kvm: x86/mmu: Support dirty logging for the TDP MMU
Dirty logging is a key feature of the KVM MMU and must be supported by the TDP MMU. Add support for both the write protection and PML dirty logging modes. Tested by running kvm-unit-tests and KVM selftests on an Intel Haswell machine. This series introduced no new failures. This series can be viewed in Gerrit at: https://linux-review.googlesource.com/c/virt/kvm/kvm/+/2538 Signed-off-by: Ben Gardon <bgardon@google.com> Message-Id: <20201014182700.2888246-16-bgardon@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
parent
1d8dd6b3f1
commit
a6a0b05da9
@ -1223,6 +1223,9 @@ static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
|
||||
{
|
||||
struct kvm_rmap_head *rmap_head;
|
||||
|
||||
if (kvm->arch.tdp_mmu_enabled)
|
||||
kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
|
||||
slot->base_gfn + gfn_offset, mask, true);
|
||||
while (mask) {
|
||||
rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
|
||||
PG_LEVEL_4K, slot);
|
||||
@ -1249,6 +1252,9 @@ void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
|
||||
{
|
||||
struct kvm_rmap_head *rmap_head;
|
||||
|
||||
if (kvm->arch.tdp_mmu_enabled)
|
||||
kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
|
||||
slot->base_gfn + gfn_offset, mask, false);
|
||||
while (mask) {
|
||||
rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
|
||||
PG_LEVEL_4K, slot);
|
||||
@ -5473,6 +5479,8 @@ void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
|
||||
spin_lock(&kvm->mmu_lock);
|
||||
flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
|
||||
start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
|
||||
if (kvm->arch.tdp_mmu_enabled)
|
||||
flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
|
||||
spin_unlock(&kvm->mmu_lock);
|
||||
|
||||
/*
|
||||
@ -5561,6 +5569,8 @@ void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
|
||||
|
||||
spin_lock(&kvm->mmu_lock);
|
||||
flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
|
||||
if (kvm->arch.tdp_mmu_enabled)
|
||||
flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
|
||||
spin_unlock(&kvm->mmu_lock);
|
||||
|
||||
/*
|
||||
@ -5582,6 +5592,8 @@ void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
|
||||
spin_lock(&kvm->mmu_lock);
|
||||
flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
|
||||
false);
|
||||
if (kvm->arch.tdp_mmu_enabled)
|
||||
flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
|
||||
spin_unlock(&kvm->mmu_lock);
|
||||
|
||||
if (flush)
|
||||
@ -5596,6 +5608,8 @@ void kvm_mmu_slot_set_dirty(struct kvm *kvm,
|
||||
|
||||
spin_lock(&kvm->mmu_lock);
|
||||
flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
|
||||
if (kvm->arch.tdp_mmu_enabled)
|
||||
flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
|
||||
spin_unlock(&kvm->mmu_lock);
|
||||
|
||||
if (flush)
|
||||
|
@ -41,11 +41,14 @@ struct tdp_iter {
|
||||
* Iterates over every SPTE mapping the GFN range [start, end) in a
|
||||
* preorder traversal.
|
||||
*/
|
||||
#define for_each_tdp_pte(iter, root, root_level, start, end) \
|
||||
for (tdp_iter_start(&iter, root, root_level, PG_LEVEL_4K, start); \
|
||||
#define for_each_tdp_pte_min_level(iter, root, root_level, min_level, start, end) \
|
||||
for (tdp_iter_start(&iter, root, root_level, min_level, start); \
|
||||
iter.valid && iter.gfn < end; \
|
||||
tdp_iter_next(&iter))
|
||||
|
||||
#define for_each_tdp_pte(iter, root, root_level, start, end) \
|
||||
for_each_tdp_pte_min_level(iter, root, root_level, PG_LEVEL_4K, start, end)
|
||||
|
||||
u64 *spte_to_child_pt(u64 pte, int level);
|
||||
|
||||
void tdp_iter_start(struct tdp_iter *iter, u64 *root_pt, int root_level,
|
||||
|
@ -161,6 +161,24 @@ static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
|
||||
kvm_set_pfn_accessed(spte_to_pfn(old_spte));
|
||||
}
|
||||
|
||||
static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
|
||||
u64 old_spte, u64 new_spte, int level)
|
||||
{
|
||||
bool pfn_changed;
|
||||
struct kvm_memory_slot *slot;
|
||||
|
||||
if (level > PG_LEVEL_4K)
|
||||
return;
|
||||
|
||||
pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
|
||||
|
||||
if ((!is_writable_pte(old_spte) || pfn_changed) &&
|
||||
is_writable_pte(new_spte)) {
|
||||
slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
|
||||
mark_page_dirty_in_slot(slot, gfn);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* handle_changed_spte - handle bookkeeping associated with an SPTE change
|
||||
* @kvm: kvm instance
|
||||
@ -273,10 +291,13 @@ static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
|
||||
{
|
||||
__handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level);
|
||||
handle_changed_spte_acc_track(old_spte, new_spte, level);
|
||||
handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
|
||||
new_spte, level);
|
||||
}
|
||||
|
||||
static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
|
||||
u64 new_spte, bool record_acc_track)
|
||||
u64 new_spte, bool record_acc_track,
|
||||
bool record_dirty_log)
|
||||
{
|
||||
u64 *root_pt = tdp_iter_root_pt(iter);
|
||||
struct kvm_mmu_page *root = sptep_to_sp(root_pt);
|
||||
@ -289,19 +310,30 @@ static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
|
||||
if (record_acc_track)
|
||||
handle_changed_spte_acc_track(iter->old_spte, new_spte,
|
||||
iter->level);
|
||||
if (record_dirty_log)
|
||||
handle_changed_spte_dirty_log(kvm, as_id, iter->gfn,
|
||||
iter->old_spte, new_spte,
|
||||
iter->level);
|
||||
}
|
||||
|
||||
static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
|
||||
u64 new_spte)
|
||||
{
|
||||
__tdp_mmu_set_spte(kvm, iter, new_spte, true);
|
||||
__tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
|
||||
}
|
||||
|
||||
static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
|
||||
struct tdp_iter *iter,
|
||||
u64 new_spte)
|
||||
{
|
||||
__tdp_mmu_set_spte(kvm, iter, new_spte, false);
|
||||
__tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
|
||||
}
|
||||
|
||||
static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
|
||||
struct tdp_iter *iter,
|
||||
u64 new_spte)
|
||||
{
|
||||
__tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
|
||||
}
|
||||
|
||||
#define tdp_root_for_each_pte(_iter, _root, _start, _end) \
|
||||
@ -334,6 +366,14 @@ static bool tdp_mmu_iter_flush_cond_resched(struct kvm *kvm, struct tdp_iter *it
|
||||
}
|
||||
}
|
||||
|
||||
static void tdp_mmu_iter_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
|
||||
{
|
||||
if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
|
||||
cond_resched_lock(&kvm->mmu_lock);
|
||||
tdp_iter_refresh_walk(iter);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Tears down the mappings for the range of gfns, [start, end), and frees the
|
||||
* non-root pages mapping GFNs strictly within that range. Returns true if
|
||||
@ -638,6 +678,7 @@ static int age_gfn_range(struct kvm *kvm, struct kvm_memory_slot *slot,
|
||||
|
||||
new_spte = mark_spte_for_access_track(new_spte);
|
||||
}
|
||||
new_spte &= ~shadow_dirty_mask;
|
||||
|
||||
tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte);
|
||||
young = 1;
|
||||
@ -727,3 +768,255 @@ int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address,
|
||||
set_tdp_spte);
|
||||
}
|
||||
|
||||
/*
|
||||
* Remove write access from all the SPTEs mapping GFNs [start, end). If
|
||||
* skip_4k is set, SPTEs that map 4k pages, will not be write-protected.
|
||||
* Returns true if an SPTE has been changed and the TLBs need to be flushed.
|
||||
*/
|
||||
static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
|
||||
gfn_t start, gfn_t end, int min_level)
|
||||
{
|
||||
struct tdp_iter iter;
|
||||
u64 new_spte;
|
||||
bool spte_set = false;
|
||||
|
||||
BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
|
||||
|
||||
for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
|
||||
min_level, start, end) {
|
||||
if (!is_shadow_present_pte(iter.old_spte) ||
|
||||
!is_last_spte(iter.old_spte, iter.level))
|
||||
continue;
|
||||
|
||||
new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
|
||||
|
||||
tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
|
||||
spte_set = true;
|
||||
|
||||
tdp_mmu_iter_cond_resched(kvm, &iter);
|
||||
}
|
||||
return spte_set;
|
||||
}
|
||||
|
||||
/*
|
||||
* Remove write access from all the SPTEs mapping GFNs in the memslot. Will
|
||||
* only affect leaf SPTEs down to min_level.
|
||||
* Returns true if an SPTE has been changed and the TLBs need to be flushed.
