_consistent: region 0x%lx asked 0x%lx\n",
printk("sbus_free_consistent: region 0x%lx asked 0x%zx\n",
(long)((res->end-res->start)+1), n);
return;
}
@ -337,8 +337,13 @@ void sbus_free_consistent(struct device *dev, long n, void *p, u32 ba)
* CPU view of this memory may be inconsistent with
* a device view and explicit flushing is necessary.
*/
dma_addr_t sbus_map_single(struct device *dev, void *va, size_t len, int direction)
static dma_addr_t sbus_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t len,
enum dma_data_direction dir,
struct dma_attrs *attrs)
{
void *va = page_address(page) + offset;
/* XXX why are some lengths signed, others unsigned? */
if (len <= 0) {
return 0;
@ -350,12 +355,14 @@ dma_addr_t sbus_map_single(struct device *dev, void *va, size_t len, int directi
return mmu_get_scsi_one(dev, va, len);
}
void sbus_unmap_single(struct device *dev, dma_addr_t ba, size_t n, int direction)
static void sbus_unmap_page(struct device *dev, dma_addr_t ba, size_t n,
enum dma_data_direction dir, struct dma_attrs *attrs)
{
mmu_release_scsi_one(dev, ba, n);
}
int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n, int direction)
static int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n,
enum dma_data_direction dir, struct dma_attrs *attrs)
{
mmu_get_scsi_sgl(dev, sg, n);
@ -366,19 +373,38 @@ int sbus_map_sg(struct device *dev, struct scatterlist *sg, int n, int direction
return n;
}
void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n, int direction)
static void sbus_unmap_sg(struct device *dev, struct scatterlist *sg, int n,
enum dma_data_direction dir, struct dma_attrs *attrs)
{
mmu_release_scsi_sgl(dev, sg, n);
}
void sbus_dma_sync_single_for_cpu(struct device *dev, dma_addr_t ba, size_t size, int direction)
static void sbus_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
int n, enum dma_data_direction dir)
{
BUG();
}
void sbus_dma_sync_single_for_device(struct device *dev, dma_addr_t ba, size_t size, int direction)
static void sbus_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
int n, enum dma_data_direction dir)
{
BUG();
}
struct dma_map_ops sbus_dma_ops = {
.alloc_coherent = sbus_alloc_coherent,
.free_coherent = sbus_free_coherent,
.map_page = sbus_map_page,
.unmap_page = sbus_unmap_page,
.map_sg = sbus_map_sg,
.unmap_sg = sbus_unmap_sg,
.sync_sg_for_cpu = sbus_sync_sg_for_cpu,
.sync_sg_for_device = sbus_sync_sg_for_device,
};
struct dma_map_ops *dma_ops = &sbus_dma_ops;
EXPORT_SYMBOL(dma_ops);
static int __init sparc_register_ioport(void)
{
register_proc_sparc_ioport();
@ -395,7 +421,8 @@ arch_initcall(sparc_register_ioport);
/* Allocate and map kernel buffer using consistent mode DMA for a device.
* hwdev should be valid struct pci_dev pointer for PCI devices.
*/
void *pci_alloc_consistent(struct pci_dev *pdev, size_t len, dma_addr_t *pba)
static void *pci32_alloc_coherent(struct device *dev, size_t len,
dma_addr_t *pba, gfp_t gfp)
{
unsigned long len_total = (len + PAGE_SIZE-1) & PAGE_MASK;
unsigned long va;
@ -439,7 +466,6 @@ void *pci_alloc_consistent(struct pci_dev *pdev, size_t len, dma_addr_t *pba)
*pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */
return (void *) res->start;
}
EXPORT_SYMBOL(pci_alloc_consistent);
/* Free and unmap a consistent DMA buffer.
* cpu_addr is what was returned from pci_alloc_consistent,
@ -449,7 +475,8 @@ EXPORT_SYMBOL(pci_alloc_consistent);
* References to the memory and mappings associated with cpu_addr/dma_addr
* past this call are illegal.
*/
void pci_free_consistent(struct pci_dev *pdev, size_t n, void *p, dma_addr_t ba)
static void pci32_free_coherent(struct device *dev, size_t n, void *p,
dma_addr_t ba)
{
struct resource *res;
unsigned long pgp;
@ -481,60 +508,18 @@ void pci_free_consistent(struct pci_dev *pdev, size_t n, void *p, dma_addr_t ba)
free_pages(pgp, get_order(n));
}
EXPORT_SYMBOL(pci_free_consistent);
/* Map a single buffer of the indicated size for DMA in streaming mode.
* The 32-bit bus address to use is returned.
*
* Once the device is given the dma address, the device owns this memory
* until either pci_unmap_single or pci_dma_sync_single_* is performed.
*/
dma_addr_t pci_map_single(struct pci_dev *hwdev, void *ptr, size_t size,
int direction)
{
BUG_ON(direction == PCI_DMA_NONE);
/* IIep is write-through, not flushing. */
return virt_to_phys(ptr);
}
EXPORT_SYMBOL(pci_map_single);
/* Unmap a single streaming mode DMA translation. The dma_addr and size
* must match what was provided for in a previous pci_map_single call. All
* other usages are undefined.
*
* After this call, reads by the cpu to the buffer are guaranteed to see
* whatever the device wrote there.
*/
void pci_unmap_single(struct pci_dev *hwdev, dma_addr_t ba, size_t size,
int direction)
{
BUG_ON(direction == PCI_DMA_NONE);
if (direction != PCI_DMA_TODEVICE) {
mmu_inval_dma_area((unsigned long)phys_to_virt(ba),
(size + PAGE_SIZE-1) & PAGE_MASK);
}
}
EXPORT_SYMBOL(pci_unmap_single);
/*
* Same as pci_map_single, but with pages.
*/
dma_addr_t pci_map_page(struct pci_dev *hwdev, struct page *page,
unsigned long offset, size_t size, int direction)
static dma_addr_t pci32_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
struct dma_attrs *attrs)
{
BUG_ON(direction == PCI_DMA_NONE);
/* IIep is write-through, not flushing. */
return page_to_phys(page) + offset;
}
EXPORT_SYMBOL(pci_map_page);
void pci_unmap_page(struct pci_dev *hwdev,
dma_addr_t dma_address, size_t size, int direction)
{
BUG_ON(direction == PCI_DMA_NONE);
/* mmu_inval_dma_area XXX */
}
EXPORT_SYMBOL(pci_unmap_page);
/* Map a set of buffers described by scatterlist in streaming
* mode for DMA. This is the scather-gather version of the
@ -551,13 +536,13 @@ EXPORT_SYMBOL(pci_unmap_page);
* Device ownership issues as mentioned above for pci_map_single are
* the same here.
*/
int pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sgl, int nents,
int direction)
static int pci32_map_sg(struct device *device, struct scatterlist *sgl,
int nents, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
struct scatterlist *sg;
int n;
BUG_ON(direction == PCI_DMA_NONE);
/* IIep is write-through, not flushing. */
for_each_sg(sgl, sg, nents, n) {
BUG_ON(page_address(sg_page(sg)) == NULL);
@ -566,20 +551,19 @@ int pci_map_sg(struct pci_dev *hwdev, struct scatterlist *sgl, int nents,
}
return nents;
}
EXPORT_SYMBOL(pci_map_sg);
/* Unmap a set of streaming mode DMA translations.
* Again, cpu read rules concerning calls here are the same as for
* pci_unmap_single() above.
*/
void pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sgl, int nents,
int direction)
static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir,
struct dma_attrs *attrs)
{
struct scatterlist *sg;
int n;
BUG_ON(direction == PCI_DMA_NONE);
if (direction != PCI_DMA_TODEVICE) {
if (dir != PCI_DMA_TODEVICE) {
for_each_sg(sgl, sg, nents, n) {
BUG_ON(page_address(sg_page(sg)) == NULL);
mmu_inval_dma_area(
@ -588,7 +572,6 @@ void pci_unmap_sg(struct pci_dev *hwdev, struct scatterlist *sgl, int nents,
}
}
}
EXPORT_SYMBOL(pci_unmap_sg);
/* Make physical memory consistent for a single
* streaming mode DMA translation before or after a transfer.
@ -600,25 +583,23 @@ EXPORT_SYMBOL(pci_unmap_sg);
* must first perform a pci_dma_sync_for_device, and then the
* device again owns the buffer.
*/
void pci_dma_sync_single_for_cpu(struct pci_dev *hwdev, dma_addr_t ba, size_t size, int direction)
static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba,
size_t size, enum dma_data_direction dir)
{
BUG_ON(direction == PCI_DMA_NONE);
if (direction != PCI_DMA_TODEVICE) {
if (dir != PCI_DMA_TODEVICE) {
mmu_inval_dma_area((unsigned long)phys_to_virt(ba),
(size + PAGE_SIZE-1) & PAGE_MASK);
}
}
EXPORT_SYMBOL(pci_dma_sync_single_for_cpu);
void pci_dma_sync_single_for_device(struct pci_dev *hwdev, dma_addr_t ba, size_t size, int direction)
static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba,
size_t size, enum dma_data_direction dir)
{
BUG_ON(direction == PCI_DMA_NONE);
if (direction != PCI_DMA_TODEVICE) {
if (dir != PCI_DMA_TODEVICE) {
mmu_inval_dma_area((unsigned long)phys_to_virt(ba),
(size + PAGE_SIZE-1) & PAGE_MASK);
}
}
EXPORT_SYMBOL(pci_dma_sync_single_for_device);
/* Make physical memory consistent for a set of streaming
* mode DMA translations after a transfer.
@ -626,13 +607,13 @@ EXPORT_SYMBOL(pci_dma_sync_single_for_device);
* The same as pci_dma_sync_single_* but for a scatter-gather list,
* same rules and usage.
*/
void pci_dma_sync_sg_for_cpu(struct pci_dev *hwdev, struct scatterlist *sgl, int nents, int direction)
static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int n;
BUG_ON(direction == PCI_DMA_NONE);
if (direction != PCI_DMA_TODEVICE) {
if (dir != PCI_DMA_TODEVICE) {
for_each_sg(sgl, sg, nents, n) {
BUG_ON(page_address(sg_page(sg)) == NULL);
mmu_inval_dma_area(
@ -641,15 +622,14 @@ void pci_dma_sync_sg_for_cpu(struct pci_dev *hwdev, struct scatterlist *sgl, int
}
}
}
EXPORT_SYMBOL(pci_dma_sync_sg_for_cpu);
void pci_dma_sync_sg_for_device(struct pci_dev *hwdev, struct scatterlist *sgl, int nents, int direction)
static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl,
int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int n;
BUG_ON(direction == PCI_DMA_NONE);
if (direction != PCI_DMA_TODEVICE) {
if (dir != PCI_DMA_TODEVICE) {
for_each_sg(sgl, sg, nents, n) {
BUG_ON(page_address(sg_page(sg)) == NULL);
mmu_inval_dma_area(
@ -658,9 +638,49 @@ void pci_dma_sync_sg_for_device(struct pci_dev *hwdev, struct scatterlist *sgl,
}
}
}
EXPORT_SYMBOL(pci_dma_sync_sg_for_device);
struct dma_map_ops pci32_dma_ops = {
.alloc_coherent = pci32_alloc_coherent,
.free_coherent = pci32_free_coherent,
.map_page = pci32_map_page,
.map_sg = pci32_map_sg,
.unmap_sg = pci32_unmap_sg,
.sync_single_for_cpu = pci32_sync_single_for_cpu,
.sync_single_for_device = pci32_sync_single_for_device,
.sync_sg_for_cpu = pci32_sync_sg_for_cpu,
.sync_sg_for_device = pci32_sync_sg_for_device,
};
EXPORT_SYMBOL(pci32_dma_ops);
#endif /* CONFIG_PCI */
/*
* Return whether the given PCI device DMA address mask can be
* supported properly. For example, if your device can only drive the
* low 24-bits during PCI bus mastering, then you would pass
* 0x00ffffff as the mask to this function.
*/
int dma_supported(struct device *dev, u64 mask)
{
#ifdef CONFIG_PCI
if (dev->bus == &pci_bus_type)
return 1;
#endif
return 0;
}
EXPORT_SYMBOL(dma_supported);
int dma_set_mask(struct device *dev, u64 dma_mask)
{
#ifdef CONFIG_PCI
if (dev->bus == &pci_bus_type)
return pci_set_dma_mask(to_pci_dev(dev), dma_mask);
#endif
return -EOPNOTSUPP;
}
EXPORT_SYMBOL(dma_set_mask);
#ifdef CONFIG_PROC_FS
static int

