Merge branch 'linus' into release
This commit is contained in:
commit
b2576e1d44
1
.mailmap
1
.mailmap
@ -32,6 +32,7 @@ Christoph Hellwig <hch@lst.de>
|
||||
Corey Minyard <minyard@acm.org>
|
||||
David Brownell <david-b@pacbell.net>
|
||||
David Woodhouse <dwmw2@shinybook.infradead.org>
|
||||
Dmitry Eremin-Solenikov <dbaryshkov@gmail.com>
|
||||
Domen Puncer <domen@coderock.org>
|
||||
Douglas Gilbert <dougg@torque.net>
|
||||
Ed L. Cashin <ecashin@coraid.com>
|
||||
|
27
CREDITS
27
CREDITS
@ -369,10 +369,10 @@ P: 1024/8462A731 4C 55 86 34 44 59 A7 99 2B 97 88 4A 88 9A 0D 97
|
||||
D: sun4 port, Sparc hacker
|
||||
|
||||
N: Hugh Blemings
|
||||
E: hugh@misc.nu
|
||||
W: http://misc.nu/hugh/
|
||||
D: Author and maintainer of the Keyspan USB to Serial drivers
|
||||
S: Po Box 234
|
||||
E: hugh@blemings.org
|
||||
W: http://blemings.org/hugh
|
||||
D: Original author of the Keyspan USB to serial drivers, random PowerPC hacker
|
||||
S: PO Box 234
|
||||
S: Belconnen ACT 2616
|
||||
S: Australia
|
||||
|
||||
@ -464,6 +464,11 @@ S: 1200 Goldenrod Dr.
|
||||
S: Nampa, Idaho 83686
|
||||
S: USA
|
||||
|
||||
N: Dirk J. Brandewie
|
||||
E: dirk.j.brandewie@intel.com
|
||||
E: linux-wimax@intel.com
|
||||
D: Intel Wireless WiMAX Connection 2400 SDIO driver
|
||||
|
||||
N: Derrick J. Brashear
|
||||
E: shadow@dementia.org
|
||||
W: http://www.dementia.org/~shadow
|
||||
@ -1681,7 +1686,7 @@ E: ajoshi@shell.unixbox.com
|
||||
D: fbdev hacking
|
||||
|
||||
N: Jesper Juhl
|
||||
E: jesper.juhl@gmail.com
|
||||
E: jj@chaosbits.net
|
||||
D: Various fixes, cleanups and minor features all over the tree.
|
||||
D: Wrote initial version of the hdaps driver (since passed on to others).
|
||||
S: Lemnosvej 1, 3.tv
|
||||
@ -2119,6 +2124,11 @@ N: H.J. Lu
|
||||
E: hjl@gnu.ai.mit.edu
|
||||
D: GCC + libraries hacker
|
||||
|
||||
N: Yanir Lubetkin
|
||||
E: yanirx.lubatkin@intel.com
|
||||
E: linux-wimax@intel.com
|
||||
D: Intel Wireless WiMAX Connection 2400 driver
|
||||
|
||||
N: Michal Ludvig
|
||||
E: michal@logix.cz
|
||||
E: michal.ludvig@asterisk.co.nz
|
||||
@ -2693,6 +2703,13 @@ S: RR #5, 497 Pole Line Road
|
||||
S: Thunder Bay, Ontario
|
||||
S: CANADA P7C 5M9
|
||||
|
||||
N: Inaky Perez-Gonzalez
|
||||
E: inaky.perez-gonzalez@intel.com
|
||||
E: linux-wimax@intel.com
|
||||
E: inakypg@yahoo.com
|
||||
D: WiMAX stack
|
||||
D: Intel Wireless WiMAX Connection 2400 driver
|
||||
|
||||
N: Yuri Per
|
||||
E: yuri@pts.mipt.ru
|
||||
D: Some smbfs fixes
|
||||
|
@ -3,8 +3,9 @@ Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lrg@slimlogic.co.uk>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
state. This holds the regulator output state.
|
||||
Some regulator directories will contain a field called
|
||||
state. This reports the regulator enable status, for
|
||||
regulators which can report that value.
|
||||
|
||||
This will be one of the following strings:
|
||||
|
||||
@ -18,7 +19,8 @@ Description:
|
||||
'disabled' means the regulator output is OFF and is not
|
||||
supplying power to the system..
|
||||
|
||||
'unknown' means software cannot determine the state.
|
||||
'unknown' means software cannot determine the state, or
|
||||
the reported state is invalid.
|
||||
|
||||
NOTE: this field can be used in conjunction with microvolts
|
||||
and microamps to determine regulator output levels.
|
||||
@ -53,9 +55,10 @@ Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lrg@slimlogic.co.uk>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
Some regulator directories will contain a field called
|
||||
microvolts. This holds the regulator output voltage setting
|
||||
measured in microvolts (i.e. E-6 Volts).
|
||||
measured in microvolts (i.e. E-6 Volts), for regulators
|
||||
which can report that voltage.
|
||||
|
||||
NOTE: This value should not be used to determine the regulator
|
||||
output voltage level as this value is the same regardless of
|
||||
@ -67,9 +70,10 @@ Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lrg@slimlogic.co.uk>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
Some regulator directories will contain a field called
|
||||
microamps. This holds the regulator output current limit
|
||||
setting measured in microamps (i.e. E-6 Amps).
|
||||
setting measured in microamps (i.e. E-6 Amps), for regulators
|
||||
which can report that current.
|
||||
|
||||
NOTE: This value should not be used to determine the regulator
|
||||
output current level as this value is the same regardless of
|
||||
@ -81,8 +85,9 @@ Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lrg@slimlogic.co.uk>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
opmode. This holds the regulator operating mode setting.
|
||||
Some regulator directories will contain a field called
|
||||
opmode. This holds the current regulator operating mode,
|
||||
for regulators which can report it.
|
||||
|
||||
The opmode value can be one of the following strings:
|
||||
|
||||
@ -92,7 +97,7 @@ Description:
|
||||
'standby'
|
||||
'unknown'
|
||||
|
||||
The modes are described in include/linux/regulator/regulator.h
|
||||
The modes are described in include/linux/regulator/consumer.h
|
||||
|
||||
NOTE: This value should not be used to determine the regulator
|
||||
output operating mode as this value is the same regardless of
|
||||
@ -104,9 +109,10 @@ Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lrg@slimlogic.co.uk>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
Some regulator directories will contain a field called
|
||||
min_microvolts. This holds the minimum safe working regulator
|
||||
output voltage setting for this domain measured in microvolts.
|
||||
output voltage setting for this domain measured in microvolts,
|
||||
for regulators which support voltage constraints.
|
||||
|
||||
NOTE: this will return the string 'constraint not defined' if
|
||||
the power domain has no min microvolts constraint defined by
|
||||
@ -118,9 +124,10 @@ Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lrg@slimlogic.co.uk>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
Some regulator directories will contain a field called
|
||||
max_microvolts. This holds the maximum safe working regulator
|
||||
output voltage setting for this domain measured in microvolts.
|
||||
output voltage setting for this domain measured in microvolts,
|
||||
for regulators which support voltage constraints.
|
||||
|
||||
NOTE: this will return the string 'constraint not defined' if
|
||||
the power domain has no max microvolts constraint defined by
|
||||
@ -132,10 +139,10 @@ Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lrg@slimlogic.co.uk>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
Some regulator directories will contain a field called
|
||||
min_microamps. This holds the minimum safe working regulator
|
||||
output current limit setting for this domain measured in
|
||||
microamps.
|
||||
microamps, for regulators which support current constraints.
|
||||
|
||||
NOTE: this will return the string 'constraint not defined' if
|
||||
the power domain has no min microamps constraint defined by
|
||||
@ -147,10 +154,10 @@ Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lrg@slimlogic.co.uk>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
Some regulator directories will contain a field called
|
||||
max_microamps. This holds the maximum safe working regulator
|
||||
output current limit setting for this domain measured in
|
||||
microamps.
|
||||
microamps, for regulators which support current constraints.
|
||||
|
||||
NOTE: this will return the string 'constraint not defined' if
|
||||
the power domain has no max microamps constraint defined by
|
||||
@ -185,7 +192,7 @@ Date: April 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lrg@slimlogic.co.uk>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
Some regulator directories will contain a field called
|
||||
requested_microamps. This holds the total requested load
|
||||
current in microamps for this regulator from all its consumer
|
||||
devices.
|
||||
@ -204,125 +211,102 @@ Date: May 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lrg@slimlogic.co.uk>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
Some regulator directories will contain a field called
|
||||
suspend_mem_microvolts. This holds the regulator output
|
||||
voltage setting for this domain measured in microvolts when
|
||||
the system is suspended to memory.
|
||||
|
||||
NOTE: this will return the string 'not defined' if
|
||||
the power domain has no suspend to memory voltage defined by
|
||||
platform code.
|
||||
the system is suspended to memory, for voltage regulators
|
||||
implementing suspend voltage configuration constraints.
|
||||
|
||||
What: /sys/class/regulator/.../suspend_disk_microvolts
|
||||
Date: May 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lrg@slimlogic.co.uk>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
Some regulator directories will contain a field called
|
||||
suspend_disk_microvolts. This holds the regulator output
|
||||
voltage setting for this domain measured in microvolts when
|
||||
the system is suspended to disk.
|
||||
|
||||
NOTE: this will return the string 'not defined' if
|
||||
the power domain has no suspend to disk voltage defined by
|
||||
platform code.
|
||||
the system is suspended to disk, for voltage regulators
|
||||
implementing suspend voltage configuration constraints.
|
||||
|
||||
What: /sys/class/regulator/.../suspend_standby_microvolts
|
||||
Date: May 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lrg@slimlogic.co.uk>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
Some regulator directories will contain a field called
|
||||
suspend_standby_microvolts. This holds the regulator output
|
||||
voltage setting for this domain measured in microvolts when
|
||||
the system is suspended to standby.
|
||||
|
||||
NOTE: this will return the string 'not defined' if
|
||||
the power domain has no suspend to standby voltage defined by
|
||||
platform code.
|
||||
the system is suspended to standby, for voltage regulators
|
||||
implementing suspend voltage configuration constraints.
|
||||
|
||||
What: /sys/class/regulator/.../suspend_mem_mode
|
||||
Date: May 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lrg@slimlogic.co.uk>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
Some regulator directories will contain a field called
|
||||
suspend_mem_mode. This holds the regulator operating mode
|
||||
setting for this domain when the system is suspended to
|
||||
memory.
|
||||
|
||||
NOTE: this will return the string 'not defined' if
|
||||
the power domain has no suspend to memory mode defined by
|
||||
platform code.
|
||||
memory, for regulators implementing suspend mode
|
||||
configuration constraints.
|
||||
|
||||
What: /sys/class/regulator/.../suspend_disk_mode
|
||||
Date: May 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lrg@slimlogic.co.uk>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
Some regulator directories will contain a field called
|
||||
suspend_disk_mode. This holds the regulator operating mode
|
||||
setting for this domain when the system is suspended to disk.
|
||||
|
||||
NOTE: this will return the string 'not defined' if
|
||||
the power domain has no suspend to disk mode defined by
|
||||
platform code.
|
||||
setting for this domain when the system is suspended to disk,
|
||||
for regulators implementing suspend mode configuration
|
||||
constraints.
