Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip: sched: Avoid creating superfluous NUMA domains on non-NUMA systems sched: Allow for overlapping sched_domain spans sched: Break out cpu_power from the sched_group structure
This commit is contained in:
commit
acc11eab70
@ -844,6 +844,7 @@ enum cpu_idle_type {
|
||||
#define SD_SERIALIZE 0x0400 /* Only a single load balancing instance */
|
||||
#define SD_ASYM_PACKING 0x0800 /* Place busy groups earlier in the domain */
|
||||
#define SD_PREFER_SIBLING 0x1000 /* Prefer to place tasks in a sibling domain */
|
||||
#define SD_OVERLAP 0x2000 /* sched_domains of this level overlap */
|
||||
|
||||
enum powersavings_balance_level {
|
||||
POWERSAVINGS_BALANCE_NONE = 0, /* No power saving load balance */
|
||||
@ -893,16 +894,21 @@ static inline int sd_power_saving_flags(void)
|
||||
return 0;
|
||||
}
|
||||
|
||||
struct sched_group {
|
||||
struct sched_group *next; /* Must be a circular list */
|
||||
struct sched_group_power {
|
||||
atomic_t ref;
|
||||
|
||||
/*
|
||||
* CPU power of this group, SCHED_LOAD_SCALE being max power for a
|
||||
* single CPU.
|
||||
*/
|
||||
unsigned int cpu_power, cpu_power_orig;
|
||||
unsigned int power, power_orig;
|
||||
};
|
||||
|
||||
struct sched_group {
|
||||
struct sched_group *next; /* Must be a circular list */
|
||||
atomic_t ref;
|
||||
|
||||
unsigned int group_weight;
|
||||
struct sched_group_power *sgp;
|
||||
|
||||
/*
|
||||
* The CPUs this group covers.
|
||||
|
189
kernel/sched.c
189
kernel/sched.c
@ -6557,7 +6557,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
|
||||
break;
|
||||
}
|
||||
|
||||
if (!group->cpu_power) {
|
||||
if (!group->sgp->power) {
|
||||
printk(KERN_CONT "\n");
|
||||
printk(KERN_ERR "ERROR: domain->cpu_power not "
|
||||
"set\n");
|
||||
@ -6581,9 +6581,9 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
|
||||
cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
|
||||
|
||||
printk(KERN_CONT " %s", str);
|
||||
if (group->cpu_power != SCHED_POWER_SCALE) {
|
||||
if (group->sgp->power != SCHED_POWER_SCALE) {
|
||||
printk(KERN_CONT " (cpu_power = %d)",
|
||||
group->cpu_power);
|
||||
group->sgp->power);
|
||||
}
|
||||
|
||||
group = group->next;
|
||||
@ -6774,11 +6774,39 @@ static struct root_domain *alloc_rootdomain(void)
|
||||
return rd;
|
||||
}
|
||||
|
||||
static void free_sched_groups(struct sched_group *sg, int free_sgp)
|
||||
{
|
||||
struct sched_group *tmp, *first;
|
||||
|
||||
if (!sg)
|
||||
return;
|
||||
|
||||
first = sg;
|
||||
do {
|
||||
tmp = sg->next;
|
||||
|
||||
if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
|
||||
kfree(sg->sgp);
|
||||
|
||||
kfree(sg);
|
||||
sg = tmp;
|
||||
} while (sg != first);
|
||||
}
|
||||
|
||||
static void free_sched_domain(struct rcu_head *rcu)
|
||||
{
|
||||
struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
|
||||
if (atomic_dec_and_test(&sd->groups->ref))
|
||||
|
||||
/*
|
||||
* If its an overlapping domain it has private groups, iterate and
|
||||
* nuke them all.