View File

@ -1039,7 +1039,7 @@ static void ali_sound_dma_hack(struct pci_dev *pdev, int set_bit)
pci_dev_put(ali_isa_bridge);
}
int pci_dma_supported(struct pci_dev *pdev, u64 device_mask)
int pci64_dma_supported(struct pci_dev *pdev, u64 device_mask)
{
u64 dma_addr_mask;

View File

@ -232,7 +232,8 @@ static void dma_4v_free_coherent(struct device *dev, size_t size, void *cpu,
static dma_addr_t dma_4v_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t sz,
enum dma_data_direction direction)
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct iommu *iommu;
unsigned long flags, npages, oaddr;
@ -296,7 +297,8 @@ iommu_map_fail:
}
static void dma_4v_unmap_page(struct device *dev, dma_addr_t bus_addr,
size_t sz, enum dma_data_direction direction)
size_t sz, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct pci_pbm_info *pbm;
struct iommu *iommu;
@ -336,7 +338,8 @@ static void dma_4v_unmap_page(struct device *dev, dma_addr_t bus_addr,
}
static int dma_4v_map_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction)
int nelems, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct scatterlist *s, *outs, *segstart;
unsigned long flags, handle, prot;
@ -478,7 +481,8 @@ iommu_map_failed:
}
static void dma_4v_unmap_sg(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction)
int nelems, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct pci_pbm_info *pbm;
struct scatterlist *sg;
@ -521,29 +525,13 @@ static void dma_4v_unmap_sg(struct device *dev, struct scatterlist *sglist,
spin_unlock_irqrestore(&iommu->lock, flags);
}
static void dma_4v_sync_single_for_cpu(struct device *dev,
dma_addr_t bus_addr, size_t sz,
enum dma_data_direction direction)
{
/* Nothing to do... */
}
static void dma_4v_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sglist, int nelems,
enum dma_data_direction direction)
{
/* Nothing to do... */
}
static const struct dma_ops sun4v_dma_ops = {
static struct dma_map_ops sun4v_dma_ops = {
.alloc_coherent = dma_4v_alloc_coherent,
.free_coherent = dma_4v_free_coherent,
.map_page = dma_4v_map_page,
.unmap_page = dma_4v_unmap_page,
.map_sg = dma_4v_map_sg,
.unmap_sg = dma_4v_unmap_sg,
.sync_single_for_cpu = dma_4v_sync_single_for_cpu,
.sync_sg_for_cpu = dma_4v_sync_sg_for_cpu,
};
static void __devinit pci_sun4v_scan_bus(struct pci_pbm_info *pbm,