|
||||
|
||||
What: /sys/class/regulator/.../suspend_standby_mode
|
||||
Date: May 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lrg@slimlogic.co.uk>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
Some regulator directories will contain a field called
|
||||
suspend_standby_mode. This holds the regulator operating mode
|
||||
setting for this domain when the system is suspended to
|
||||
standby.
|
||||
|
||||
NOTE: this will return the string 'not defined' if
|
||||
the power domain has no suspend to standby mode defined by
|
||||
platform code.
|
||||
standby, for regulators implementing suspend mode
|
||||
configuration constraints.
|
||||
|
||||
What: /sys/class/regulator/.../suspend_mem_state
|
||||
Date: May 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lrg@slimlogic.co.uk>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
Some regulator directories will contain a field called
|
||||
suspend_mem_state. This holds the regulator operating state
|
||||
when suspended to memory.
|
||||
when suspended to memory, for regulators implementing suspend
|
||||
configuration constraints.
|
||||
|
||||
This will be one of the following strings:
|
||||
|
||||
'enabled'
|
||||
'disabled'
|
||||
'not defined'
|
||||
This will be one of the same strings reported by
|
||||
the "state" attribute.
|
||||
|
||||
What: /sys/class/regulator/.../suspend_disk_state
|
||||
Date: May 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lrg@slimlogic.co.uk>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
Some regulator directories will contain a field called
|
||||
suspend_disk_state. This holds the regulator operating state
|
||||
when suspended to disk.
|
||||
when suspended to disk, for regulators implementing
|
||||
suspend configuration constraints.
|
||||
|
||||
This will be one of the following strings:
|
||||
|
||||
'enabled'
|
||||
'disabled'
|
||||
'not defined'
|
||||
This will be one of the same strings reported by
|
||||
the "state" attribute.
|
||||
|
||||
What: /sys/class/regulator/.../suspend_standby_state
|
||||
Date: May 2008
|
||||
KernelVersion: 2.6.26
|
||||
Contact: Liam Girdwood <lrg@slimlogic.co.uk>
|
||||
Description:
|
||||
Each regulator directory will contain a field called
|
||||
Some regulator directories will contain a field called
|
||||
suspend_standby_state. This holds the regulator operating
|
||||
state when suspended to standby.
|
||||
state when suspended to standby, for regulators implementing
|
||||
suspend configuration constraints.
|
||||
|
||||
This will be one of the following strings:
|
||||
|
||||
'enabled'
|
||||
'disabled'
|
||||
'not defined'
|
||||
This will be one of the same strings reported by
|
||||
the "state" attribute.
|
||||
|
@ -32,14 +32,16 @@ Contact: linux-usb@vger.kernel.org
|
||||
Description:
|
||||
Write:
|
||||
|
||||
<channel> [<bpst offset>]
|
||||
<channel>
|
||||
|
||||
to start beaconing on a specific channel, or stop
|
||||
beaconing if <channel> is -1. Valid channels depends
|
||||
on the radio controller's supported band groups.
|
||||
to force a specific channel to be used when beaconing,
|
||||
or, if <channel> is -1, to prohibit beaconing. If
|
||||
<channel> is 0, then the default channel selection
|
||||
algorithm will be used. Valid channels depends on the
|
||||
radio controller's supported band groups.
|
||||
|
||||
<bpst offset> may be used to try and join a specific
|
||||
beacon group if more than one was found during a scan.
|
||||
Reading returns the currently active channel, or -1 if
|
||||
the radio controller is not beaconing.
|
||||
|
||||
What: /sys/class/uwb_rc/uwbN/scan
|
||||
Date: July 2008
|
||||
|
@ -6,7 +6,6 @@ Description:
|
||||
internal state of the kernel memory blocks. Files could be
|
||||
added or removed dynamically to represent hot-add/remove
|
||||
operations.
|
||||
|
||||
Users: hotplug memory add/remove tools
|
||||
https://w3.opensource.ibm.com/projects/powerpc-utils/
|
||||
|
||||
@ -19,6 +18,56 @@ Description:
|
||||
This is useful for a user-level agent to determine
|
||||
identify removable sections of the memory before attempting
|
||||
potentially expensive hot-remove memory operation
|
||||
|
||||
Users: hotplug memory remove tools
|
||||
https://w3.opensource.ibm.com/projects/powerpc-utils/
|
||||
|
||||
What: /sys/devices/system/memory/memoryX/phys_device
|
||||
Date: September 2008
|
||||
Contact: Badari Pulavarty <pbadari@us.ibm.com>
|
||||
Description:
|
||||
The file /sys/devices/system/memory/memoryX/phys_device
|
||||
is read-only and is designed to show the name of physical
|
||||
memory device. Implementation is currently incomplete.
|
||||
|
||||
What: /sys/devices/system/memory/memoryX/phys_index
|
||||
Date: September 2008
|
||||
Contact: Badari Pulavarty <pbadari@us.ibm.com>
|
||||
Description:
|
||||
The file /sys/devices/system/memory/memoryX/phys_index
|
||||
is read-only and contains the section ID in hexadecimal
|
||||
which is equivalent to decimal X contained in the
|
||||
memory section directory name.
|
||||
|
||||
What: /sys/devices/system/memory/memoryX/state
|
||||
Date: September 2008
|
||||
Contact: Badari Pulavarty <pbadari@us.ibm.com>
|
||||
Description:
|
||||
The file /sys/devices/system/memory/memoryX/state
|
||||
is read-write. When read, it's contents show the
|
||||
online/offline state of the memory section. When written,
|
||||
root can toggle the the online/offline state of a removable
|
||||
memory section (see removable file description above)
|
||||
using the following commands.
|
||||
# echo online > /sys/devices/system/memory/memoryX/state
|
||||
# echo offline > /sys/devices/system/memory/memoryX/state
|
||||
|
||||
For example, if /sys/devices/system/memory/memory22/removable
|
||||
contains a value of 1 and
|
||||
/sys/devices/system/memory/memory22/state contains the
|
||||
string "online" the following command can be executed by
|
||||
by root to offline that section.
|
||||
# echo offline > /sys/devices/system/memory/memory22/state
|
||||
Users: hotplug memory remove tools
|
||||
https://w3.opensource.ibm.com/projects/powerpc-utils/
|
||||
|
||||
What: /sys/devices/system/node/nodeX/memoryY
|
||||
Date: September 2008
|
||||
Contact: Gary Hade <garyhade@us.ibm.com>
|
||||
Description:
|
||||
When CONFIG_NUMA is enabled
|
||||
/sys/devices/system/node/nodeX/memoryY is a symbolic link that
|
||||
points to the corresponding /sys/devices/system/memory/memoryY
|
||||
memory section directory. For example, the following symbolic
|
||||
link is created for memory section 9 on node0.
|
||||
/sys/devices/system/node/node0/memory9 -> ../../memory/memory9
|
||||
|
||||
|
@ -26,7 +26,7 @@ mapped only for the time they are actually used and unmapped after the DMA
|
||||
transfer.
|
||||
|
||||
The following API will work of course even on platforms where no such
|
||||
hardware exists, see e.g. include/asm-i386/pci.h for how it is implemented on
|
||||
hardware exists, see e.g. arch/x86/include/asm/pci.h for how it is implemented on
|
||||
top of the virt_to_bus interface.
|
||||
|
||||
First of all, you should make sure
|
||||
|
@ -6,13 +6,13 @@
|
||||
# To add a new book the only step required is to add the book to the
|
||||
# list of DOCBOOKS.
|
||||
|
||||
DOCBOOKS := wanbook.xml z8530book.xml mcabook.xml \
|
||||
DOCBOOKS := z8530book.xml mcabook.xml \
|
||||
kernel-hacking.xml kernel-locking.xml deviceiobook.xml \
|
||||
procfs-guide.xml writing_usb_driver.xml networking.xml \
|
||||
kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \
|
||||
gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \
|
||||
genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \
|
||||
mac80211.xml debugobjects.xml sh.xml
|
||||
mac80211.xml debugobjects.xml sh.xml regulator.xml
|
||||
|
||||
###
|
||||
# The build process is as follows (targets):
|
||||
|
@ -74,6 +74,14 @@
|
||||
!Enet/sunrpc/rpcb_clnt.c
|
||||
!Enet/sunrpc/clnt.c
|
||||
</sect1>
|
||||
<sect1><title>WiMAX</title>
|
||||
!Enet/wimax/op-msg.c
|
||||
!Enet/wimax/op-reset.c
|
||||
!Enet/wimax/op-rfkill.c
|
||||
!Enet/wimax/stack.c
|
||||
!Iinclude/net/wimax.h
|
||||
!Iinclude/linux/wimax.h
|
||||
</sect1>
|
||||
</chapter>
|
||||
|
||||
<chapter id="netdev">
|
||||
@ -98,9 +106,6 @@
|
||||
X!Enet/core/wireless.c
|
||||
</sect1>
|
||||
-->
|
||||
<sect1><title>Synchronous PPP</title>
|
||||
!Edrivers/net/wan/syncppp.c
|
||||
</sect1>
|
||||
</chapter>
|
||||
|
||||
</book>
|
||||
|
304
Documentation/DocBook/regulator.tmpl
Normal file
304
Documentation/DocBook/regulator.tmpl
Normal file
@ -0,0 +1,304 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
|
||||
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
|
||||
|
||||
<book id="regulator-api">
|
||||
<bookinfo>
|
||||
<title>Voltage and current regulator API</title>
|
||||
|
||||
<authorgroup>
|
||||
<author>
|
||||
<firstname>Liam</firstname>
|
||||
<surname>Girdwood</surname>
|
||||
<affiliation>
|
||||
<address>
|
||||
<email>lrg@slimlogic.co.uk</email>
|
||||
</address>
|
||||
</affiliation>
|
||||
</author>
|
||||
<author>
|
||||
<firstname>Mark</firstname>
|
||||
<surname>Brown</surname>
|
||||
<affiliation>
|
||||
<orgname>Wolfson Microelectronics</orgname>
|
||||
<address>
|
||||
<email>broonie@opensource.wolfsonmicro.com</email>
|
||||
</address>
|
||||
</affiliation>
|
||||
</author>
|
||||
</authorgroup>
|
||||
|
||||
<copyright>
|
||||
<year>2007-2008</year>
|
||||
<holder>Wolfson Microelectronics</holder>
|
||||
</copyright>
|
||||
<copyright>
|
||||
<year>2008</year>
|
||||
<holder>Liam Girdwood</holder>
|
||||
</copyright>
|
||||
|
||||
<legalnotice>
|
||||
<para>
|
||||
This documentation is free software; you can redistribute
|
||||
it and/or modify it under the terms of the GNU General Public
|
||||
License version 2 as published by the Free Software Foundation.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
This program is distributed in the hope that it will be
|
||||
useful, but WITHOUT ANY WARRANTY; without even the implied
|
||||
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
See the GNU General Public License for more details.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with this program; if not, write to the Free
|
||||
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
||||
MA 02111-1307 USA
|
||||
</para>
|
||||
|
||||
<para>
|
||||
For more details see the file COPYING in the source
|
||||
distribution of Linux.
|
||||
</para>
|
||||
</legalnotice>
|
||||
</bookinfo>
|
||||
|
||||
<toc></toc>
|
||||
|
||||
<chapter id="intro">
|
||||
<title>Introduction</title>
|
||||
<para>
|
||||
This framework is designed to provide a standard kernel
|
||||
interface to control voltage and current regulators.