|
||||
*/
|
||||
bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
|
||||
int min_level)
|
||||
{
|
||||
struct kvm_mmu_page *root;
|
||||
int root_as_id;
|
||||
bool spte_set = false;
|
||||
|
||||
for_each_tdp_mmu_root(kvm, root) {
|
||||
root_as_id = kvm_mmu_page_as_id(root);
|
||||
if (root_as_id != slot->as_id)
|
||||
continue;
|
||||
|
||||
/*
|
||||
* Take a reference on the root so that it cannot be freed if
|
||||
* this thread releases the MMU lock and yields in this loop.
|
||||
*/
|
||||
kvm_mmu_get_root(kvm, root);
|
||||
|
||||
spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
|
||||
slot->base_gfn + slot->npages, min_level);
|
||||
|
||||
kvm_mmu_put_root(kvm, root);
|
||||
}
|
||||
|
||||
return spte_set;
|
||||
}
|
||||
|
||||
/*
|
||||
* Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
|
||||
* AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
|
||||
* If AD bits are not enabled, this will require clearing the writable bit on
|
||||
* each SPTE. Returns true if an SPTE has been changed and the TLBs need to
|
||||
* be flushed.
|
||||
*/
|
||||
static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
|
||||
gfn_t start, gfn_t end)
|
||||
{
|
||||
struct tdp_iter iter;
|
||||
u64 new_spte;
|
||||
bool spte_set = false;
|
||||
|
||||
tdp_root_for_each_leaf_pte(iter, root, start, end) {
|
||||
if (spte_ad_need_write_protect(iter.old_spte)) {
|
||||
if (is_writable_pte(iter.old_spte))
|
||||
new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
|
||||
else
|
||||
continue;
|
||||
} else {
|
||||
if (iter.old_spte & shadow_dirty_mask)
|
||||
new_spte = iter.old_spte & ~shadow_dirty_mask;
|
||||
else
|
||||
continue;
|
||||
}
|
||||
|
||||
tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
|
||||
spte_set = true;
|
||||
|
||||
tdp_mmu_iter_cond_resched(kvm, &iter);
|
||||
}
|
||||
return spte_set;
|
||||
}
|
||||
|
||||
/*
|
||||
* Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
|
||||
* AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
|
||||
* If AD bits are not enabled, this will require clearing the writable bit on
|
||||
* each SPTE. Returns true if an SPTE has been changed and the TLBs need to
|
||||
* be flushed.
|
||||
*/
|
||||
bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot)
|
||||
{
|
||||
struct kvm_mmu_page *root;
|
||||
int root_as_id;
|
||||
bool spte_set = false;
|
||||
|
||||
for_each_tdp_mmu_root(kvm, root) {
|
||||
root_as_id = kvm_mmu_page_as_id(root);
|
||||
if (root_as_id != slot->as_id)
|
||||
continue;
|
||||
|
||||
/*
|
||||
* Take a reference on the root so that it cannot be freed if
|
||||
* this thread releases the MMU lock and yields in this loop.
|
||||
*/
|
||||
kvm_mmu_get_root(kvm, root);
|
||||
|
||||
spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
|
||||
slot->base_gfn + slot->npages);
|
||||
|
||||
kvm_mmu_put_root(kvm, root);
|
||||
}
|
||||
|
||||
return spte_set;
|
||||
}
|
||||
|
||||
/*
|
||||
* Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
|
||||
* set in mask, starting at gfn. The given memslot is expected to contain all
|
||||
* the GFNs represented by set bits in the mask. If AD bits are enabled,
|
||||
* clearing the dirty status will involve clearing the dirty bit on each SPTE
|
||||
* or, if AD bits are not enabled, clearing the writable bit on each SPTE.
|
||||
*/
|
||||
static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
|
||||
gfn_t gfn, unsigned long mask, bool wrprot)
|
||||
{
|
||||
struct tdp_iter iter;
|
||||
u64 new_spte;
|
||||
|
||||
tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
|
||||
gfn + BITS_PER_LONG) {
|
||||
if (!mask)
|
||||
break;
|
||||
|
||||
if (iter.level > PG_LEVEL_4K ||
|
||||
!(mask & (1UL << (iter.gfn - gfn))))
|
||||
continue;
|
||||
|
||||
if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
|
||||
if (is_writable_pte(iter.old_spte))
|
||||
new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
|
||||
else
|
||||
continue;
|
||||
} else {
|
||||
if (iter.old_spte & shadow_dirty_mask)
|
||||
new_spte = iter.old_spte & ~shadow_dirty_mask;
|
||||
else
|
||||
continue;
|
||||
}
|
||||
|
||||
tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
|
||||
|
||||
mask &= ~(1UL << (iter.gfn - gfn));
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
|
||||
* set in mask, starting at gfn. The given memslot is expected to contain all
|
||||
* the GFNs represented by set bits in the mask. If AD bits are enabled,
|
||||
* clearing the dirty status will involve clearing the dirty bit on each SPTE
|
||||
* or, if AD bits are not enabled, clearing the writable bit on each SPTE.