View File

@ -586,7 +586,6 @@ config GART_IOMMU
bool "GART IOMMU support" if EMBEDDED
default y
select SWIOTLB
select AGP
depends on X86_64 && PCI
---help---
Support for full DMA access of devices with 32bit memory access only

View File

@ -25,6 +25,7 @@
#ifdef CONFIG_AMD_IOMMU
extern int amd_iommu_init(void);
extern int amd_iommu_init_dma_ops(void);
extern int amd_iommu_init_passthrough(void);
extern void amd_iommu_detect(void);
extern irqreturn_t amd_iommu_int_handler(int irq, void *data);
extern void amd_iommu_flush_all_domains(void);

View File

@ -143,22 +143,29 @@
#define EVT_BUFFER_SIZE 8192 /* 512 entries */
#define EVT_LEN_MASK (0x9ULL << 56)
#define PAGE_MODE_NONE 0x00
#define PAGE_MODE_1_LEVEL 0x01
#define PAGE_MODE_2_LEVEL 0x02
#define PAGE_MODE_3_LEVEL 0x03
#define PAGE_MODE_4_LEVEL 0x04
#define PAGE_MODE_5_LEVEL 0x05
#define PAGE_MODE_6_LEVEL 0x06
#define IOMMU_PDE_NL_0 0x000ULL
#define IOMMU_PDE_NL_1 0x200ULL
#define IOMMU_PDE_NL_2 0x400ULL
#define IOMMU_PDE_NL_3 0x600ULL
#define PM_LEVEL_SHIFT(x) (12 + ((x) * 9))
#define PM_LEVEL_SIZE(x) (((x) < 6) ? \
((1ULL << PM_LEVEL_SHIFT((x))) - 1): \
(0xffffffffffffffffULL))
#define PM_LEVEL_INDEX(x, a) (((a) >> PM_LEVEL_SHIFT((x))) & 0x1ffULL)
#define PM_LEVEL_ENC(x) (((x) << 9) & 0xe00ULL)
#define PM_LEVEL_PDE(x, a) ((a) | PM_LEVEL_ENC((x)) | \
IOMMU_PTE_P | IOMMU_PTE_IR | IOMMU_PTE_IW)
#define PM_PTE_LEVEL(pte) (((pte) >> 9) & 0x7ULL)
#define IOMMU_PTE_L2_INDEX(address) (((address) >> 30) & 0x1ffULL)
#define IOMMU_PTE_L1_INDEX(address) (((address) >> 21) & 0x1ffULL)
#define IOMMU_PTE_L0_INDEX(address) (((address) >> 12) & 0x1ffULL)
#define IOMMU_MAP_SIZE_L1 (1ULL << 21)
#define IOMMU_MAP_SIZE_L2 (1ULL << 30)
#define IOMMU_MAP_SIZE_L3 (1ULL << 39)
#define PM_MAP_4k 0
#define PM_ADDR_MASK 0x000ffffffffff000ULL
#define PM_MAP_MASK(lvl) (PM_ADDR_MASK & \
(~((1ULL << (12 + ((lvl) * 9))) - 1)))
#define PM_ALIGNED(lvl, addr) ((PM_MAP_MASK(lvl) & (addr)) == (addr))
#define IOMMU_PTE_P (1ULL << 0)
#define IOMMU_PTE_TV (1ULL << 1)
@ -167,11 +174,6 @@
#define IOMMU_PTE_IR (1ULL << 61)
#define IOMMU_PTE_IW (1ULL << 62)
#define IOMMU_L1_PDE(address) \
((address) | IOMMU_PDE_NL_1 | IOMMU_PTE_P | IOMMU_PTE_IR | IOMMU_PTE_IW)
#define IOMMU_L2_PDE(address) \
((address) | IOMMU_PDE_NL_2 | IOMMU_PTE_P | IOMMU_PTE_IR | IOMMU_PTE_IW)
#define IOMMU_PAGE_MASK (((1ULL << 52) - 1) & ~0xfffULL)
#define IOMMU_PTE_PRESENT(pte) ((pte) & IOMMU_PTE_P)
#define IOMMU_PTE_PAGE(pte) (phys_to_virt((pte) & IOMMU_PAGE_MASK))
@ -194,11 +196,14 @@
#define PD_DMA_OPS_MASK (1UL << 0) /* domain used for dma_ops */
#define PD_DEFAULT_MASK (1UL << 1) /* domain is a default dma_ops
domain for an IOMMU */
#define PD_PASSTHROUGH_MASK (1UL << 2) /* domain has no page
translation */
extern bool amd_iommu_dump;
#define DUMP_printk(format, arg...) \
do { \
if (amd_iommu_dump) \
printk(KERN_INFO "AMD IOMMU: " format, ## arg); \
printk(KERN_INFO "AMD-Vi: " format, ## arg); \
} while(0);
/*
@ -226,6 +231,7 @@ struct protection_domain {
int mode; /* paging mode (0-6 levels) */
u64 *pt_root; /* page table root pointer */
unsigned long flags; /* flags to find out type of domain */
bool updated; /* complete domain flush required */
unsigned dev_cnt; /* devices assigned to this domain */
void *priv; /* private data */
};
@ -337,6 +343,9 @@ struct amd_iommu {
/* if one, we need to send a completion wait command */
bool need_sync;
/* becomes true if a command buffer reset is running */
bool reset_in_progress;
/* default dma_ops domain for that IOMMU */
struct dma_ops_domain *default_dom;
};
@ -457,4 +466,7 @@ static inline void amd_iommu_stats_init(void) { }
#endif /* CONFIG_AMD_IOMMU_STATS */
/* some function prototypes */
extern void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu);
#endif /* _ASM_X86_AMD_IOMMU_TYPES_H */

View File

@ -55,6 +55,24 @@ extern int dma_set_mask(struct device *dev, u64 mask);
extern void *dma_generic_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_addr, gfp_t flag);
static inline bool dma_capable(struct device *dev, dma_addr_t addr, size_t size)
{
if (!dev->dma_mask)
return 0;
return addr + size <= *dev->dma_mask;
}
static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr)
{
return paddr;
}
static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t daddr)
{
return daddr;
}
static inline void
dma_cache_sync(struct device *dev, void *vaddr, size_t size,
enum dma_data_direction dir)