|
||||
*/
|
||||
if (sd->flags & SD_OVERLAP) {
|
||||
free_sched_groups(sd->groups, 1);
|
||||
} else if (atomic_dec_and_test(&sd->groups->ref)) {
|
||||
kfree(sd->groups->sgp);
|
||||
kfree(sd->groups);
|
||||
}
|
||||
kfree(sd);
|
||||
}
|
||||
|
||||
@ -6945,6 +6973,7 @@ int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
|
||||
struct sd_data {
|
||||
struct sched_domain **__percpu sd;
|
||||
struct sched_group **__percpu sg;
|
||||
struct sched_group_power **__percpu sgp;
|
||||
};
|
||||
|
||||
struct s_data {
|
||||
@ -6964,15 +6993,73 @@ struct sched_domain_topology_level;
|
||||
typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
|
||||
typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
|
||||
|
||||
#define SDTL_OVERLAP 0x01
|
||||
|
||||
struct sched_domain_topology_level {
|
||||
sched_domain_init_f init;
|
||||
sched_domain_mask_f mask;
|
||||
int flags;
|
||||
struct sd_data data;
|
||||
};
|
||||
|
||||
/*
|
||||
* Assumes the sched_domain tree is fully constructed
|
||||
*/
|
||||
static int
|
||||
build_overlap_sched_groups(struct sched_domain *sd, int cpu)
|
||||
{
|
||||
struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
|
||||
const struct cpumask *span = sched_domain_span(sd);
|
||||
struct cpumask *covered = sched_domains_tmpmask;
|
||||
struct sd_data *sdd = sd->private;
|
||||
struct sched_domain *child;
|
||||
int i;
|
||||
|
||||
cpumask_clear(covered);
|
||||
|
||||
for_each_cpu(i, span) {
|
||||
struct cpumask *sg_span;
|
||||
|
||||
if (cpumask_test_cpu(i, covered))
|
||||
continue;
|
||||
|
||||
sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
|
||||
GFP_KERNEL, cpu_to_node(i));
|
||||
|
||||
if (!sg)
|
||||
goto fail;
|
||||
|
||||
sg_span = sched_group_cpus(sg);
|
||||
|
||||
child = *per_cpu_ptr(sdd->sd, i);
|
||||
if (child->child) {
|
||||
child = child->child;
|
||||
cpumask_copy(sg_span, sched_domain_span(child));
|
||||
} else
|
||||
cpumask_set_cpu(i, sg_span);
|
||||
|
||||
cpumask_or(covered, covered, sg_span);
|
||||
|
||||
sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
|
||||
atomic_inc(&sg->sgp->ref);
|
||||
|
||||
if (cpumask_test_cpu(cpu, sg_span))
|
||||
groups = sg;
|
||||
|
||||
if (!first)
|
||||
first = sg;
|
||||
if (last)
|
||||
last->next = sg;
|
||||
last = sg;
|
||||
last->next = first;
|
||||
}
|
||||
sd->groups = groups;
|
||||
|
||||
return 0;
|
||||
|
||||
fail:
|
||||
free_sched_groups(first, 0);
|
||||
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
|
||||
{
|
||||
struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
|
||||
@ -6981,24 +7068,24 @@ static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
|
||||
if (child)
|
||||
cpu = cpumask_first(sched_domain_span(child));
|
||||
|
||||
if (sg)
|
||||
if (sg) {
|
||||
*sg = *per_cpu_ptr(sdd->sg, cpu);
|
||||
(*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
|
||||
atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
|
||||
}
|
||||
|
||||
return cpu;
|
||||
}
|
||||
|
||||
/*
|
||||
* build_sched_groups takes the cpumask we wish to span, and a pointer
|
||||
* to a function which identifies what group(along with sched group) a CPU
|
||||
* belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
|
||||
* (due to the fact that we keep track of groups covered with a struct cpumask).
|
||||
*
|
||||
* build_sched_groups will build a circular linked list of the groups
|
||||
* covered by the given span, and will set each group's ->cpumask correctly,
|
||||
* and ->cpu_power to 0.