|
||||
</para>
|
||||
<para>
|
||||
The intention is to allow systems to dynamically control
|
||||
regulator power output in order to save power and prolong
|
||||
battery life. This applies to both voltage regulators (where
|
||||
voltage output is controllable) and current sinks (where current
|
||||
limit is controllable).
|
||||
</para>
|
||||
<para>
|
||||
Note that additional (and currently more complete) documentation
|
||||
is available in the Linux kernel source under
|
||||
<filename>Documentation/power/regulator</filename>.
|
||||
</para>
|
||||
|
||||
<sect1 id="glossary">
|
||||
<title>Glossary</title>
|
||||
<para>
|
||||
The regulator API uses a number of terms which may not be
|
||||
familiar:
|
||||
</para>
|
||||
<glossary>
|
||||
|
||||
<glossentry>
|
||||
<glossterm>Regulator</glossterm>
|
||||
<glossdef>
|
||||
<para>
|
||||
Electronic device that supplies power to other devices. Most
|
||||
regulators can enable and disable their output and some can also
|
||||
control their output voltage or current.
|
||||
</para>
|
||||
</glossdef>
|
||||
</glossentry>
|
||||
|
||||
<glossentry>
|
||||
<glossterm>Consumer</glossterm>
|
||||
<glossdef>
|
||||
<para>
|
||||
Electronic device which consumes power provided by a regulator.
|
||||
These may either be static, requiring only a fixed supply, or
|
||||
dynamic, requiring active management of the regulator at
|
||||
runtime.
|
||||
</para>
|
||||
</glossdef>
|
||||
</glossentry>
|
||||
|
||||
<glossentry>
|
||||
<glossterm>Power Domain</glossterm>
|
||||
<glossdef>
|
||||
<para>
|
||||
The electronic circuit supplied by a given regulator, including
|
||||
the regulator and all consumer devices. The configuration of
|
||||
the regulator is shared between all the components in the
|
||||
circuit.
|
||||
</para>
|
||||
</glossdef>
|
||||
</glossentry>
|
||||
|
||||
<glossentry>
|
||||
<glossterm>Power Management Integrated Circuit</glossterm>
|
||||
<acronym>PMIC</acronym>
|
||||
<glossdef>
|
||||
<para>
|
||||
An IC which contains numerous regulators and often also other
|
||||
subsystems. In an embedded system the primary PMIC is often
|
||||
equivalent to a combination of the PSU and southbridge in a
|
||||
desktop system.
|
||||
</para>
|
||||
</glossdef>
|
||||
</glossentry>
|
||||
</glossary>
|
||||
</sect1>
|
||||
</chapter>
|
||||
|
||||
<chapter id="consumer">
|
||||
<title>Consumer driver interface</title>
|
||||
<para>
|
||||
This offers a similar API to the kernel clock framework.
|
||||
Consumer drivers use <link
|
||||
linkend='API-regulator-get'>get</link> and <link
|
||||
linkend='API-regulator-put'>put</link> operations to acquire and
|
||||
release regulators. Functions are
|
||||
provided to <link linkend='API-regulator-enable'>enable</link>
|
||||
and <link linkend='API-regulator-disable'>disable</link> the
|
||||
reguator and to get and set the runtime parameters of the
|
||||
regulator.
|
||||
</para>
|
||||
<para>
|
||||
When requesting regulators consumers use symbolic names for their
|
||||
supplies, such as "Vcc", which are mapped into actual regulator
|
||||
devices by the machine interface.
|
||||
</para>
|
||||
<para>
|
||||
A stub version of this API is provided when the regulator
|
||||
framework is not in use in order to minimise the need to use
|
||||
ifdefs.
|
||||
</para>
|
||||
|
||||
<sect1 id="consumer-enable">
|
||||
<title>Enabling and disabling</title>
|
||||
<para>
|
||||
The regulator API provides reference counted enabling and
|
||||
disabling of regulators. Consumer devices use the <function><link
|
||||
linkend='API-regulator-enable'>regulator_enable</link></function>
|
||||
and <function><link
|
||||
linkend='API-regulator-disable'>regulator_disable</link>
|
||||
</function> functions to enable and disable regulators. Calls
|
||||
to the two functions must be balanced.
|
||||
</para>
|
||||
<para>
|
||||
Note that since multiple consumers may be using a regulator and
|
||||
machine constraints may not allow the regulator to be disabled
|
||||
there is no guarantee that calling
|
||||
<function>regulator_disable</function> will actually cause the
|
||||
supply provided by the regulator to be disabled. Consumer
|
||||
drivers should assume that the regulator may be enabled at all
|
||||
times.
|
||||
</para>
|
||||
</sect1>
|
||||
|
||||
<sect1 id="consumer-config">
|
||||
<title>Configuration</title>
|
||||
<para>
|
||||
Some consumer devices may need to be able to dynamically
|
||||
configure their supplies. For example, MMC drivers may need to
|
||||
select the correct operating voltage for their cards. This may
|
||||
be done while the regulator is enabled or disabled.
|
||||
</para>
|
||||
<para>
|
||||
The <function><link
|
||||
linkend='API-regulator-set-voltage'>regulator_set_voltage</link>
|
||||
</function> and <function><link
|
||||
linkend='API-regulator-set-current-limit'
|
||||
>regulator_set_current_limit</link>
|
||||
</function> functions provide the primary interface for this.
|
||||
Both take ranges of voltages and currents, supporting drivers
|
||||
that do not require a specific value (eg, CPU frequency scaling
|
||||
normally permits the CPU to use a wider range of supply
|
||||
voltages at lower frequencies but does not require that the
|
||||
supply voltage be lowered). Where an exact value is required
|
||||
both minimum and maximum values should be identical.
|
||||
</para>
|
||||
</sect1>
|
||||
|
||||
<sect1 id="consumer-callback">
|
||||
<title>Callbacks</title>
|
||||
<para>
|
||||
Callbacks may also be <link
|
||||
linkend='API-regulator-register-notifier'>registered</link>
|
||||
for events such as regulation failures.
|
||||
</para>
|
||||
</sect1>
|
||||
</chapter>
|
||||
|
||||
<chapter id="driver">
|
||||
<title>Regulator driver interface</title>
|
||||
<para>
|
||||
Drivers for regulator chips <link
|
||||
linkend='API-regulator-register'>register</link> the regulators
|
||||
with the regulator core, providing operations structures to the
|
||||
core. A <link
|
||||
linkend='API-regulator-notifier-call-chain'>notifier</link> interface
|
||||
allows error conditions to be reported to the core.
|
||||
</para>
|
||||
<para>
|
||||
Registration should be triggered by explicit setup done by the
|
||||
platform, supplying a <link
|
||||
linkend='API-struct-regulator-init-data'>struct
|
||||
regulator_init_data</link> for the regulator containing
|
||||
<link linkend='machine-constraint'>constraint</link> and
|
||||
<link linkend='machine-supply'>supply</link> information.
|
||||
</para>
|
||||
</chapter>
|
||||
|
||||
<chapter id="machine">
|
||||
<title>Machine interface</title>
|
||||
<para>
|
||||
This interface provides a way to define how regulators are
|
||||
connected to consumers on a given system and what the valid
|
||||
operating parameters are for the system.
|
||||
</para>
|
||||
|
||||
<sect1 id="machine-supply">
|
||||
<title>Supplies</title>
|
||||
<para>
|
||||
Regulator supplies are specified using <link
|
||||
linkend='API-struct-regulator-consumer-supply'>struct
|
||||
regulator_consumer_supply</link>. This is done at
|
||||
<link linkend='driver'>driver registration
|
||||
time</link> as part of the machine constraints.
|
||||
</para>
|
||||
</sect1>
|
||||
|
||||
<sect1 id="machine-constraint">
|
||||
<title>Constraints</title>
|
||||
<para>
|
||||
As well as definining the connections the machine interface
|
||||
also provides constraints definining the operations that
|
||||
clients are allowed to perform and the parameters that may be
|
||||
set. This is required since generally regulator devices will
|
||||
offer more flexibility than it is safe to use on a given
|
||||
system, for example supporting higher supply voltages than the
|
||||
consumers are rated for.
|
||||
</para>
|
||||
<para>
|
||||
This is done at <link linkend='driver'>driver
|
||||
registration time</link> by providing a <link
|
||||
linkend='API-struct-regulation-constraints'>struct
|
||||
regulation_constraints</link>.
|
||||
</para>
|
||||
<para>
|
||||
The constraints may also specify an initial configuration for the
|
||||
regulator in the constraints, which is particularly useful for
|
||||
use with static consumers.
|
||||
</para>
|
||||
</sect1>
|
||||
</chapter>
|
||||
|
||||
<chapter id="api">
|
||||
<title>API reference</title>
|
||||
<para>
|
||||
Due to limitations of the kernel documentation framework and the
|
||||
existing layout of the source code the entire regulator API is
|
||||
documented here.
|
||||
</para>
|
||||
!Iinclude/linux/regulator/consumer.h
|
||||
!Iinclude/linux/regulator/machine.h
|
||||
!Iinclude/linux/regulator/driver.h
|
||||
!Edrivers/regulator/core.c
|
||||
</chapter>
|
||||
</book>
|
@ -41,6 +41,12 @@ GPL version 2.
|
||||
</abstract>
|
||||
|
||||
<revhistory>
|
||||
<revision>
|
||||
<revnumber>0.6</revnumber>
|
||||
<date>2008-12-05</date>
|
||||
<authorinitials>hjk</authorinitials>
|
||||
<revremark>Added description of portio sysfs attributes.</revremark>
|
||||
</revision>
|
||||
<revision>
|
||||
<revnumber>0.5</revnumber>
|
||||
<date>2008-05-22</date>
|
||||
@ -318,6 +324,54 @@ interested in translating it, please email me
|
||||
offset = N * getpagesize();
|
||||
</programlisting>
|
||||
|
||||
<para>
|
||||
Sometimes there is hardware with memory-like regions that can not be
|
||||
mapped with the technique described here, but there are still ways to
|
||||
access them from userspace. The most common example are x86 ioports.
|
||||
On x86 systems, userspace can access these ioports using
|
||||
<function>ioperm()</function>, <function>iopl()</function>,
|
||||
<function>inb()</function>, <function>outb()</function>, and similar
|
||||
functions.
|
||||
</para>
|
||||
<para>
|
||||
Since these ioport regions can not be mapped, they will not appear under
|
||||
<filename>/sys/class/uio/uioX/maps/</filename> like the normal memory
|
||||
described above. Without information about the port regions a hardware
|
||||
has to offer, it becomes difficult for the userspace part of the
|
||||
driver to find out which ports belong to which UIO device.
|
||||
</para>
|
||||
<para>
|
||||
To address this situation, the new directory
|
||||
<filename>/sys/class/uio/uioX/portio/</filename> was added. It only
|
||||
exists if the driver wants to pass information about one or more port
|
||||
regions to userspace. If that is the case, subdirectories named
|
||||
<filename>port0</filename>, <filename>port1</filename>, and so on,
|
||||
will appear underneath
|
||||
<filename>/sys/class/uio/uioX/portio/</filename>.
|
||||
</para>
|
||||
<para>
|
||||
Each <filename>portX/</filename> directory contains three read-only
|
||||
files that show start, size, and type of the port region:
|
||||
</para>
|
||||
<itemizedlist>
|
||||
<listitem>
|
||||
<para>
|
||||
<filename>start</filename>: The first port of this region.