View File

@ -41,9 +41,13 @@ static DEFINE_RWLOCK(amd_iommu_devtable_lock);
static LIST_HEAD(iommu_pd_list);
static DEFINE_SPINLOCK(iommu_pd_list_lock);
#ifdef CONFIG_IOMMU_API
/*
* Domain for untranslated devices - only allocated
* if iommu=pt passed on kernel cmd line.
*/
static struct protection_domain *pt_domain;
static struct iommu_ops amd_iommu_ops;
#endif
/*
* general struct to manage commands send to an IOMMU
@ -55,16 +59,16 @@ struct iommu_cmd {
static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
struct unity_map_entry *e);
static struct dma_ops_domain *find_protection_domain(u16 devid);
static u64* alloc_pte(struct protection_domain *dom,
unsigned long address, u64
**pte_page, gfp_t gfp);
static u64 *alloc_pte(struct protection_domain *domain,
unsigned long address, int end_lvl,
u64 **pte_page, gfp_t gfp);
static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
unsigned long start_page,
unsigned int pages);
#ifndef BUS_NOTIFY_UNBOUND_DRIVER
#define BUS_NOTIFY_UNBOUND_DRIVER 0x0005
#endif
static void reset_iommu_command_buffer(struct amd_iommu *iommu);
static u64 *fetch_pte(struct protection_domain *domain,
unsigned long address, int map_size);
static void update_domain(struct protection_domain *domain);
#ifdef CONFIG_AMD_IOMMU_STATS
@ -138,7 +142,25 @@ static int iommu_has_npcache(struct amd_iommu *iommu)
*
****************************************************************************/
static void iommu_print_event(void *__evt)
static void dump_dte_entry(u16 devid)
{
int i;
for (i = 0; i < 8; ++i)
pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
amd_iommu_dev_table[devid].data[i]);
}
static void dump_command(unsigned long phys_addr)
{
struct iommu_cmd *cmd = phys_to_virt(phys_addr);
int i;
for (i = 0; i < 4; ++i)
pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
}
static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
{
u32 *event = __evt;
int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
@ -147,7 +169,7 @@ static void iommu_print_event(void *__evt)
int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
u64 address = (u64)(((u64)event[3]) << 32) | event[2];
printk(KERN_ERR "AMD IOMMU: Event logged [");
printk(KERN_ERR "AMD-Vi: Event logged [");
switch (type) {
case EVENT_TYPE_ILL_DEV:
@ -155,6 +177,7 @@ static void iommu_print_event(void *__evt)
"address=0x%016llx flags=0x%04x]\n",
PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
address, flags);
dump_dte_entry(devid);
break;
case EVENT_TYPE_IO_FAULT:
printk("IO_PAGE_FAULT device=%02x:%02x.%x "
@ -176,6 +199,8 @@ static void iommu_print_event(void *__evt)
break;
case EVENT_TYPE_ILL_CMD:
printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
reset_iommu_command_buffer(iommu);
dump_command(address);
break;
case EVENT_TYPE_CMD_HARD_ERR:
printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
@ -209,7 +234,7 @@ static void iommu_poll_events(struct amd_iommu *iommu)
tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
while (head != tail) {
iommu_print_event(iommu->evt_buf + head);
iommu_print_event(iommu, iommu->evt_buf + head);
head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
}
@ -296,8 +321,11 @@ static void __iommu_wait_for_completion(struct amd_iommu *iommu)
status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
if (unlikely(i == EXIT_LOOP_COUNT))
panic("AMD IOMMU: Completion wait loop failed\n");
if (unlikely(i == EXIT_LOOP_COUNT)) {
spin_unlock(&iommu->lock);
reset_iommu_command_buffer(iommu);
spin_lock(&iommu->lock);
}
}
/*
@ -445,47 +473,78 @@ static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
}
/*
* This function is used to flush the IO/TLB for a given protection domain
* on every IOMMU in the system
* This function flushes one domain on one IOMMU
*/
static void iommu_flush_domain(u16 domid)
static void flush_domain_on_iommu(struct amd_iommu *iommu, u16 domid)
{
unsigned long flags;
struct amd_iommu *iommu;
struct iommu_cmd cmd;
INC_STATS_COUNTER(domain_flush_all);
unsigned long flags;
__iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
domid, 1, 1);
for_each_iommu(iommu) {
spin_lock_irqsave(&iommu->lock, flags);
__iommu_queue_command(iommu, &cmd);
__iommu_completion_wait(iommu);
__iommu_wait_for_completion(iommu);
spin_unlock_irqrestore(&iommu->lock, flags);
}
}
void amd_iommu_flush_all_domains(void)
static void flush_all_domains_on_iommu(struct amd_iommu *iommu)
{
int i;
for (i = 1; i < MAX_DOMAIN_ID; ++i) {
if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
continue;
iommu_flush_domain(i);
flush_domain_on_iommu(iommu, i);
}
}
/*
* This function is used to flush the IO/TLB for a given protection domain
* on every IOMMU in the system
*/
static void iommu_flush_domain(u16 domid)
{
struct amd_iommu *iommu;
INC_STATS_COUNTER(domain_flush_all);
for_each_iommu(iommu)
flush_domain_on_iommu(iommu, domid);
}
void amd_iommu_flush_all_domains(void)
{
struct amd_iommu *iommu;
for_each_iommu(iommu)
flush_all_domains_on_iommu(iommu);
}
static void flush_all_devices_for_iommu(struct amd_iommu *iommu)
{
int i;
for (i = 0; i <= amd_iommu_last_bdf; ++i) {
if (iommu != amd_iommu_rlookup_table[i])
continue;
iommu_queue_inv_dev_entry(iommu, i);
iommu_completion_wait(iommu);
}
}
void amd_iommu_flush_all_devices(void)
static void flush_devices_by_domain(struct protection_domain *domain)
{
struct amd_iommu *iommu;
int i;
for (i = 0; i <= amd_iommu_last_bdf; ++i) {
if (amd_iommu_pd_table[i] == NULL)
if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
(amd_iommu_pd_table[i] != domain))
continue;
iommu = amd_iommu_rlookup_table[i];
@ -497,6 +556,27 @@ void amd_iommu_flush_all_devices(void)
}
}
static void reset_iommu_command_buffer(struct amd_iommu *iommu)
{
pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
if (iommu->reset_in_progress)
panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
iommu->reset_in_progress = true;
amd_iommu_reset_cmd_buffer(iommu);
flush_all_devices_for_iommu(iommu);
flush_all_domains_on_iommu(iommu);
iommu->reset_in_progress = false;
}
void amd_iommu_flush_all_devices(void)
{
flush_devices_by_domain(NULL);
}
/****************************************************************************
*
* The functions below are used the create the page table mappings for
@ -514,18 +594,21 @@ void amd_iommu_flush_all_devices(void)
static int iommu_map_page(struct protection_domain *dom,
unsigned long bus_addr,
unsigned long phys_addr,
int prot)
int prot,
int map_size)
{
u64 __pte, *pte;
bus_addr = PAGE_ALIGN(bus_addr);
phys_addr = PAGE_ALIGN(phys_addr);
/* only support 512GB address spaces for now */
if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
BUG_ON(!PM_ALIGNED(map_size, bus_addr));
BUG_ON(!PM_ALIGNED(map_size, phys_addr));
if (!(prot & IOMMU_PROT_MASK))
return -EINVAL;
pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
pte = alloc_pte(dom, bus_addr, map_size, NULL, GFP_KERNEL);
if (IOMMU_PTE_PRESENT(*pte))
return -EBUSY;
@ -538,28 +621,17 @@ static int iommu_map_page(struct protection_domain *dom,
*pte = __pte;
update_domain(dom);
return 0;
}
static void iommu_unmap_page(struct protection_domain *dom,
unsigned long bus_addr)
unsigned long bus_addr, int map_size)
{
u64 *pte;
pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
if (!IOMMU_PTE_PRESENT(*pte))
return;
pte = IOMMU_PTE_PAGE(*pte);
pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
if (!IOMMU_PTE_PRESENT(*pte))
return;
pte = IOMMU_PTE_PAGE(*pte);
pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
u64 *pte = fetch_pte(dom, bus_addr, map_size);
if (pte)
*pte = 0;
}
@ -615,7 +687,8 @@ static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
for (addr = e->address_start; addr < e->address_end;
addr += PAGE_SIZE) {
ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
PM_MAP_4k);
if (ret)
return ret;
/*
@ -671,23 +744,28 @@ static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
* there is one, it returns the pointer to it.
*/
static u64 *fetch_pte(struct protection_domain *domain,
unsigned long address)
unsigned long address, int map_size)
{
int level;
u64 *pte;
pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(address)];
level = domain->mode - 1;
pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
while (level > map_size) {
if (!IOMMU_PTE_PRESENT(*pte))
return NULL;
pte = IOMMU_PTE_PAGE(*pte);
pte = &pte[IOMMU_PTE_L1_INDEX(address)];
if (!IOMMU_PTE_PRESENT(*pte))
return NULL;
level -= 1;
pte = IOMMU_PTE_PAGE(*pte);
pte = &pte[IOMMU_PTE_L0_INDEX(address)];
pte = &pte[PM_LEVEL_INDEX(level, address)];
if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) {
pte = NULL;
break;
}
}
return pte;
}
@ -727,7 +805,7 @@ static int alloc_new_range(struct amd_iommu *iommu,
u64 *pte, *pte_page;
for (i = 0; i < num_ptes; ++i) {
pte = alloc_pte(&dma_dom->domain, address,
pte = alloc_pte(&dma_dom->domain, address, PM_MAP_4k,
&pte_page, gfp);
if (!pte)
goto out_free;
@ -760,16 +838,20 @@ static int alloc_new_range(struct amd_iommu *iommu,
for (i = dma_dom->aperture[index]->offset;
i < dma_dom->aperture_size;
i += PAGE_SIZE) {