|
||||
*/
|
||||
void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
|
||||
struct kvm_memory_slot *slot,
|
||||
gfn_t gfn, unsigned long mask,
|
||||
bool wrprot)
|
||||
{
|
||||
struct kvm_mmu_page *root;
|
||||
int root_as_id;
|
||||
|
||||
lockdep_assert_held(&kvm->mmu_lock);
|
||||
for_each_tdp_mmu_root(kvm, root) {
|
||||
root_as_id = kvm_mmu_page_as_id(root);
|
||||
if (root_as_id != slot->as_id)
|
||||
continue;
|
||||
|
||||
clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
|
||||
* only used for PML, and so will involve setting the dirty bit on each SPTE.
|
||||
* Returns true if an SPTE has been changed and the TLBs need to be flushed.
|
||||
*/
|
||||
static bool set_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
|
||||
gfn_t start, gfn_t end)
|
||||
{
|
||||
struct tdp_iter iter;
|
||||
u64 new_spte;
|
||||
bool spte_set = false;
|
||||
|
||||
tdp_root_for_each_pte(iter, root, start, end) {
|
||||
if (!is_shadow_present_pte(iter.old_spte))
|
||||
continue;
|
||||
|
||||
new_spte = iter.old_spte | shadow_dirty_mask;
|
||||
|
||||
tdp_mmu_set_spte(kvm, &iter, new_spte);
|
||||
spte_set = true;
|
||||
|
||||
tdp_mmu_iter_cond_resched(kvm, &iter);
|
||||
}
|
||||
|
||||
return spte_set;
|
||||
}
|
||||
|
||||
/*
|
||||
* Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
|
||||
* only used for PML, and so will involve setting the dirty bit on each SPTE.
|
||||
* Returns true if an SPTE has been changed and the TLBs need to be flushed.
|
||||
*/
|
||||
bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot)
|
||||
{
|
||||
struct kvm_mmu_page *root;
|
||||
int root_as_id;
|
||||
bool spte_set = false;
|
||||
|
||||
for_each_tdp_mmu_root(kvm, root) {
|
||||
root_as_id = kvm_mmu_page_as_id(root);
|
||||
if (root_as_id != slot->as_id)
|
||||
continue;
|
||||
|
||||
/*
|
||||
* Take a reference on the root so that it cannot be freed if
|
||||
* this thread releases the MMU lock and yields in this loop.
|
||||
*/
|
||||
kvm_mmu_get_root(kvm, root);
|
||||
|
||||
spte_set |= set_dirty_gfn_range(kvm, root, slot->base_gfn,
|
||||
slot->base_gfn + slot->npages);
|
||||
|
||||
kvm_mmu_put_root(kvm, root);
|
||||
}
|
||||
return spte_set;
|
||||
}
|
||||
|
||||
|
@ -28,4 +28,14 @@ int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva);
|
||||
|
||||
int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address,
|
||||
pte_t *host_ptep);
|
||||
|
||||
bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
|
||||
int min_level);
|
||||
bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm,
|
||||
struct kvm_memory_slot *slot);
|
||||
void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
|
||||
struct kvm_memory_slot *slot,
|
||||
gfn_t gfn, unsigned long mask,
|
||||
bool wrprot);
|
||||
bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot);
|
||||
#endif /* __KVM_X86_MMU_TDP_MMU_H */
|
||||
|
@ -798,6 +798,7 @@ struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
|
||||
bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
|
||||
bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
|
||||
unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
|
||||
void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
|
||||
void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
|
||||
|
||||
struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
|
||||
|
@ -143,8 +143,6 @@ static void hardware_disable_all(void);
|
||||
|
||||
static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
|
||||
|
||||
static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
|
||||
|
||||
__visible bool kvm_rebooting;
|
||||
EXPORT_SYMBOL_GPL(kvm_rebooting);
|
||||
|
||||
@ -2645,8 +2643,7 @@ int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(kvm_clear_guest);
|
||||
|
||||
static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
|
||||
gfn_t gfn)
|
||||
void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn)
|
||||
{
|
||||
if (memslot && memslot->dirty_bitmap) {
|
||||
unsigned long rel_gfn = gfn - memslot->base_gfn;
|
||||
@ -2654,6 +2651,7 @@ static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
|
||||
set_bit_le(rel_gfn, memslot->dirty_bitmap);
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
|
||||
|
||||
void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
|
||||
{
|
||||
|
Loading…
x
Reference in New Issue
Block a user