|
||||
</para>
|
||||
</listitem>
|
||||
<listitem>
|
||||
<para>
|
||||
<filename>size</filename>: The number of ports in this region.
|
||||
</para>
|
||||
</listitem>
|
||||
<listitem>
|
||||
<para>
|
||||
<filename>porttype</filename>: A string describing the type of port.
|
||||
</para>
|
||||
</listitem>
|
||||
</itemizedlist>
|
||||
|
||||
|
||||
</sect1>
|
||||
</chapter>
|
||||
|
||||
@ -339,12 +393,12 @@ offset = N * getpagesize();
|
||||
|
||||
<itemizedlist>
|
||||
<listitem><para>
|
||||
<varname>char *name</varname>: Required. The name of your driver as
|
||||
<varname>const char *name</varname>: Required. The name of your driver as
|
||||
it will appear in sysfs. I recommend using the name of your module for this.
|
||||
</para></listitem>
|
||||
|
||||
<listitem><para>
|
||||
<varname>char *version</varname>: Required. This string appears in
|
||||
<varname>const char *version</varname>: Required. This string appears in
|
||||
<filename>/sys/class/uio/uioX/version</filename>.
|
||||
</para></listitem>
|
||||
|
||||
@ -355,6 +409,13 @@ mapping you need to fill one of the <varname>uio_mem</varname> structures.
|
||||
See the description below for details.
|
||||
</para></listitem>
|
||||
|
||||
<listitem><para>
|
||||
<varname>struct uio_port port[ MAX_UIO_PORTS_REGIONS ]</varname>: Required
|
||||
if you want to pass information about ioports to userspace. For each port
|
||||
region you need to fill one of the <varname>uio_port</varname> structures.
|
||||
See the description below for details.
|
||||
</para></listitem>
|
||||
|
||||
<listitem><para>
|
||||
<varname>long irq</varname>: Required. If your hardware generates an
|
||||
interrupt, it's your modules task to determine the irq number during
|
||||
@ -448,6 +509,42 @@ Please do not touch the <varname>kobj</varname> element of
|
||||
<varname>struct uio_mem</varname>! It is used by the UIO framework
|
||||
to set up sysfs files for this mapping. Simply leave it alone.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
Sometimes, your device can have one or more port regions which can not be
|
||||
mapped to userspace. But if there are other possibilities for userspace to
|
||||
access these ports, it makes sense to make information about the ports
|
||||
available in sysfs. For each region, you have to set up a
|
||||
<varname>struct uio_port</varname> in the <varname>port[]</varname> array.
|
||||
Here's a description of the fields of <varname>struct uio_port</varname>:
|
||||
</para>
|
||||
|
||||
<itemizedlist>
|
||||
<listitem><para>
|
||||
<varname>char *porttype</varname>: Required. Set this to one of the predefined
|
||||
constants. Use <varname>UIO_PORT_X86</varname> for the ioports found in x86
|
||||
architectures.
|
||||
</para></listitem>
|
||||
|
||||
<listitem><para>
|
||||
<varname>unsigned long start</varname>: Required if the port region is used.
|
||||
Fill in the number of the first port of this region.
|
||||
</para></listitem>
|
||||
|
||||
<listitem><para>
|
||||
<varname>unsigned long size</varname>: Fill in the number of ports in this
|
||||
region. If <varname>size</varname> is zero, the region is considered unused.
|
||||
Note that you <emphasis>must</emphasis> initialize <varname>size</varname>
|
||||
with zero for all unused regions.
|
||||
</para></listitem>
|
||||
</itemizedlist>
|
||||
|
||||
<para>
|
||||
Please do not touch the <varname>portio</varname> element of
|
||||
<varname>struct uio_port</varname>! It is used internally by the UIO
|
||||
framework to set up sysfs files for this region. Simply leave it alone.
|
||||
</para>
|
||||
|
||||
</sect1>
|
||||
|
||||
<sect1 id="adding_irq_handler">
|
||||
|
@ -1,99 +0,0 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
|
||||
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd" []>
|
||||
|
||||
<book id="WANGuide">
|
||||
<bookinfo>
|
||||
<title>Synchronous PPP and Cisco HDLC Programming Guide</title>
|
||||
|
||||
<authorgroup>
|
||||
<author>
|
||||
<firstname>Alan</firstname>
|
||||
<surname>Cox</surname>
|
||||
<affiliation>
|
||||
<address>
|
||||
<email>alan@lxorguk.ukuu.org.uk</email>
|
||||
</address>
|
||||
</affiliation>
|
||||
</author>
|
||||
</authorgroup>
|
||||
|
||||
<copyright>
|
||||
<year>2000</year>
|
||||
<holder>Alan Cox</holder>
|
||||
</copyright>
|
||||
|
||||
<legalnotice>
|
||||
<para>
|
||||
This documentation is free software; you can redistribute
|
||||
it and/or modify it under the terms of the GNU General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2 of the License, or (at your option) any later
|
||||
version.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
This program is distributed in the hope that it will be
|
||||
useful, but WITHOUT ANY WARRANTY; without even the implied
|
||||
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
|
||||
See the GNU General Public License for more details.
|
||||
</para>
|
||||
|
||||
<para>
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with this program; if not, write to the Free
|
||||
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
||||
MA 02111-1307 USA
|
||||
</para>
|
||||
|
||||
<para>
|
||||
For more details see the file COPYING in the source
|
||||
distribution of Linux.
|
||||
</para>
|
||||
</legalnotice>
|
||||
</bookinfo>
|
||||
|
||||
<toc></toc>
|
||||
|
||||
<chapter id="intro">
|
||||
<title>Introduction</title>
|
||||
<para>
|
||||
The syncppp drivers in Linux provide a fairly complete
|
||||
implementation of Cisco HDLC and a minimal implementation of
|
||||
PPP. The longer term goal is to switch the PPP layer to the
|
||||
generic PPP interface that is new in Linux 2.3.x. The API should
|
||||
remain unchanged when this is done, but support will then be
|
||||
available for IPX, compression and other PPP features
|
||||
</para>
|
||||
</chapter>
|
||||
<chapter id="bugs">
|
||||
<title>Known Bugs And Assumptions</title>
|
||||
<para>
|
||||
<variablelist>
|
||||
<varlistentry><term>PPP is minimal</term>
|
||||
<listitem>
|
||||
<para>
|
||||
The current PPP implementation is very basic, although sufficient
|
||||
for most wan usages.
|
||||
</para>
|
||||
</listitem></varlistentry>
|
||||
|
||||
<varlistentry><term>Cisco HDLC Quirks</term>
|
||||
<listitem>
|
||||
<para>
|
||||
Currently we do not end all packets with the correct Cisco multicast
|
||||
or unicast flags. Nothing appears to mind too much but this should
|
||||
be corrected.
|
||||
</para>
|
||||
</listitem></varlistentry>
|
||||
</variablelist>
|
||||
|
||||
</para>
|
||||
</chapter>
|
||||
|
||||
<chapter id="pubfunctions">
|
||||
<title>Public Functions Provided</title>
|
||||
!Edrivers/net/wan/syncppp.c
|
||||
</chapter>
|
||||
|
||||
</book>
|
@ -294,7 +294,8 @@ NOTE: pci_enable_device() can fail! Check the return value.
|
||||
|
||||
pci_set_master() will enable DMA by setting the bus master bit
|
||||
in the PCI_COMMAND register. It also fixes the latency timer value if
|
||||
it's set to something bogus by the BIOS.
|
||||
it's set to something bogus by the BIOS. pci_clear_master() will
|
||||
disable DMA by clearing the bus master bit.
|
||||
|
||||
If the PCI device can use the PCI Memory-Write-Invalidate transaction,
|
||||
call pci_set_mwi(). This enables the PCI_COMMAND bit for Mem-Wr-Inval
|
||||
|
@ -12,10 +12,14 @@ rcuref.txt
|
||||
- Reference-count design for elements of lists/arrays protected by RCU
|
||||
rcu.txt
|
||||
- RCU Concepts
|
||||
rcubarrier.txt
|
||||
- Unloading modules that use RCU callbacks
|
||||
RTFP.txt
|
||||
- List of RCU papers (bibliography) going back to 1980.
|
||||
torture.txt
|
||||
- RCU Torture Test Operation (CONFIG_RCU_TORTURE_TEST)
|
||||
trace.txt
|
||||
- CONFIG_RCU_TRACE debugfs files and formats
|
||||
UP.txt
|
||||
- RCU on Uniprocessor Systems
|
||||
whatisRCU.txt
|
||||
|
304
Documentation/RCU/rcubarrier.txt
Normal file
304
Documentation/RCU/rcubarrier.txt
Normal file
@ -0,0 +1,304 @@
|
||||
RCU and Unloadable Modules
|
||||
|
||||
[Originally published in LWN Jan. 14, 2007: http://lwn.net/Articles/217484/]
|
||||
|
||||
RCU (read-copy update) is a synchronization mechanism that can be thought
|
||||
of as a replacement for read-writer locking (among other things), but with
|
||||
very low-overhead readers that are immune to deadlock, priority inversion,
|
||||
and unbounded latency. RCU read-side critical sections are delimited
|
||||
by rcu_read_lock() and rcu_read_unlock(), which, in non-CONFIG_PREEMPT
|
||||
kernels, generate no code whatsoever.
|
||||
|
||||
This means that RCU writers are unaware of the presence of concurrent
|
||||
readers, so that RCU updates to shared data must be undertaken quite
|
||||
carefully, leaving an old version of the data structure in place until all
|
||||
pre-existing readers have finished. These old versions are needed because
|
||||
such readers might hold a reference to them. RCU updates can therefore be
|
||||
rather expensive, and RCU is thus best suited for read-mostly situations.
|
||||
|
||||
How can an RCU writer possibly determine when all readers are finished,
|
||||
given that readers might well leave absolutely no trace of their
|
||||
presence? There is a synchronize_rcu() primitive that blocks until all
|
||||
pre-existing readers have completed. An updater wishing to delete an
|
||||
element p from a linked list might do the following, while holding an
|
||||
appropriate lock, of course:
|
||||
|
||||
list_del_rcu(p);
|
||||
synchronize_rcu();
|
||||
kfree(p);
|
||||
|
||||
But the above code cannot be used in IRQ context -- the call_rcu()
|
||||
primitive must be used instead. This primitive takes a pointer to an
|
||||
rcu_head struct placed within the RCU-protected data structure and
|
||||
another pointer to a function that may be invoked later to free that
|
||||
structure. Code to delete an element p from the linked list from IRQ
|
||||
context might then be as follows:
|
||||
|
||||
list_del_rcu(p);
|
||||
call_rcu(&p->rcu, p_callback);
|
||||
|
||||
Since call_rcu() never blocks, this code can safely be used from within
|
||||
IRQ context. The function p_callback() might be defined as follows:
|
||||
|
||||
static void p_callback(struct rcu_head *rp)
|
||||
{
|
||||
struct pstruct *p = container_of(rp, struct pstruct, rcu);
|
||||
|
||||
kfree(p);
|
||||
}
|
||||
|
||||
|
||||
Unloading Modules That Use call_rcu()
|
||||
|
||||
But what if p_callback is defined in an unloadable module?