u64 *pte = fetch_pte(&dma_dom->domain, i);
u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k);
if (!pte || !IOMMU_PTE_PRESENT(*pte))
continue;
dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
}
update_domain(&dma_dom->domain);
return 0;
out_free:
update_domain(&dma_dom->domain);
free_page((unsigned long)dma_dom->aperture[index]->bitmap);
kfree(dma_dom->aperture[index]);
@ -1009,7 +1091,7 @@ static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
dma_dom->domain.id = domain_id_alloc();
if (dma_dom->domain.id == 0)
goto free_dma_dom;
dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
dma_dom->domain.flags = PD_DMA_OPS_MASK;
dma_dom->domain.priv = dma_dom;
@ -1063,6 +1145,41 @@ static struct protection_domain *domain_for_device(u16 devid)
return dom;
}
static void set_dte_entry(u16 devid, struct protection_domain *domain)
{
u64 pte_root = virt_to_phys(domain->pt_root);
pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
<< DEV_ENTRY_MODE_SHIFT;
pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
amd_iommu_dev_table[devid].data[2] = domain->id;
amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
amd_iommu_pd_table[devid] = domain;
}
/*
* If a device is not yet associated with a domain, this function does
* assigns it visible for the hardware
*/
static void __attach_device(struct amd_iommu *iommu,
struct protection_domain *domain,
u16 devid)
{
/* lock domain */
spin_lock(&domain->lock);
/* update DTE entry */
set_dte_entry(devid, domain);
domain->dev_cnt += 1;
/* ready */
spin_unlock(&domain->lock);
}
/*
* If a device is not yet associated with a domain, this function does
* assigns it visible for the hardware
@ -1072,20 +1189,9 @@ static void attach_device(struct amd_iommu *iommu,
u16 devid)
{
unsigned long flags;
u64 pte_root = virt_to_phys(domain->pt_root);
domain->dev_cnt += 1;
pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
<< DEV_ENTRY_MODE_SHIFT;
pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
amd_iommu_dev_table[devid].data[2] = domain->id;
amd_iommu_pd_table[devid] = domain;
__attach_device(iommu, domain, devid);
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
/*
@ -1119,6 +1225,15 @@ static void __detach_device(struct protection_domain *domain, u16 devid)
/* ready */
spin_unlock(&domain->lock);
/*
* If we run in passthrough mode the device must be assigned to the
* passthrough domain if it is detached from any other domain
*/
if (iommu_pass_through) {
struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
__attach_device(iommu, pt_domain, devid);
}
}
/*
@ -1164,6 +1279,8 @@ static int device_change_notifier(struct notifier_block *nb,
case BUS_NOTIFY_UNBOUND_DRIVER:
if (!domain)
goto out;
if (iommu_pass_through)
break;
detach_device(domain, devid);
break;
case BUS_NOTIFY_ADD_DEVICE:
@ -1292,39 +1409,91 @@ static int get_device_resources(struct device *dev,
return 1;
}
static void update_device_table(struct protection_domain *domain)
{
unsigned long flags;
int i;
for (i = 0; i <= amd_iommu_last_bdf; ++i) {
if (amd_iommu_pd_table[i] != domain)
continue;
write_lock_irqsave(&amd_iommu_devtable_lock, flags);
set_dte_entry(i, domain);
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
}
static void update_domain(struct protection_domain *domain)
{
if (!domain->updated)
return;
update_device_table(domain);
flush_devices_by_domain(domain);
iommu_flush_domain(domain->id);
domain->updated = false;
}
/*
* If the pte_page is not yet allocated this function is called
* This function is used to add another level to an IO page table. Adding
* another level increases the size of the address space by 9 bits to a size up
* to 64 bits.
*/
static u64* alloc_pte(struct protection_domain *dom,
unsigned long address, u64 **pte_page, gfp_t gfp)
static bool increase_address_space(struct protection_domain *domain,
gfp_t gfp)
{
u64 *pte;
if (domain->mode == PAGE_MODE_6_LEVEL)
/* address space already 64 bit large */
return false;
pte = (void *)get_zeroed_page(gfp);
if (!pte)
return false;
*pte = PM_LEVEL_PDE(domain->mode,
virt_to_phys(domain->pt_root));
domain->pt_root = pte;
domain->mode += 1;
domain->updated = true;
return true;
}
static u64 *alloc_pte(struct protection_domain *domain,
unsigned long address,
int end_lvl,
u64 **pte_page,
gfp_t gfp)
{
u64 *pte, *page;
int level;
pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];
while (address > PM_LEVEL_SIZE(domain->mode))
increase_address_space(domain, gfp);
level = domain->mode - 1;
pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
while (level > end_lvl) {
if (!IOMMU_PTE_PRESENT(*pte)) {
page = (u64 *)get_zeroed_page(gfp);
if (!page)
return NULL;
*pte = IOMMU_L2_PDE(virt_to_phys(page));
*pte = PM_LEVEL_PDE(level, virt_to_phys(page));
}
pte = IOMMU_PTE_PAGE(*pte);
pte = &pte[IOMMU_PTE_L1_INDEX(address)];
if (!IOMMU_PTE_PRESENT(*pte)) {
page = (u64 *)get_zeroed_page(gfp);
if (!page)
return NULL;
*pte = IOMMU_L1_PDE(virt_to_phys(page));
}
level -= 1;
pte = IOMMU_PTE_PAGE(*pte);
if (pte_page)
if (pte_page && level == end_lvl)
*pte_page = pte;
pte = &pte[IOMMU_PTE_L0_INDEX(address)];
pte = &pte[PM_LEVEL_INDEX(level, address)];
}
return pte;
}
@ -1344,10 +1513,13 @@ static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
if (!pte) {
pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
pte = alloc_pte(&dom->domain, address, PM_MAP_4k, &pte_page,
GFP_ATOMIC);
aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
} else
pte += IOMMU_PTE_L0_INDEX(address);
pte += PM_LEVEL_INDEX(0, address);
update_domain(&dom->domain);
return pte;
}
@ -1409,7 +1581,7 @@ static void dma_ops_domain_unmap(struct amd_iommu *iommu,
if (!pte)
return;
pte += IOMMU_PTE_L0_INDEX(address);
pte += PM_LEVEL_INDEX(0, address);
WARN_ON(!*pte);
@ -1988,19 +2160,47 @@ static void cleanup_domain(struct protection_domain *domain)
write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
}
static int amd_iommu_domain_init(struct iommu_domain *dom)
static void protection_domain_free(struct protection_domain *domain)
{
if (!domain)
return;
if (domain->id)
domain_id_free(domain->id);
kfree(domain);
}
static struct protection_domain *protection_domain_alloc(void)
{
struct protection_domain *domain;
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
if (!domain)
return -ENOMEM;
return NULL;
spin_lock_init(&domain->lock);
domain->mode = PAGE_MODE_3_LEVEL;
domain->id = domain_id_alloc();
if (!domain->id)
goto out_err;
return domain;
out_err:
kfree(domain);
return NULL;
}
static int amd_iommu_domain_init(struct iommu_domain *dom)
{
struct protection_domain *domain;
domain = protection_domain_alloc();
if (!domain)
goto out_free;
domain->mode = PAGE_MODE_3_LEVEL;
domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
if (!domain->pt_root)
goto out_free;
@ -2010,7 +2210,7 @@ static int amd_iommu_domain_init(struct iommu_domain *dom)
return 0;
out_free:
kfree(domain);
protection_domain_free(domain);
return -ENOMEM;
}
@ -2115,7 +2315,7 @@ static int amd_iommu_map_range(struct iommu_domain *dom,
paddr &= PAGE_MASK;
for (i = 0; i < npages; ++i) {
ret = iommu_map_page(domain, iova, paddr, prot);
ret = iommu_map_page(domain, iova, paddr, prot, PM_MAP_4k);
if (ret)
return ret;
@ -2136,7 +2336,7 @@ static void amd_iommu_unmap_range(struct iommu_domain *dom,
iova &= PAGE_MASK;
for (i = 0; i < npages; ++i) {
iommu_unmap_page(domain, iova);
iommu_unmap_page(domain, iova, PM_MAP_4k);
iova += PAGE_SIZE;
}
@ -2151,21 +2351,9 @@ static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
phys_addr_t paddr;
u64 *pte;
pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];
pte = fetch_pte(domain, iova, PM_MAP_4k);
if (!IOMMU_PTE_PRESENT(*pte))
return 0;
pte = IOMMU_PTE_PAGE(*pte);
pte = &pte[IOMMU_PTE_L1_INDEX(iova)];
if (!IOMMU_PTE_PRESENT(*pte))
return 0;
pte = IOMMU_PTE_PAGE(*pte);
pte = &pte[IOMMU_PTE_L0_INDEX(iova)];
if (!IOMMU_PTE_PRESENT(*pte))
if (!pte || !IOMMU_PTE_PRESENT(*pte))
return 0;
paddr = *pte & IOMMU_PAGE_MASK;
@ -2191,3 +2379,46 @@ static struct iommu_ops amd_iommu_ops = {
.domain_has_cap = amd_iommu_domain_has_cap,
};
/*****************************************************************************
*
* The next functions do a basic initialization of IOMMU for pass through
* mode
*
* In passthrough mode the IOMMU is initialized and enabled but not used for
* DMA-API translation.
*
*****************************************************************************/
int __init amd_iommu_init_passthrough(void)
{
struct pci_dev *dev = NULL;
u16 devid, devid2;
/* allocate passthroug domain */
pt_domain = protection_domain_alloc();
if (!pt_domain)
return -ENOMEM;
pt_domain->mode |= PAGE_MODE_NONE;
while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
struct amd_iommu *iommu;
devid = calc_devid(dev->bus->number, dev->devfn);
if (devid > amd_iommu_last_bdf)
continue;
devid2 = amd_iommu_alias_table[devid];
iommu = amd_iommu_rlookup_table[devid2];
if (!iommu)
continue;
__attach_device(iommu, pt_domain, devid);
__attach_device(iommu, pt_domain, devid2);
}
pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
return 0;
}