|
||||
*
|
||||
* Assumes the sched_domain tree is fully constructed
|
||||
*/
|
||||
static void
|
||||
build_sched_groups(struct sched_domain *sd)
|
||||
static int
|
||||
build_sched_groups(struct sched_domain *sd, int cpu)
|
||||
{
|
||||
struct sched_group *first = NULL, *last = NULL;
|
||||
struct sd_data *sdd = sd->private;
|
||||
@ -7006,6 +7093,12 @@ build_sched_groups(struct sched_domain *sd)
|
||||
struct cpumask *covered;
|
||||
int i;
|
||||
|
||||
get_group(cpu, sdd, &sd->groups);
|
||||
atomic_inc(&sd->groups->ref);
|
||||
|
||||
if (cpu != cpumask_first(sched_domain_span(sd)))
|
||||
return 0;
|
||||
|
||||
lockdep_assert_held(&sched_domains_mutex);
|
||||
covered = sched_domains_tmpmask;
|
||||
|
||||
@ -7020,7 +7113,7 @@ build_sched_groups(struct sched_domain *sd)
|
||||
continue;
|
||||
|
||||
cpumask_clear(sched_group_cpus(sg));
|
||||
sg->cpu_power = 0;
|
||||
sg->sgp->power = 0;
|
||||
|
||||
for_each_cpu(j, span) {
|
||||
if (get_group(j, sdd, NULL) != group)
|
||||
@ -7037,6 +7130,8 @@ build_sched_groups(struct sched_domain *sd)
|
||||
last = sg;
|
||||
}
|
||||
last->next = first;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -7051,13 +7146,18 @@ build_sched_groups(struct sched_domain *sd)
|
||||
*/
|
||||
static void init_sched_groups_power(int cpu, struct sched_domain *sd)
|
||||
{
|
||||
WARN_ON(!sd || !sd->groups);
|
||||
struct sched_group *sg = sd->groups;
|
||||
|
||||
if (cpu != group_first_cpu(sd->groups))
|
||||
WARN_ON(!sd || !sg);
|
||||
|
||||
do {
|
||||
sg->group_weight = cpumask_weight(sched_group_cpus(sg));
|
||||
sg = sg->next;
|
||||
} while (sg != sd->groups);
|
||||
|
||||
if (cpu != group_first_cpu(sg))
|
||||
return;
|
||||
|
||||
sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
|
||||
|
||||
update_group_power(sd, cpu);
|
||||
}
|
||||
|
||||
@ -7177,15 +7277,15 @@ static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
|
||||
static void claim_allocations(int cpu, struct sched_domain *sd)
|
||||
{
|
||||
struct sd_data *sdd = sd->private;
|
||||
struct sched_group *sg = sd->groups;
|
||||
|
||||
WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
|
||||
*per_cpu_ptr(sdd->sd, cpu) = NULL;
|
||||
|
||||
if (cpu == cpumask_first(sched_group_cpus(sg))) {
|
||||
WARN_ON_ONCE(*per_cpu_ptr(sdd->sg, cpu) != sg);
|
||||
if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
|
||||
*per_cpu_ptr(sdd->sg, cpu) = NULL;
|
||||
}
|
||||
|
||||
if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
|
||||
*per_cpu_ptr(sdd->sgp, cpu) = NULL;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SCHED_SMT
|
||||
@ -7210,7 +7310,7 @@ static struct sched_domain_topology_level default_topology[] = {
|
||||
#endif
|
||||
{ sd_init_CPU, cpu_cpu_mask, },
|
||||
#ifdef CONFIG_NUMA
|
||||
{ sd_init_NODE, cpu_node_mask, },
|
||||
{ sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
|
||||
{ sd_init_ALLNODES, cpu_allnodes_mask, },
|
||||
#endif
|
||||
{ NULL, },
|
||||
@ -7234,9 +7334,14 @@ static int __sdt_alloc(const struct cpumask *cpu_map)
|
||||
if (!sdd->sg)
|
||||
return -ENOMEM;
|
||||
|
||||
sdd->sgp = alloc_percpu(struct sched_group_power *);
|
||||
if (!sdd->sgp)
|
||||
return -ENOMEM;
|
||||
|
||||
for_each_cpu(j, cpu_map) {
|
||||
struct sched_domain *sd;
|
||||
struct sched_group *sg;
|
||||
struct sched_group_power *sgp;
|
||||
|
||||
sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
|
||||
GFP_KERNEL, cpu_to_node(j));
|
||||
@ -7251,6 +7356,13 @@ static int __sdt_alloc(const struct cpumask *cpu_map)
|
||||
return -ENOMEM;
|
||||