|
||||
|
||||
If we unload the module while some RCU callbacks are pending,
|
||||
the CPUs executing these callbacks are going to be severely
|
||||
disappointed when they are later invoked, as fancifully depicted at
|
||||
http://lwn.net/images/ns/kernel/rcu-drop.jpg.
|
||||
|
||||
We could try placing a synchronize_rcu() in the module-exit code path,
|
||||
but this is not sufficient. Although synchronize_rcu() does wait for a
|
||||
grace period to elapse, it does not wait for the callbacks to complete.
|
||||
|
||||
One might be tempted to try several back-to-back synchronize_rcu()
|
||||
calls, but this is still not guaranteed to work. If there is a very
|
||||
heavy RCU-callback load, then some of the callbacks might be deferred
|
||||
in order to allow other processing to proceed. Such deferral is required
|
||||
in realtime kernels in order to avoid excessive scheduling latencies.
|
||||
|
||||
|
||||
rcu_barrier()
|
||||
|
||||
We instead need the rcu_barrier() primitive. This primitive is similar
|
||||
to synchronize_rcu(), but instead of waiting solely for a grace
|
||||
period to elapse, it also waits for all outstanding RCU callbacks to
|
||||
complete. Pseudo-code using rcu_barrier() is as follows:
|
||||
|
||||
1. Prevent any new RCU callbacks from being posted.
|
||||
2. Execute rcu_barrier().
|
||||
3. Allow the module to be unloaded.
|
||||
|
||||
Quick Quiz #1: Why is there no srcu_barrier()?
|
||||
|
||||
The rcutorture module makes use of rcu_barrier in its exit function
|
||||
as follows:
|
||||
|
||||
1 static void
|
||||
2 rcu_torture_cleanup(void)
|
||||
3 {
|
||||
4 int i;
|
||||
5
|
||||
6 fullstop = 1;
|
||||
7 if (shuffler_task != NULL) {
|
||||
8 VERBOSE_PRINTK_STRING("Stopping rcu_torture_shuffle task");
|
||||
9 kthread_stop(shuffler_task);
|
||||
10 }
|
||||
11 shuffler_task = NULL;
|
||||
12
|
||||
13 if (writer_task != NULL) {
|
||||
14 VERBOSE_PRINTK_STRING("Stopping rcu_torture_writer task");
|
||||
15 kthread_stop(writer_task);
|
||||
16 }
|
||||
17 writer_task = NULL;
|
||||
18
|
||||
19 if (reader_tasks != NULL) {
|
||||
20 for (i = 0; i < nrealreaders; i++) {
|
||||
21 if (reader_tasks[i] != NULL) {
|
||||
22 VERBOSE_PRINTK_STRING(
|
||||
23 "Stopping rcu_torture_reader task");
|
||||
24 kthread_stop(reader_tasks[i]);
|
||||
25 }
|
||||
26 reader_tasks[i] = NULL;
|
||||
27 }
|
||||
28 kfree(reader_tasks);
|
||||
29 reader_tasks = NULL;
|
||||
30 }
|
||||
31 rcu_torture_current = NULL;
|
||||
32
|
||||
33 if (fakewriter_tasks != NULL) {
|
||||
34 for (i = 0; i < nfakewriters; i++) {
|
||||
35 if (fakewriter_tasks[i] != NULL) {
|
||||
36 VERBOSE_PRINTK_STRING(
|
||||
37 "Stopping rcu_torture_fakewriter task");
|
||||
38 kthread_stop(fakewriter_tasks[i]);
|
||||
39 }
|
||||
40 fakewriter_tasks[i] = NULL;
|
||||
41 }
|
||||
42 kfree(fakewriter_tasks);
|
||||
43 fakewriter_tasks = NULL;
|
||||
44 }
|
||||
45
|
||||
46 if (stats_task != NULL) {
|
||||
47 VERBOSE_PRINTK_STRING("Stopping rcu_torture_stats task");
|
||||
48 kthread_stop(stats_task);
|
||||
49 }
|
||||
50 stats_task = NULL;
|
||||
51
|
||||
52 /* Wait for all RCU callbacks to fire. */
|
||||
53 rcu_barrier();
|
||||
54
|
||||
55 rcu_torture_stats_print(); /* -After- the stats thread is stopped! */
|
||||
56
|
||||
57 if (cur_ops->cleanup != NULL)
|
||||
58 cur_ops->cleanup();
|
||||
59 if (atomic_read(&n_rcu_torture_error))
|
||||
60 rcu_torture_print_module_parms("End of test: FAILURE");
|
||||
61 else
|
||||
62 rcu_torture_print_module_parms("End of test: SUCCESS");
|
||||
63 }
|
||||
|
||||
Line 6 sets a global variable that prevents any RCU callbacks from
|
||||
re-posting themselves. This will not be necessary in most cases, since
|
||||
RCU callbacks rarely include calls to call_rcu(). However, the rcutorture
|
||||
module is an exception to this rule, and therefore needs to set this
|
||||
global variable.
|
||||
|
||||
Lines 7-50 stop all the kernel tasks associated with the rcutorture
|
||||
module. Therefore, once execution reaches line 53, no more rcutorture
|
||||
RCU callbacks will be posted. The rcu_barrier() call on line 53 waits
|
||||
for any pre-existing callbacks to complete.
|
||||
|
||||
Then lines 55-62 print status and do operation-specific cleanup, and
|
||||
then return, permitting the module-unload operation to be completed.
|
||||
|
||||
Quick Quiz #2: Is there any other situation where rcu_barrier() might
|
||||
be required?
|
||||
|
||||
Your module might have additional complications. For example, if your
|
||||
module invokes call_rcu() from timers, you will need to first cancel all
|
||||
the timers, and only then invoke rcu_barrier() to wait for any remaining
|
||||
RCU callbacks to complete.
|
||||
|
||||
|
||||
Implementing rcu_barrier()
|
||||
|
||||
Dipankar Sarma's implementation of rcu_barrier() makes use of the fact
|
||||
that RCU callbacks are never reordered once queued on one of the per-CPU
|
||||
queues. His implementation queues an RCU callback on each of the per-CPU
|
||||
callback queues, and then waits until they have all started executing, at
|
||||
which point, all earlier RCU callbacks are guaranteed to have completed.
|
||||
|
||||
The original code for rcu_barrier() was as follows:
|
||||
|
||||
1 void rcu_barrier(void)
|
||||
2 {
|
||||
3 BUG_ON(in_interrupt());
|
||||
4 /* Take cpucontrol mutex to protect against CPU hotplug */
|
||||
5 mutex_lock(&rcu_barrier_mutex);
|
||||
6 init_completion(&rcu_barrier_completion);
|
||||
7 atomic_set(&rcu_barrier_cpu_count, 0);
|
||||
8 on_each_cpu(rcu_barrier_func, NULL, 0, 1);
|
||||
9 wait_for_completion(&rcu_barrier_completion);
|
||||
10 mutex_unlock(&rcu_barrier_mutex);
|
||||
11 }
|
||||
|
||||
Line 3 verifies that the caller is in process context, and lines 5 and 10
|
||||
use rcu_barrier_mutex to ensure that only one rcu_barrier() is using the
|
||||
global completion and counters at a time, which are initialized on lines
|
||||
6 and 7. Line 8 causes each CPU to invoke rcu_barrier_func(), which is
|
||||
shown below. Note that the final "1" in on_each_cpu()'s argument list
|
||||
ensures that all the calls to rcu_barrier_func() will have completed
|
||||
before on_each_cpu() returns. Line 9 then waits for the completion.
|
||||
|
||||
This code was rewritten in 2008 to support rcu_barrier_bh() and
|
||||
rcu_barrier_sched() in addition to the original rcu_barrier().
|
||||
|
||||
The rcu_barrier_func() runs on each CPU, where it invokes call_rcu()
|
||||
to post an RCU callback, as follows:
|
||||
|
||||
1 static void rcu_barrier_func(void *notused)
|
||||
2 {
|
||||
3 int cpu = smp_processor_id();
|
||||
4 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
|
||||
5 struct rcu_head *head;
|
||||
6
|
||||
7 head = &rdp->barrier;
|
||||
8 atomic_inc(&rcu_barrier_cpu_count);
|
||||
9 call_rcu(head, rcu_barrier_callback);
|
||||
10 }
|
||||
|
||||
Lines 3 and 4 locate RCU's internal per-CPU rcu_data structure,
|
||||
which contains the struct rcu_head that needed for the later call to
|
||||
call_rcu(). Line 7 picks up a pointer to this struct rcu_head, and line
|
||||
8 increments a global counter. This counter will later be decremented
|
||||
by the callback. Line 9 then registers the rcu_barrier_callback() on
|
||||
the current CPU's queue.
|
||||
|
||||
The rcu_barrier_callback() function simply atomically decrements the
|
||||
rcu_barrier_cpu_count variable and finalizes the completion when it
|
||||
reaches zero, as follows:
|
||||
|
||||
1 static void rcu_barrier_callback(struct rcu_head *notused)
|
||||
2 {
|
||||
3 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
|
||||
4 complete(&rcu_barrier_completion);
|
||||
5 }
|
||||
|
||||
Quick Quiz #3: What happens if CPU 0's rcu_barrier_func() executes
|
||||
immediately (thus incrementing rcu_barrier_cpu_count to the
|
||||
value one), but the other CPU's rcu_barrier_func() invocations
|
||||
are delayed for a full grace period? Couldn't this result in
|
||||
rcu_barrier() returning prematurely?
|
||||
|
||||
|
||||
rcu_barrier() Summary
|
||||
|
||||
The rcu_barrier() primitive has seen relatively little use, since most
|
||||
code using RCU is in the core kernel rather than in modules. However, if
|
||||
you are using RCU from an unloadable module, you need to use rcu_barrier()
|
||||
so that your module may be safely unloaded.
|
||||
|
||||
|
||||
Answers to Quick Quizzes
|
||||
|
||||
Quick Quiz #1: Why is there no srcu_barrier()?
|
||||
|
||||
Answer: Since there is no call_srcu(), there can be no outstanding SRCU
|
||||
callbacks. Therefore, there is no need to wait for them.
|
||||
|
||||
Quick Quiz #2: Is there any other situation where rcu_barrier() might
|
||||
be required?
|
||||
|
||||
Answer: Interestingly enough, rcu_barrier() was not originally
|
||||
implemented for module unloading. Nikita Danilov was using
|
||||
RCU in a filesystem, which resulted in a similar situation at
|
||||
filesystem-unmount time. Dipankar Sarma coded up rcu_barrier()
|
||||
in response, so that Nikita could invoke it during the
|
||||
filesystem-unmount process.
|
||||
|
||||
Much later, yours truly hit the RCU module-unload problem when
|
||||
implementing rcutorture, and found that rcu_barrier() solves
|
||||
this problem as well.
|
||||
|
||||
Quick Quiz #3: What happens if CPU 0's rcu_barrier_func() executes
|
||||
immediately (thus incrementing rcu_barrier_cpu_count to the
|
||||
value one), but the other CPU's rcu_barrier_func() invocations
|
||||
are delayed for a full grace period? Couldn't this result in
|
||||
rcu_barrier() returning prematurely?