View File

@ -252,7 +252,7 @@ static void __init iommu_feature_disable(struct amd_iommu *iommu, u8 bit)
/* Function to enable the hardware */
static void iommu_enable(struct amd_iommu *iommu)
{
printk(KERN_INFO "AMD IOMMU: Enabling IOMMU at %s cap 0x%hx\n",
printk(KERN_INFO "AMD-Vi: Enabling IOMMU at %s cap 0x%hx\n",
dev_name(&iommu->dev->dev), iommu->cap_ptr);
iommu_feature_enable(iommu, CONTROL_IOMMU_EN);
@ -434,6 +434,20 @@ static u8 * __init alloc_command_buffer(struct amd_iommu *iommu)
return cmd_buf;
}
/*
* This function resets the command buffer if the IOMMU stopped fetching
* commands from it.
*/
void amd_iommu_reset_cmd_buffer(struct amd_iommu *iommu)
{
iommu_feature_disable(iommu, CONTROL_CMDBUF_EN);
writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
}
/*
* This function writes the command buffer address to the hardware and
* enables it.
@ -450,11 +464,7 @@ static void iommu_enable_command_buffer(struct amd_iommu *iommu)
memcpy_toio(iommu->mmio_base + MMIO_CMD_BUF_OFFSET,
&entry, sizeof(entry));
/* set head and tail to zero manually */
writel(0x00, iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
writel(0x00, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
iommu_feature_enable(iommu, CONTROL_CMDBUF_EN);
amd_iommu_reset_cmd_buffer(iommu);
}
static void __init free_command_buffer(struct amd_iommu *iommu)
@ -858,7 +868,7 @@ static int __init init_iommu_all(struct acpi_table_header *table)
switch (*p) {
case ACPI_IVHD_TYPE:
DUMP_printk("IOMMU: device: %02x:%02x.%01x cap: %04x "
DUMP_printk("device: %02x:%02x.%01x cap: %04x "
"seg: %d flags: %01x info %04x\n",
PCI_BUS(h->devid), PCI_SLOT(h->devid),
PCI_FUNC(h->devid), h->cap_ptr,
@ -902,7 +912,7 @@ static int __init iommu_setup_msi(struct amd_iommu *iommu)
r = request_irq(iommu->dev->irq, amd_iommu_int_handler,
IRQF_SAMPLE_RANDOM,
"AMD IOMMU",
"AMD-Vi",
NULL);
if (r) {
@ -1150,7 +1160,7 @@ int __init amd_iommu_init(void)
if (no_iommu) {
printk(KERN_INFO "AMD IOMMU disabled by kernel command line\n");
printk(KERN_INFO "AMD-Vi disabled by kernel command line\n");
return 0;
}
@ -1242,22 +1252,28 @@ int __init amd_iommu_init(void)
if (ret)
goto free;
if (iommu_pass_through)
ret = amd_iommu_init_passthrough();
else
ret = amd_iommu_init_dma_ops();
if (ret)
goto free;
enable_iommus();
printk(KERN_INFO "AMD IOMMU: device isolation ");
if (iommu_pass_through)
goto out;
printk(KERN_INFO "AMD-Vi: device isolation ");
if (amd_iommu_isolate)
printk("enabled\n");
else
printk("disabled\n");
if (amd_iommu_unmap_flush)
printk(KERN_INFO "AMD IOMMU: IO/TLB flush on unmap enabled\n");
printk(KERN_INFO "AMD-Vi: IO/TLB flush on unmap enabled\n");
else
printk(KERN_INFO "AMD IOMMU: Lazy IO/TLB flushing enabled\n");
printk(KERN_INFO "AMD-Vi: Lazy IO/TLB flushing enabled\n");
out:
return ret;