|
||||
*per_cpu_ptr(sdd->sg, j) = sg;
|
||||
|
||||
sgp = kzalloc_node(sizeof(struct sched_group_power),
|
||||
GFP_KERNEL, cpu_to_node(j));
|
||||
if (!sgp)
|
||||
return -ENOMEM;
|
||||
|
||||
*per_cpu_ptr(sdd->sgp, j) = sgp;
|
||||
}
|
||||
}
|
||||
|
||||
@ -7266,11 +7378,15 @@ static void __sdt_free(const struct cpumask *cpu_map)
|
||||
struct sd_data *sdd = &tl->data;
|
||||
|
||||
for_each_cpu(j, cpu_map) {
|
||||
kfree(*per_cpu_ptr(sdd->sd, j));
|
||||
struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
|
||||
if (sd && (sd->flags & SD_OVERLAP))
|
||||
free_sched_groups(sd->groups, 0);
|
||||
kfree(*per_cpu_ptr(sdd->sg, j));
|
||||
kfree(*per_cpu_ptr(sdd->sgp, j));
|
||||
}
|
||||
free_percpu(sdd->sd);
|
||||
free_percpu(sdd->sg);
|
||||
free_percpu(sdd->sgp);
|
||||
}
|
||||
}
|
||||
|
||||
@ -7316,8 +7432,13 @@ static int build_sched_domains(const struct cpumask *cpu_map,
|
||||
struct sched_domain_topology_level *tl;
|
||||
|
||||
sd = NULL;
|
||||
for (tl = sched_domain_topology; tl->init; tl++)
|
||||
for (tl = sched_domain_topology; tl->init; tl++) {
|
||||
sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
|
||||
if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
|
||||
sd->flags |= SD_OVERLAP;
|
||||
if (cpumask_equal(cpu_map, sched_domain_span(sd)))
|
||||
break;
|
||||
}
|
||||
|
||||
while (sd->child)
|
||||
sd = sd->child;
|
||||
@ -7329,13 +7450,13 @@ static int build_sched_domains(const struct cpumask *cpu_map,
|
||||
for_each_cpu(i, cpu_map) {
|
||||
for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
|
||||
sd->span_weight = cpumask_weight(sched_domain_span(sd));
|
||||
get_group(i, sd->private, &sd->groups);
|
||||
atomic_inc(&sd->groups->ref);
|
||||
|
||||
if (i != cpumask_first(sched_domain_span(sd)))
|
||||
continue;
|
||||
|
||||
build_sched_groups(sd);
|
||||
if (sd->flags & SD_OVERLAP) {
|
||||
if (build_overlap_sched_groups(sd, i))
|
||||
goto error;
|
||||
} else {
|
||||
if (build_sched_groups(sd, i))
|
||||
goto error;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1585,7 +1585,7 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
|
||||
}
|
||||
|
||||
/* Adjust by relative CPU power of the group */
|
||||
avg_load = (avg_load * SCHED_POWER_SCALE) / group->cpu_power;
|
||||
avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
|
||||
|
||||
if (local_group) {
|
||||
this_load = avg_load;
|
||||
@ -2631,7 +2631,7 @@ static void update_cpu_power(struct sched_domain *sd, int cpu)
|
||||
power >>= SCHED_POWER_SHIFT;
|
||||
}
|
||||
|
||||
sdg->cpu_power_orig = power;
|
||||
sdg->sgp->power_orig = power;
|
||||
|
||||
if (sched_feat(ARCH_POWER))
|
||||
power *= arch_scale_freq_power(sd, cpu);
|
||||
@ -2647,7 +2647,7 @@ static void update_cpu_power(struct sched_domain *sd, int cpu)
|
||||
power = 1;
|
||||
|
||||
cpu_rq(cpu)->cpu_power = power;
|
||||
sdg->cpu_power = power;
|
||||
sdg->sgp->power = power;
|
||||
}
|
||||
|
||||
static void update_group_power(struct sched_domain *sd, int cpu)
|
||||
@ -2665,11 +2665,11 @@ static void update_group_power(struct sched_domain *sd, int cpu)
|
||||
|
||||
group = child->groups;
|
||||
do {
|
||||
power += group->cpu_power;
|
||||
power += group->sgp->power;
|
||||
group = group->next;
|
||||
} while (group != child->groups);
|
||||
|
||||
sdg->cpu_power = power;
|
||||
sdg->sgp->power = power;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -2691,7 +2691,7 @@ fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
|
||||
/*
|
||||
* If ~90% of the cpu_power is still there, we're good.