|
||||
|
||||
Answer: This cannot happen. The reason is that on_each_cpu() has its last
|
||||
argument, the wait flag, set to "1". This flag is passed through
|
||||
to smp_call_function() and further to smp_call_function_on_cpu(),
|
||||
causing this latter to spin until the cross-CPU invocation of
|
||||
rcu_barrier_func() has completed. This by itself would prevent
|
||||
a grace period from completing on non-CONFIG_PREEMPT kernels,
|
||||
since each CPU must undergo a context switch (or other quiescent
|
||||
state) before the grace period can complete. However, this is
|
||||
of no use in CONFIG_PREEMPT kernels.
|
||||
|
||||
Therefore, on_each_cpu() disables preemption across its call
|
||||
to smp_call_function() and also across the local call to
|
||||
rcu_barrier_func(). This prevents the local CPU from context
|
||||
switching, again preventing grace periods from completing. This
|
||||
means that all CPUs have executed rcu_barrier_func() before
|
||||
the first rcu_barrier_callback() can possibly execute, in turn
|
||||
preventing rcu_barrier_cpu_count from prematurely reaching zero.
|
||||
|
||||
Currently, -rt implementations of RCU keep but a single global
|
||||
queue for RCU callbacks, and thus do not suffer from this
|
||||
problem. However, when the -rt RCU eventually does have per-CPU
|
||||
callback queues, things will have to change. One simple change
|
||||
is to add an rcu_read_lock() before line 8 of rcu_barrier()
|
||||
and an rcu_read_unlock() after line 8 of this same function. If
|
||||
you can think of a better change, please let me know!
|
167
Documentation/RCU/rculist_nulls.txt
Normal file
167
Documentation/RCU/rculist_nulls.txt
Normal file
@ -0,0 +1,167 @@
|
||||
Using hlist_nulls to protect read-mostly linked lists and
|
||||
objects using SLAB_DESTROY_BY_RCU allocations.
|
||||
|
||||
Please read the basics in Documentation/RCU/listRCU.txt
|
||||
|
||||
Using special makers (called 'nulls') is a convenient way
|
||||
to solve following problem :
|
||||
|
||||
A typical RCU linked list managing objects which are
|
||||
allocated with SLAB_DESTROY_BY_RCU kmem_cache can
|
||||
use following algos :
|
||||
|
||||
1) Lookup algo
|
||||
--------------
|
||||
rcu_read_lock()
|
||||
begin:
|
||||
obj = lockless_lookup(key);
|
||||
if (obj) {
|
||||
if (!try_get_ref(obj)) // might fail for free objects
|
||||
goto begin;
|
||||
/*
|
||||
* Because a writer could delete object, and a writer could
|
||||
* reuse these object before the RCU grace period, we
|
||||
* must check key after geting the reference on object
|
||||
*/
|
||||
if (obj->key != key) { // not the object we expected
|
||||
put_ref(obj);
|
||||
goto begin;
|
||||
}
|
||||
}
|
||||
rcu_read_unlock();
|
||||
|
||||
Beware that lockless_lookup(key) cannot use traditional hlist_for_each_entry_rcu()
|
||||
but a version with an additional memory barrier (smp_rmb())
|
||||
|
||||
lockless_lookup(key)
|
||||
{
|
||||
struct hlist_node *node, *next;
|
||||
for (pos = rcu_dereference((head)->first);
|
||||
pos && ({ next = pos->next; smp_rmb(); prefetch(next); 1; }) &&
|
||||
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; });
|
||||
pos = rcu_dereference(next))
|
||||
if (obj->key == key)
|
||||
return obj;
|
||||
return NULL;
|
||||
|
||||
And note the traditional hlist_for_each_entry_rcu() misses this smp_rmb() :
|
||||
|
||||
struct hlist_node *node;
|
||||
for (pos = rcu_dereference((head)->first);
|
||||
pos && ({ prefetch(pos->next); 1; }) &&
|
||||
({ tpos = hlist_entry(pos, typeof(*tpos), member); 1; });
|
||||
pos = rcu_dereference(pos->next))
|
||||
if (obj->key == key)
|
||||
return obj;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
Quoting Corey Minyard :
|
||||
|
||||
"If the object is moved from one list to another list in-between the
|
||||
time the hash is calculated and the next field is accessed, and the
|
||||
object has moved to the end of a new list, the traversal will not
|
||||
complete properly on the list it should have, since the object will
|
||||
be on the end of the new list and there's not a way to tell it's on a
|
||||
new list and restart the list traversal. I think that this can be
|
||||
solved by pre-fetching the "next" field (with proper barriers) before
|
||||
checking the key."
|
||||
|
||||
2) Insert algo :
|
||||
----------------
|
||||
|
||||
We need to make sure a reader cannot read the new 'obj->obj_next' value
|
||||
and previous value of 'obj->key'. Or else, an item could be deleted
|
||||
from a chain, and inserted into another chain. If new chain was empty
|
||||
before the move, 'next' pointer is NULL, and lockless reader can
|
||||
not detect it missed following items in original chain.
|
||||
|
||||
/*
|
||||
* Please note that new inserts are done at the head of list,
|
||||
* not in the middle or end.
|
||||
*/
|
||||
obj = kmem_cache_alloc(...);
|
||||
lock_chain(); // typically a spin_lock()
|
||||
obj->key = key;
|
||||
atomic_inc(&obj->refcnt);
|
||||
/*
|
||||
* we need to make sure obj->key is updated before obj->next
|
||||
*/
|
||||
smp_wmb();
|
||||
hlist_add_head_rcu(&obj->obj_node, list);
|
||||
unlock_chain(); // typically a spin_unlock()
|
||||
|
||||
|
||||
3) Remove algo
|
||||
--------------
|
||||
Nothing special here, we can use a standard RCU hlist deletion.
|
||||
But thanks to SLAB_DESTROY_BY_RCU, beware a deleted object can be reused
|
||||
very very fast (before the end of RCU grace period)
|
||||
|
||||
if (put_last_reference_on(obj) {
|
||||
lock_chain(); // typically a spin_lock()
|
||||
hlist_del_init_rcu(&obj->obj_node);
|
||||
unlock_chain(); // typically a spin_unlock()
|
||||
kmem_cache_free(cachep, obj);
|
||||
}
|
||||
|
||||
|
||||
|
||||
--------------------------------------------------------------------------
|
||||
With hlist_nulls we can avoid extra smp_rmb() in lockless_lookup()
|
||||
and extra smp_wmb() in insert function.
|
||||
|
||||
For example, if we choose to store the slot number as the 'nulls'
|
||||
end-of-list marker for each slot of the hash table, we can detect
|
||||
a race (some writer did a delete and/or a move of an object
|
||||
to another chain) checking the final 'nulls' value if
|
||||
the lookup met the end of chain. If final 'nulls' value
|
||||
is not the slot number, then we must restart the lookup at
|
||||
the begining. If the object was moved to same chain,
|
||||
then the reader doesnt care : It might eventually
|
||||
scan the list again without harm.
|
||||
|
||||
|
||||
1) lookup algo
|
||||
|
||||
head = &table[slot];
|
||||
rcu_read_lock();
|
||||
begin:
|
||||
hlist_nulls_for_each_entry_rcu(obj, node, head, member) {
|
||||
if (obj->key == key) {
|
||||
if (!try_get_ref(obj)) // might fail for free objects
|
||||
goto begin;
|
||||
if (obj->key != key) { // not the object we expected
|
||||
put_ref(obj);
|
||||
goto begin;
|
||||
}
|
||||
goto out;
|
||||
}
|
||||
/*
|
||||
* if the nulls value we got at the end of this lookup is
|
||||
* not the expected one, we must restart lookup.
|
||||
* We probably met an item that was moved to another chain.
|
||||
*/
|
||||
if (get_nulls_value(node) != slot)
|
||||
goto begin;
|
||||
obj = NULL;
|
||||
|
||||
out:
|
||||
rcu_read_unlock();
|
||||
|
||||
2) Insert function :
|
||||
--------------------
|
||||
|
||||
/*
|
||||
* Please note that new inserts are done at the head of list,
|
||||
* not in the middle or end.
|
||||
*/
|
||||
obj = kmem_cache_alloc(cachep);
|
||||
lock_chain(); // typically a spin_lock()
|
||||
obj->key = key;
|
||||
atomic_set(&obj->refcnt, 1);
|
||||
/*
|
||||
* insert obj in RCU way (readers might be traversing chain)
|
||||
*/
|
||||
hlist_nulls_add_head_rcu(&obj->obj_node, list);
|
||||
unlock_chain(); // typically a spin_unlock()
|
413
Documentation/RCU/trace.txt
Normal file
413
Documentation/RCU/trace.txt
Normal file
@ -0,0 +1,413 @@
|
||||
CONFIG_RCU_TRACE debugfs Files and Formats
|
||||
|
||||
|
||||
The rcupreempt and rcutree implementations of RCU provide debugfs trace
|
||||
output that summarizes counters and state. This information is useful for
|
||||
debugging RCU itself, and can sometimes also help to debug abuses of RCU.
|
||||
Note that the rcuclassic implementation of RCU does not provide debugfs
|
||||
trace output.
|
||||
|
||||
The following sections describe the debugfs files and formats for
|
||||
preemptable RCU (rcupreempt) and hierarchical RCU (rcutree).
|
||||
|
||||
|
||||
Preemptable RCU debugfs Files and Formats
|
||||
|
||||
This implementation of RCU provides three debugfs files under the
|
||||
top-level directory RCU: rcu/rcuctrs (which displays the per-CPU
|
||||
counters used by preemptable RCU) rcu/rcugp (which displays grace-period
|
||||
counters), and rcu/rcustats (which internal counters for debugging RCU).
|
||||
|
||||
The output of "cat rcu/rcuctrs" looks as follows:
|
||||
|
||||
CPU last cur F M
|
||||
0 5 -5 0 0
|
||||
1 -1 0 0 0
|
||||
2 0 1 0 0
|
||||
3 0 1 0 0
|
||||
4 0 1 0 0
|
||||
5 0 1 0 0
|
||||
6 0 2 0 0
|
||||
7 0 -1 0 0
|
||||
8 0 1 0 0
|
||||
ggp = 26226, state = waitzero
|
||||
|
||||
The per-CPU fields are as follows:
|
||||
|
||||
o "CPU" gives the CPU number. Offline CPUs are not displayed.
|
||||
|
||||
o "last" gives the value of the counter that is being decremented
|
||||
for the current grace period phase. In the example above,
|
||||
the counters sum to 4, indicating that there are still four
|
||||
RCU read-side critical sections still running that started
|
||||
before the last counter flip.
|
||||
|
||||
o "cur" gives the value of the counter that is currently being
|
||||
both incremented (by rcu_read_lock()) and decremented (by
|
||||
rcu_read_unlock()). In the example above, the counters sum to
|
||||
1, indicating that there is only one RCU read-side critical section
|
||||
still running that started after the last counter flip.
|
||||
|
||||
o "F" indicates whether RCU is waiting for this CPU to acknowledge
|
||||
a counter flip. In the above example, RCU is not waiting on any,
|
||||
which is consistent with the state being "waitzero" rather than
|
||||
"waitack".
|
||||
|
||||
o "M" indicates whether RCU is waiting for this CPU to execute a
|
||||
memory barrier. In the above example, RCU is not waiting on any,
|
||||
which is consistent with the state being "waitzero" rather than
|
||||
"waitmb".
|
||||
|
||||
o "ggp" is the global grace-period counter.
|
||||
|
||||
o "state" is the RCU state, which can be one of the following:
|
||||
|
||||
o "idle": there is no grace period in progress.