View File

@ -33,7 +33,14 @@ int no_iommu __read_mostly;
/* Set this to 1 if there is a HW IOMMU in the system */
int iommu_detected __read_mostly = 0;
int iommu_pass_through;
/*
* This variable becomes 1 if iommu=pt is passed on the kernel command line.
* If this variable is 1, IOMMU implementations do no DMA ranslation for
* devices and allow every device to access to whole physical memory. This is
* useful if a user want to use an IOMMU only for KVM device assignment to
* guests and not for driver dma translation.
*/
int iommu_pass_through __read_mostly;
dma_addr_t bad_dma_address __read_mostly = 0;
EXPORT_SYMBOL(bad_dma_address);
@ -153,7 +160,7 @@ again:
return NULL;
addr = page_to_phys(page);
if (!is_buffer_dma_capable(dma_mask, addr, size)) {
if (addr + size > dma_mask) {
__free_pages(page, get_order(size));
if (dma_mask < DMA_BIT_MASK(32) && !(flag & GFP_DMA)) {

View File

@ -190,14 +190,13 @@ static void iommu_full(struct device *dev, size_t size, int dir)
static inline int
need_iommu(struct device *dev, unsigned long addr, size_t size)
{
return force_iommu ||
!is_buffer_dma_capable(*dev->dma_mask, addr, size);
return force_iommu || !dma_capable(dev, addr, size);
}
static inline int
nonforced_iommu(struct device *dev, unsigned long addr, size_t size)
{
return !is_buffer_dma_capable(*dev->dma_mask, addr, size);
return !dma_capable(dev, addr, size);
}
/* Map a single continuous physical area into the IOMMU.

View File

@ -14,7 +14,7 @@
static int
check_addr(char *name, struct device *hwdev, dma_addr_t bus, size_t size)
{
if (hwdev && !is_buffer_dma_capable(*hwdev->dma_mask, bus, size)) {
if (hwdev && !dma_capable(hwdev, bus, size)) {
if (*hwdev->dma_mask >= DMA_BIT_MASK(32))
printk(KERN_ERR
"nommu_%s: overflow %Lx+%zu of device mask %Lx\n",
@ -79,11 +79,28 @@ static void nommu_free_coherent(struct device *dev, size_t size, void *vaddr,
free_pages((unsigned long)vaddr, get_order(size));
}
static void nommu_sync_single_for_device(struct device *dev,
dma_addr_t addr, size_t size,
enum dma_data_direction dir)
{
flush_write_buffers();
}
static void nommu_sync_sg_for_device(struct device *dev,
struct scatterlist *sg, int nelems,
enum dma_data_direction dir)
{
flush_write_buffers();
}
struct dma_map_ops nommu_dma_ops = {
.alloc_coherent = dma_generic_alloc_coherent,
.free_coherent = nommu_free_coherent,
.map_sg = nommu_map_sg,
.map_page = nommu_map_page,
.sync_single_for_device = nommu_sync_single_for_device,
.sync_sg_for_device = nommu_sync_sg_for_device,
.is_phys = 1,
};

View File

@ -13,31 +13,6 @@
int swiotlb __read_mostly;
void * __init swiotlb_alloc_boot(size_t size, unsigned long nslabs)
{
return alloc_bootmem_low_pages(size);
}
void *swiotlb_alloc(unsigned order, unsigned long nslabs)
{
return (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, order);
}
dma_addr_t swiotlb_phys_to_bus(struct device *hwdev, phys_addr_t paddr)
{
return paddr;
}
phys_addr_t swiotlb_bus_to_phys(struct device *hwdev, dma_addr_t baddr)
{
return baddr;
}
int __weak swiotlb_arch_range_needs_mapping(phys_addr_t paddr, size_t size)
{
return 0;
}
static void *x86_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
dma_addr_t *dma_handle, gfp_t flags)
{

View File

@ -103,7 +103,6 @@ static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
if (ops->sync_single_for_cpu)
ops->sync_single_for_cpu(dev, addr, size, dir);
debug_dma_sync_single_for_cpu(dev, addr, size, dir);
flush_write_buffers();
}
static inline void dma_sync_single_for_device(struct device *dev,
@ -116,7 +115,6 @@ static inline void dma_sync_single_for_device(struct device *dev,
if (ops->sync_single_for_device)
ops->sync_single_for_device(dev, addr, size, dir);
debug_dma_sync_single_for_device(dev, addr, size, dir);
flush_write_buffers();
}
static inline void dma_sync_single_range_for_cpu(struct device *dev,
@ -132,7 +130,6 @@ static inline void dma_sync_single_range_for_cpu(struct device *dev,
ops->sync_single_range_for_cpu(dev, addr, offset, size, dir);
debug_dma_sync_single_range_for_cpu(dev, addr, offset, size, dir);
flush_write_buffers();
} else
dma_sync_single_for_cpu(dev, addr, size, dir);
}
@ -150,7 +147,6 @@ static inline void dma_sync_single_range_for_device(struct device *dev,
ops->sync_single_range_for_device(dev, addr, offset, size, dir);
debug_dma_sync_single_range_for_device(dev, addr, offset, size, dir);
flush_write_buffers();
} else
dma_sync_single_for_device(dev, addr, size, dir);
}
@ -165,7 +161,6 @@ dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
if (ops->sync_sg_for_cpu)
ops->sync_sg_for_cpu(dev, sg, nelems, dir);
debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
flush_write_buffers();
}
static inline void
@ -179,7 +174,6 @@ dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
ops->sync_sg_for_device(dev, sg, nelems, dir);
debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
flush_write_buffers();
}
#define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, NULL)

View File

@ -98,11 +98,6 @@ static inline int is_device_dma_capable(struct device *dev)
return dev->dma_mask != NULL && *dev->dma_mask != DMA_MASK_NONE;
}
static inline int is_buffer_dma_capable(u64 mask, dma_addr_t addr, size_t size)
{
return addr + size <= mask;
}
#ifdef CONFIG_HAS_DMA
#include <asm/dma-mapping.h>
#else

View File

@ -14,7 +14,6 @@ struct scatterlist;
*/
#define IO_TLB_SEGSIZE 128
/*
* log of the size of each IO TLB slab. The number of slabs is command line
* controllable.
@ -24,16 +23,6 @@ struct scatterlist;
extern void
swiotlb_init(void);
extern void *swiotlb_alloc_boot(size_t bytes, unsigned long nslabs);
extern void *swiotlb_alloc(unsigned order, unsigned long nslabs);
extern dma_addr_t swiotlb_phys_to_bus(struct device *hwdev,
phys_addr_t address);
extern phys_addr_t swiotlb_bus_to_phys(struct device *hwdev,
dma_addr_t address);
extern int swiotlb_arch_range_needs_mapping(phys_addr_t paddr, size_t size);
extern void
*swiotlb_alloc_coherent(struct device *hwdev, size_t size,
dma_addr_t *dma_handle, gfp_t flags);