|
||||
*/
|
||||
if (group->cpu_power * 32 > group->cpu_power_orig * 29)
|
||||
if (group->sgp->power * 32 > group->sgp->power_orig * 29)
|
||||
return 1;
|
||||
|
||||
return 0;
|
||||
@ -2771,7 +2771,7 @@ static inline void update_sg_lb_stats(struct sched_domain *sd,
|
||||
}
|
||||
|
||||
/* Adjust by relative CPU power of the group */
|
||||
sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->cpu_power;
|
||||
sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
|
||||
|
||||
/*
|
||||
* Consider the group unbalanced when the imbalance is larger
|
||||
@ -2788,7 +2788,7 @@ static inline void update_sg_lb_stats(struct sched_domain *sd,
|
||||
if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
|
||||
sgs->group_imb = 1;
|
||||
|
||||
sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power,
|
||||
sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
|
||||
SCHED_POWER_SCALE);
|
||||
if (!sgs->group_capacity)
|
||||
sgs->group_capacity = fix_small_capacity(sd, group);
|
||||
@ -2877,7 +2877,7 @@ static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
|
||||
return;
|
||||
|
||||
sds->total_load += sgs.group_load;
|
||||
sds->total_pwr += sg->cpu_power;
|
||||
sds->total_pwr += sg->sgp->power;
|
||||
|
||||
/*
|
||||
* In case the child domain prefers tasks go to siblings
|
||||
@ -2962,7 +2962,7 @@ static int check_asym_packing(struct sched_domain *sd,
|
||||
if (this_cpu > busiest_cpu)
|
||||
return 0;
|
||||
|
||||
*imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
|
||||
*imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
|
||||
SCHED_POWER_SCALE);
|
||||
return 1;
|
||||
}
|
||||
@ -2993,7 +2993,7 @@ static inline void fix_small_imbalance(struct sd_lb_stats *sds,
|
||||
|
||||
scaled_busy_load_per_task = sds->busiest_load_per_task
|
||||
* SCHED_POWER_SCALE;
|
||||
scaled_busy_load_per_task /= sds->busiest->cpu_power;
|
||||
scaled_busy_load_per_task /= sds->busiest->sgp->power;
|
||||
|
||||
if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
|
||||
(scaled_busy_load_per_task * imbn)) {
|
||||
@ -3007,28 +3007,28 @@ static inline void fix_small_imbalance(struct sd_lb_stats *sds,
|
||||
* moving them.
|
||||
*/
|
||||
|
||||
pwr_now += sds->busiest->cpu_power *
|
||||
pwr_now += sds->busiest->sgp->power *
|
||||
min(sds->busiest_load_per_task, sds->max_load);
|
||||
pwr_now += sds->this->cpu_power *
|
||||
pwr_now += sds->this->sgp->power *
|
||||
min(sds->this_load_per_task, sds->this_load);
|
||||
pwr_now /= SCHED_POWER_SCALE;
|
||||
|
||||
/* Amount of load we'd subtract */
|
||||
tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
|
||||
sds->busiest->cpu_power;
|
||||
sds->busiest->sgp->power;
|
||||
if (sds->max_load > tmp)
|
||||
pwr_move += sds->busiest->cpu_power *
|
||||
pwr_move += sds->busiest->sgp->power *
|
||||
min(sds->busiest_load_per_task, sds->max_load - tmp);
|
||||
|
||||
/* Amount of load we'd add */
|
||||
if (sds->max_load * sds->busiest->cpu_power <
|
||||
if (sds->max_load * sds->busiest->sgp->power <
|
||||
sds->busiest_load_per_task * SCHED_POWER_SCALE)
|
||||
tmp = (sds->max_load * sds->busiest->cpu_power) /
|
||||
sds->this->cpu_power;
|
||||
tmp = (sds->max_load * sds->busiest->sgp->power) /
|
||||
sds->this->sgp->power;
|
||||
else
|
||||
tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
|
||||
sds->this->cpu_power;
|
||||
pwr_move += sds->this->cpu_power *
|
||||
sds->this->sgp->power;
|
||||
pwr_move += sds->this->sgp->power *
|
||||
min(sds->this_load_per_task, sds->this_load + tmp);
|
||||
pwr_move /= SCHED_POWER_SCALE;
|
||||
|
||||
@ -3074,7 +3074,7 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
|
||||
|
||||
load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
|
||||
|
||||
load_above_capacity /= sds->busiest->cpu_power;
|
||||
load_above_capacity /= sds->busiest->sgp->power;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -3090,8 +3090,8 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
|
||||
max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
|
||||
|
||||
/* How much load to actually move to equalise the imbalance */
|
||||
*imbalance = min(max_pull * sds->busiest->cpu_power,
|
||||
(sds->avg_load - sds->this_load) * sds->this->cpu_power)
|
||||
*imbalance = min(max_pull * sds->busiest->sgp->power,
|
||||
(sds->avg_load - sds->this_load) * sds->this->sgp->power)
|
||||
/ SCHED_POWER_SCALE;
|
||||
|
||||
/*
|
||||
|
@ -70,3 +70,5 @@ SCHED_FEAT(NONIRQ_POWER, 1)
|
||||
* using the scheduler IPI. Reduces rq->lock contention/bounces.
|
||||
*/
|
||||
SCHED_FEAT(TTWU_QUEUE, 1)
|
||||
|
||||
SCHED_FEAT(FORCE_SD_OVERLAP, 0)
|
||||
|
Loading…
Reference in New Issue
Block a user