|
||||
|
||||
o "waitack": RCU just incremented the global grace-period
|
||||
counter, which has the effect of reversing the roles of
|
||||
the "last" and "cur" counters above, and is waiting for
|
||||
all the CPUs to acknowledge the flip. Once the flip has
|
||||
been acknowledged, CPUs will no longer be incrementing
|
||||
what are now the "last" counters, so that their sum will
|
||||
decrease monotonically down to zero.
|
||||
|
||||
o "waitzero": RCU is waiting for the sum of the "last" counters
|
||||
to decrease to zero.
|
||||
|
||||
o "waitmb": RCU is waiting for each CPU to execute a memory
|
||||
barrier, which ensures that instructions from a given CPU's
|
||||
last RCU read-side critical section cannot be reordered
|
||||
with instructions following the memory-barrier instruction.
|
||||
|
||||
The output of "cat rcu/rcugp" looks as follows:
|
||||
|
||||
oldggp=48870 newggp=48873
|
||||
|
||||
Note that reading from this file provokes a synchronize_rcu(). The
|
||||
"oldggp" value is that of "ggp" from rcu/rcuctrs above, taken before
|
||||
executing the synchronize_rcu(), and the "newggp" value is also the
|
||||
"ggp" value, but taken after the synchronize_rcu() command returns.
|
||||
|
||||
|
||||
The output of "cat rcu/rcugp" looks as follows:
|
||||
|
||||
na=1337955 nl=40 wa=1337915 wl=44 da=1337871 dl=0 dr=1337871 di=1337871
|
||||
1=50989 e1=6138 i1=49722 ie1=82 g1=49640 a1=315203 ae1=265563 a2=49640
|
||||
z1=1401244 ze1=1351605 z2=49639 m1=5661253 me1=5611614 m2=49639
|
||||
|
||||
These are counters tracking internal preemptable-RCU events, however,
|
||||
some of them may be useful for debugging algorithms using RCU. In
|
||||
particular, the "nl", "wl", and "dl" values track the number of RCU
|
||||
callbacks in various states. The fields are as follows:
|
||||
|
||||
o "na" is the total number of RCU callbacks that have been enqueued
|
||||
since boot.
|
||||
|
||||
o "nl" is the number of RCU callbacks waiting for the previous
|
||||
grace period to end so that they can start waiting on the next
|
||||
grace period.
|
||||
|
||||
o "wa" is the total number of RCU callbacks that have started waiting
|
||||
for a grace period since boot. "na" should be roughly equal to
|
||||
"nl" plus "wa".
|
||||
|
||||
o "wl" is the number of RCU callbacks currently waiting for their
|
||||
grace period to end.
|
||||
|
||||
o "da" is the total number of RCU callbacks whose grace periods
|
||||
have completed since boot. "wa" should be roughly equal to
|
||||
"wl" plus "da".
|
||||
|
||||
o "dr" is the total number of RCU callbacks that have been removed
|
||||
from the list of callbacks ready to invoke. "dr" should be roughly
|
||||
equal to "da".
|
||||
|
||||
o "di" is the total number of RCU callbacks that have been invoked
|
||||
since boot. "di" should be roughly equal to "da", though some
|
||||
early versions of preemptable RCU had a bug so that only the
|
||||
last CPU's count of invocations was displayed, rather than the
|
||||
sum of all CPU's counts.
|
||||
|
||||
o "1" is the number of calls to rcu_try_flip(). This should be
|
||||
roughly equal to the sum of "e1", "i1", "a1", "z1", and "m1"
|
||||
described below. In other words, the number of times that
|
||||
the state machine is visited should be equal to the sum of the
|
||||
number of times that each state is visited plus the number of
|
||||
times that the state-machine lock acquisition failed.
|
||||
|
||||
o "e1" is the number of times that rcu_try_flip() was unable to
|
||||
acquire the fliplock.
|
||||
|
||||
o "i1" is the number of calls to rcu_try_flip_idle().
|
||||
|
||||
o "ie1" is the number of times rcu_try_flip_idle() exited early
|
||||
due to the calling CPU having no work for RCU.
|
||||
|
||||
o "g1" is the number of times that rcu_try_flip_idle() decided
|
||||
to start a new grace period. "i1" should be roughly equal to
|
||||
"ie1" plus "g1".
|
||||
|
||||
o "a1" is the number of calls to rcu_try_flip_waitack().
|
||||
|
||||
o "ae1" is the number of times that rcu_try_flip_waitack() found
|
||||
that at least one CPU had not yet acknowledge the new grace period
|
||||
(AKA "counter flip").
|
||||
|
||||
o "a2" is the number of time rcu_try_flip_waitack() found that
|
||||
all CPUs had acknowledged. "a1" should be roughly equal to
|
||||
"ae1" plus "a2". (This particular output was collected on
|
||||
a 128-CPU machine, hence the smaller-than-usual fraction of
|
||||
calls to rcu_try_flip_waitack() finding all CPUs having already
|
||||
acknowledged.)
|
||||
|
||||
o "z1" is the number of calls to rcu_try_flip_waitzero().
|
||||
|
||||
o "ze1" is the number of times that rcu_try_flip_waitzero() found
|
||||
that not all of the old RCU read-side critical sections had
|
||||
completed.
|
||||
|
||||
o "z2" is the number of times that rcu_try_flip_waitzero() finds
|
||||
the sum of the counters equal to zero, in other words, that
|
||||
all of the old RCU read-side critical sections had completed.
|
||||
The value of "z1" should be roughly equal to "ze1" plus
|
||||
"z2".
|
||||
|
||||
o "m1" is the number of calls to rcu_try_flip_waitmb().
|
||||
|
||||
o "me1" is the number of times that rcu_try_flip_waitmb() finds
|
||||
that at least one CPU has not yet executed a memory barrier.
|
||||
|
||||
o "m2" is the number of times that rcu_try_flip_waitmb() finds that
|
||||
all CPUs have executed a memory barrier.
|
||||
|
||||
|
||||
Hierarchical RCU debugfs Files and Formats
|
||||
|
||||
This implementation of RCU provides three debugfs files under the
|
||||
top-level directory RCU: rcu/rcudata (which displays fields in struct
|
||||
rcu_data), rcu/rcugp (which displays grace-period counters), and
|
||||
rcu/rcuhier (which displays the struct rcu_node hierarchy).
|
||||
|
||||
The output of "cat rcu/rcudata" looks as follows:
|
||||
|
||||
rcu:
|
||||
0 c=4011 g=4012 pq=1 pqc=4011 qp=0 rpfq=1 rp=3c2a dt=23301/73 dn=2 df=1882 of=0 ri=2126 ql=2 b=10
|
||||
1 c=4011 g=4012 pq=1 pqc=4011 qp=0 rpfq=3 rp=39a6 dt=78073/1 dn=2 df=1402 of=0 ri=1875 ql=46 b=10
|
||||
2 c=4010 g=4010 pq=1 pqc=4010 qp=0 rpfq=-5 rp=1d12 dt=16646/0 dn=2 df=3140 of=0 ri=2080 ql=0 b=10
|
||||
3 c=4012 g=4013 pq=1 pqc=4012 qp=1 rpfq=3 rp=2b50 dt=21159/1 dn=2 df=2230 of=0 ri=1923 ql=72 b=10
|
||||
4 c=4012 g=4013 pq=1 pqc=4012 qp=1 rpfq=3 rp=1644 dt=5783/1 dn=2 df=3348 of=0 ri=2805 ql=7 b=10
|
||||
5 c=4012 g=4013 pq=0 pqc=4011 qp=1 rpfq=3 rp=1aac dt=5879/1 dn=2 df=3140 of=0 ri=2066 ql=10 b=10
|
||||
6 c=4012 g=4013 pq=1 pqc=4012 qp=1 rpfq=3 rp=ed8 dt=5847/1 dn=2 df=3797 of=0 ri=1266 ql=10 b=10
|
||||
7 c=4012 g=4013 pq=1 pqc=4012 qp=1 rpfq=3 rp=1fa2 dt=6199/1 dn=2 df=2795 of=0 ri=2162 ql=28 b=10
|
||||
rcu_bh:
|
||||
0 c=-268 g=-268 pq=1 pqc=-268 qp=0 rpfq=-145 rp=21d6 dt=23301/73 dn=2 df=0 of=0 ri=0 ql=0 b=10
|
||||
1 c=-268 g=-268 pq=1 pqc=-268 qp=1 rpfq=-170 rp=20ce dt=78073/1 dn=2 df=26 of=0 ri=5 ql=0 b=10
|
||||
2 c=-268 g=-268 pq=1 pqc=-268 qp=1 rpfq=-83 rp=fbd dt=16646/0 dn=2 df=28 of=0 ri=4 ql=0 b=10
|
||||
3 c=-268 g=-268 pq=1 pqc=-268 qp=0 rpfq=-105 rp=178c dt=21159/1 dn=2 df=28 of=0 ri=2 ql=0 b=10
|
||||
4 c=-268 g=-268 pq=1 pqc=-268 qp=1 rpfq=-30 rp=b54 dt=5783/1 dn=2 df=32 of=0 ri=0 ql=0 b=10
|
||||
5 c=-268 g=-268 pq=1 pqc=-268 qp=1 rpfq=-29 rp=df5 dt=5879/1 dn=2 df=30 of=0 ri=3 ql=0 b=10
|
||||
6 c=-268 g=-268 pq=1 pqc=-268 qp=1 rpfq=-28 rp=788 dt=5847/1 dn=2 df=32 of=0 ri=0 ql=0 b=10
|
||||
7 c=-268 g=-268 pq=1 pqc=-268 qp=1 rpfq=-53 rp=1098 dt=6199/1 dn=2 df=30 of=0 ri=3 ql=0 b=10
|
||||
|
||||
The first section lists the rcu_data structures for rcu, the second for
|
||||
rcu_bh. Each section has one line per CPU, or eight for this 8-CPU system.
|
||||
The fields are as follows:
|
||||
|
||||
o The number at the beginning of each line is the CPU number.
|
||||
CPUs numbers followed by an exclamation mark are offline,
|
||||
but have been online at least once since boot. There will be
|
||||
no output for CPUs that have never been online, which can be
|
||||
a good thing in the surprisingly common case where NR_CPUS is
|
||||
substantially larger than the number of actual CPUs.
|
||||
|
||||
o "c" is the count of grace periods that this CPU believes have
|
||||
completed. CPUs in dynticks idle mode may lag quite a ways
|
||||
behind, for example, CPU 4 under "rcu" above, which has slept
|
||||
through the past 25 RCU grace periods. It is not unusual to
|
||||
see CPUs lagging by thousands of grace periods.
|
||||
|
||||
o "g" is the count of grace periods that this CPU believes have
|
||||
started. Again, CPUs in dynticks idle mode may lag behind.
|
||||
If the "c" and "g" values are equal, this CPU has already
|
||||
reported a quiescent state for the last RCU grace period that
|
||||
it is aware of, otherwise, the CPU believes that it owes RCU a
|
||||
quiescent state.
|
||||
|
||||
o "pq" indicates that this CPU has passed through a quiescent state
|
||||
for the current grace period. It is possible for "pq" to be
|
||||
"1" and "c" different than "g", which indicates that although
|
||||
the CPU has passed through a quiescent state, either (1) this
|
||||
CPU has not yet reported that fact, (2) some other CPU has not
|
||||
yet reported for this grace period, or (3) both.