View File

@ -114,46 +114,11 @@ setup_io_tlb_npages(char *str)
__setup("swiotlb=", setup_io_tlb_npages);
/* make io_tlb_overflow tunable too? */
void * __weak __init swiotlb_alloc_boot(size_t size, unsigned long nslabs)
{
return alloc_bootmem_low_pages(size);
}
void * __weak swiotlb_alloc(unsigned order, unsigned long nslabs)
{
return (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN, order);
}
dma_addr_t __weak swiotlb_phys_to_bus(struct device *hwdev, phys_addr_t paddr)
{
return paddr;
}
phys_addr_t __weak swiotlb_bus_to_phys(struct device *hwdev, dma_addr_t baddr)
{
return baddr;
}
/* Note that this doesn't work with highmem page */
static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
volatile void *address)
{
return swiotlb_phys_to_bus(hwdev, virt_to_phys(address));
}
void * __weak swiotlb_bus_to_virt(struct device *hwdev, dma_addr_t address)
{
return phys_to_virt(swiotlb_bus_to_phys(hwdev, address));
}
int __weak swiotlb_arch_address_needs_mapping(struct device *hwdev,
dma_addr_t addr, size_t size)
{
return !is_buffer_dma_capable(dma_get_mask(hwdev), addr, size);
}
int __weak swiotlb_arch_range_needs_mapping(phys_addr_t paddr, size_t size)
{
return 0;
return phys_to_dma(hwdev, virt_to_phys(address));
}
static void swiotlb_print_info(unsigned long bytes)
@ -189,7 +154,7 @@ swiotlb_init_with_default_size(size_t default_size)
/*
* Get IO TLB memory from the low pages
*/
io_tlb_start = swiotlb_alloc_boot(bytes, io_tlb_nslabs);
io_tlb_start = alloc_bootmem_low_pages(bytes);
if (!io_tlb_start)
panic("Cannot allocate SWIOTLB buffer");
io_tlb_end = io_tlb_start + bytes;
@ -245,7 +210,8 @@ swiotlb_late_init_with_default_size(size_t default_size)
bytes = io_tlb_nslabs << IO_TLB_SHIFT;
while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
io_tlb_start = swiotlb_alloc(order, io_tlb_nslabs);
io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
order);
if (io_tlb_start)
break;
order--;
@ -315,20 +281,10 @@ cleanup1:
return -ENOMEM;
}
static inline int
address_needs_mapping(struct device *hwdev, dma_addr_t addr, size_t size)
static int is_swiotlb_buffer(phys_addr_t paddr)
{
return swiotlb_arch_address_needs_mapping(hwdev, addr, size);
}
static inline int range_needs_mapping(phys_addr_t paddr, size_t size)
{
return swiotlb_force || swiotlb_arch_range_needs_mapping(paddr, size);
}
static int is_swiotlb_buffer(char *addr)
{
return addr >= io_tlb_start && addr < io_tlb_end;
return paddr >= virt_to_phys(io_tlb_start) &&
paddr < virt_to_phys(io_tlb_end);
}
/*
@ -561,9 +517,7 @@ swiotlb_alloc_coherent(struct device *hwdev, size_t size,
dma_mask = hwdev->coherent_dma_mask;
ret = (void *)__get_free_pages(flags, order);
if (ret &&
!is_buffer_dma_capable(dma_mask, swiotlb_virt_to_bus(hwdev, ret),
size)) {
if (ret && swiotlb_virt_to_bus(hwdev, ret) + size > dma_mask) {
/*
* The allocated memory isn't reachable by the device.
*/
@ -585,7 +539,7 @@ swiotlb_alloc_coherent(struct device *hwdev, size_t size,
dev_addr = swiotlb_virt_to_bus(hwdev, ret);
/* Confirm address can be DMA'd by device */
if (!is_buffer_dma_capable(dma_mask, dev_addr, size)) {
if (dev_addr + size > dma_mask) {
printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
(unsigned long long)dma_mask,
(unsigned long long)dev_addr);
@ -601,10 +555,12 @@ EXPORT_SYMBOL(swiotlb_alloc_coherent);
void
swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
dma_addr_t dma_handle)
dma_addr_t dev_addr)
{
phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
WARN_ON(irqs_disabled());
if (!is_swiotlb_buffer(vaddr))
if (!is_swiotlb_buffer(paddr))
free_pages((unsigned long)vaddr, get_order(size));
else
/* DMA_TO_DEVICE to avoid memcpy in unmap_single */
@ -625,12 +581,15 @@ swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
"device %s\n", size, dev ? dev_name(dev) : "?");
if (size > io_tlb_overflow && do_panic) {
if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
panic("DMA: Memory would be corrupted\n");
if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
panic("DMA: Random memory would be DMAed\n");
}
if (size <= io_tlb_overflow || !do_panic)
return;
if (dir == DMA_BIDIRECTIONAL)
panic("DMA: Random memory could be DMA accessed\n");
if (dir == DMA_FROM_DEVICE)
panic("DMA: Random memory could be DMA written\n");
if (dir == DMA_TO_DEVICE)
panic("DMA: Random memory could be DMA read\n");
}
/*
@ -646,7 +605,7 @@ dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
struct dma_attrs *attrs)
{
phys_addr_t phys = page_to_phys(page) + offset;
dma_addr_t dev_addr = swiotlb_phys_to_bus(dev, phys);
dma_addr_t dev_addr = phys_to_dma(dev, phys);
void *map;
BUG_ON(dir == DMA_NONE);
@ -655,8 +614,7 @@ dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
* we can safely return the device addr and not worry about bounce
* buffering it.
*/
if (!address_needs_mapping(dev, dev_addr, size) &&
!range_needs_mapping(phys, size))
if (dma_capable(dev, dev_addr, size) && !swiotlb_force)
return dev_addr;
/*
@ -673,7 +631,7 @@ dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
/*
* Ensure that the address returned is DMA'ble
*/
if (address_needs_mapping(dev, dev_addr, size))
if (!dma_capable(dev, dev_addr, size))
panic("map_single: bounce buffer is not DMA'ble");
return dev_addr;
@ -691,19 +649,25 @@ EXPORT_SYMBOL_GPL(swiotlb_map_page);
static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
size_t size, int dir)
{
char *dma_addr = swiotlb_bus_to_virt(hwdev, dev_addr);
phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
BUG_ON(dir == DMA_NONE);
if (is_swiotlb_buffer(dma_addr)) {
do_unmap_single(hwdev, dma_addr, size, dir);
if (is_swiotlb_buffer(paddr)) {
do_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
return;
}
if (dir != DMA_FROM_DEVICE)
return;
dma_mark_clean(dma_addr, size);
/*
* phys_to_virt doesn't work with hihgmem page but we could
* call dma_mark_clean() with hihgmem page here. However, we
* are fine since dma_mark_clean() is null on POWERPC. We can
* make dma_mark_clean() take a physical address if necessary.
*/
dma_mark_clean(phys_to_virt(paddr), size);
}
void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
@ -728,19 +692,19 @@ static void
swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
size_t size, int dir, int target)
{
char *dma_addr = swiotlb_bus_to_virt(hwdev, dev_addr);
phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
BUG_ON(dir == DMA_NONE);
if (is_swiotlb_buffer(dma_addr)) {
sync_single(hwdev, dma_addr, size, dir, target);
if (is_swiotlb_buffer(paddr)) {
sync_single(hwdev, phys_to_virt(paddr), size, dir, target);
return;
}
if (dir != DMA_FROM_DEVICE)
return;
dma_mark_clean(dma_addr, size);
dma_mark_clean(phys_to_virt(paddr), size);
}
void
@ -817,10 +781,10 @@ swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
for_each_sg(sgl, sg, nelems, i) {
phys_addr_t paddr = sg_phys(sg);
dma_addr_t dev_addr = swiotlb_phys_to_bus(hwdev, paddr);
dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
if (range_needs_mapping(paddr, sg->length) ||
address_needs_mapping(hwdev, dev_addr, sg->length)) {
if (swiotlb_force ||
!dma_capable(hwdev, dev_addr, sg->length)) {
void *map = map_single(hwdev, sg_phys(sg),
sg->length, dir);
if (!map) {