|
||||
|
||||
o "pqc" indicates which grace period the last-observed quiescent
|
||||
state for this CPU corresponds to. This is important for handling
|
||||
the race between CPU 0 reporting an extended dynticks-idle
|
||||
quiescent state for CPU 1 and CPU 1 suddenly waking up and
|
||||
reporting its own quiescent state. If CPU 1 was the last CPU
|
||||
for the current grace period, then the CPU that loses this race
|
||||
will attempt to incorrectly mark CPU 1 as having checked in for
|
||||
the next grace period!
|
||||
|
||||
o "qp" indicates that RCU still expects a quiescent state from
|
||||
this CPU.
|
||||
|
||||
o "rpfq" is the number of rcu_pending() calls on this CPU required
|
||||
to induce this CPU to invoke force_quiescent_state().
|
||||
|
||||
o "rp" is low-order four hex digits of the count of how many times
|
||||
rcu_pending() has been invoked on this CPU.
|
||||
|
||||
o "dt" is the current value of the dyntick counter that is incremented
|
||||
when entering or leaving dynticks idle state, either by the
|
||||
scheduler or by irq. The number after the "/" is the interrupt
|
||||
nesting depth when in dyntick-idle state, or one greater than
|
||||
the interrupt-nesting depth otherwise.
|
||||
|
||||
This field is displayed only for CONFIG_NO_HZ kernels.
|
||||
|
||||
o "dn" is the current value of the dyntick counter that is incremented
|
||||
when entering or leaving dynticks idle state via NMI. If both
|
||||
the "dt" and "dn" values are even, then this CPU is in dynticks
|
||||
idle mode and may be ignored by RCU. If either of these two
|
||||
counters is odd, then RCU must be alert to the possibility of
|
||||
an RCU read-side critical section running on this CPU.
|
||||
|
||||
This field is displayed only for CONFIG_NO_HZ kernels.
|
||||
|
||||
o "df" is the number of times that some other CPU has forced a
|
||||
quiescent state on behalf of this CPU due to this CPU being in
|
||||
dynticks-idle state.
|
||||
|
||||
This field is displayed only for CONFIG_NO_HZ kernels.
|
||||
|
||||
o "of" is the number of times that some other CPU has forced a
|
||||
quiescent state on behalf of this CPU due to this CPU being
|
||||
offline. In a perfect world, this might neve happen, but it
|
||||
turns out that offlining and onlining a CPU can take several grace
|
||||
periods, and so there is likely to be an extended period of time
|
||||
when RCU believes that the CPU is online when it really is not.
|
||||
Please note that erring in the other direction (RCU believing a
|
||||
CPU is offline when it is really alive and kicking) is a fatal
|
||||
error, so it makes sense to err conservatively.
|
||||
|
||||
o "ri" is the number of times that RCU has seen fit to send a
|
||||
reschedule IPI to this CPU in order to get it to report a
|
||||
quiescent state.
|
||||
|
||||
o "ql" is the number of RCU callbacks currently residing on
|
||||
this CPU. This is the total number of callbacks, regardless
|
||||
of what state they are in (new, waiting for grace period to
|
||||
start, waiting for grace period to end, ready to invoke).
|
||||
|
||||
o "b" is the batch limit for this CPU. If more than this number
|
||||
of RCU callbacks is ready to invoke, then the remainder will
|
||||
be deferred.
|
||||
|
||||
|
||||
The output of "cat rcu/rcugp" looks as follows:
|
||||
|
||||
rcu: completed=33062 gpnum=33063
|
||||
rcu_bh: completed=464 gpnum=464
|
||||
|
||||
Again, this output is for both "rcu" and "rcu_bh". The fields are
|
||||
taken from the rcu_state structure, and are as follows:
|
||||
|
||||
o "completed" is the number of grace periods that have completed.
|
||||
It is comparable to the "c" field from rcu/rcudata in that a
|
||||
CPU whose "c" field matches the value of "completed" is aware
|
||||
that the corresponding RCU grace period has completed.
|
||||
|
||||
o "gpnum" is the number of grace periods that have started. It is
|
||||
comparable to the "g" field from rcu/rcudata in that a CPU
|
||||
whose "g" field matches the value of "gpnum" is aware that the
|
||||
corresponding RCU grace period has started.
|
||||
|
||||
If these two fields are equal (as they are for "rcu_bh" above),
|
||||
then there is no grace period in progress, in other words, RCU
|
||||
is idle. On the other hand, if the two fields differ (as they
|
||||
do for "rcu" above), then an RCU grace period is in progress.
|
||||
|
||||
|
||||
The output of "cat rcu/rcuhier" looks as follows, with very long lines:
|
||||
|
||||
c=6902 g=6903 s=2 jfq=3 j=72c7 nfqs=13142/nfqsng=0(13142) fqlh=6
|
||||
1/1 0:127 ^0
|
||||
3/3 0:35 ^0 0/0 36:71 ^1 0/0 72:107 ^2 0/0 108:127 ^3
|
||||
3/3f 0:5 ^0 2/3 6:11 ^1 0/0 12:17 ^2 0/0 18:23 ^3 0/0 24:29 ^4 0/0 30:35 ^5 0/0 36:41 ^0 0/0 42:47 ^1 0/0 48:53 ^2 0/0 54:59 ^3 0/0 60:65 ^4 0/0 66:71 ^5 0/0 72:77 ^0 0/0 78:83 ^1 0/0 84:89 ^2 0/0 90:95 ^3 0/0 96:101 ^4 0/0 102:107 ^5 0/0 108:113 ^0 0/0 114:119 ^1 0/0 120:125 ^2 0/0 126:127 ^3
|
||||
rcu_bh:
|
||||
c=-226 g=-226 s=1 jfq=-5701 j=72c7 nfqs=88/nfqsng=0(88) fqlh=0
|
||||
0/1 0:127 ^0
|
||||
0/3 0:35 ^0 0/0 36:71 ^1 0/0 72:107 ^2 0/0 108:127 ^3
|
||||
0/3f 0:5 ^0 0/3 6:11 ^1 0/0 12:17 ^2 0/0 18:23 ^3 0/0 24:29 ^4 0/0 30:35 ^5 0/0 36:41 ^0 0/0 42:47 ^1 0/0 48:53 ^2 0/0 54:59 ^3 0/0 60:65 ^4 0/0 66:71 ^5 0/0 72:77 ^0 0/0 78:83 ^1 0/0 84:89 ^2 0/0 90:95 ^3 0/0 96:101 ^4 0/0 102:107 ^5 0/0 108:113 ^0 0/0 114:119 ^1 0/0 120:125 ^2 0/0 126:127 ^3
|
||||
|
||||
This is once again split into "rcu" and "rcu_bh" portions. The fields are
|
||||
as follows:
|
||||
|
||||
o "c" is exactly the same as "completed" under rcu/rcugp.
|
||||
|
||||
o "g" is exactly the same as "gpnum" under rcu/rcugp.
|
||||
|
||||
o "s" is the "signaled" state that drives force_quiescent_state()'s
|
||||
state machine.
|
||||
|
||||
o "jfq" is the number of jiffies remaining for this grace period
|
||||
before force_quiescent_state() is invoked to help push things
|
||||
along. Note that CPUs in dyntick-idle mode thoughout the grace
|
||||
period will not report on their own, but rather must be check by
|
||||
some other CPU via force_quiescent_state().
|
||||
|
||||
o "j" is the low-order four hex digits of the jiffies counter.
|
||||
Yes, Paul did run into a number of problems that turned out to
|
||||
be due to the jiffies counter no longer counting. Why do you ask?
|
||||
|
||||
o "nfqs" is the number of calls to force_quiescent_state() since
|
||||
boot.
|
||||
|
||||
o "nfqsng" is the number of useless calls to force_quiescent_state(),
|
||||
where there wasn't actually a grace period active. This can
|
||||
happen due to races. The number in parentheses is the difference
|
||||
between "nfqs" and "nfqsng", or the number of times that
|
||||
force_quiescent_state() actually did some real work.
|
||||
|
||||
o "fqlh" is the number of calls to force_quiescent_state() that
|
||||
exited immediately (without even being counted in nfqs above)
|
||||
due to contention on ->fqslock.
|
||||
|
||||
o Each element of the form "1/1 0:127 ^0" represents one struct
|
||||
rcu_node. Each line represents one level of the hierarchy, from
|
||||
root to leaves. It is best to think of the rcu_data structures
|
||||
as forming yet another level after the leaves. Note that there
|
||||
might be either one, two, or three levels of rcu_node structures,
|
||||
depending on the relationship between CONFIG_RCU_FANOUT and
|
||||
CONFIG_NR_CPUS.
|
||||
|
||||
o The numbers separated by the "/" are the qsmask followed
|
||||
by the qsmaskinit. The qsmask will have one bit
|
||||
set for each entity in the next lower level that
|
||||
has not yet checked in for the current grace period.
|
||||
The qsmaskinit will have one bit for each entity that is
|
||||
currently expected to check in during each grace period.
|
||||
The value of qsmaskinit is assigned to that of qsmask
|
||||
at the beginning of each grace period.
|
||||
|
||||
For example, for "rcu", the qsmask of the first entry
|
||||
of the lowest level is 0x14, meaning that we are still
|
||||
waiting for CPUs 2 and 4 to check in for the current
|
||||
grace period.
|
||||
|
||||
o The numbers separated by the ":" are the range of CPUs
|
||||
served by this struct rcu_node. This can be helpful
|
||||
in working out how the hierarchy is wired together.
|
||||
|
||||
For example, the first entry at the lowest level shows
|
||||
"0:5", indicating that it covers CPUs 0 through 5.
|
||||
|
||||
o The number after the "^" indicates the bit in the
|
||||
next higher level rcu_node structure that this
|
||||
rcu_node structure corresponds to.
|
||||
|
||||
For example, the first entry at the lowest level shows
|
||||
"^0", indicating that it corresponds to bit zero in
|
||||
the first entry at the middle level.
|
286
Documentation/arm/pxa/mfp.txt
Normal file
286
Documentation/arm/pxa/mfp.txt
Normal file
@ -0,0 +1,286 @@
|
||||
MFP Configuration for PXA2xx/PXA3xx Processors
|
||||
|
||||
Eric Miao <eric.miao@marvell.com>
|
||||
|
||||
MFP stands for Multi-Function Pin, which is the pin-mux logic on PXA3xx and
|
||||
later PXA series processors. This document describes the existing MFP API,
|
||||
and how board/platform driver authors could make use of it.
|
||||
|
||||
Basic Concept
|
||||
===============
|
||||
|
||||
Unlike the GPIO alternate function settings on PXA25x and PXA27x, a new MFP
|
||||
mechanism is introduced from PXA3xx to completely move the pin-mux functions
|
||||
out of the GPIO controller. In addition to pin-mux configurations, the MFP
|
||||
also controls the low power state, driving strength, pull-up/down and event
|
||||
detection of each pin. Below is a diagram of internal connections between
|
||||
the MFP logic and the remaining SoC peripherals:
|
||||
|
||||
+--------+
|
||||
| |--(GPIO19)--+
|
||||
| GPIO | |
|
||||
| |--(GPIO...) |
|
||||
+--------+ |
|
||||
| +---------+
|
||||
+--------+ +------>| |
|
||||
| PWM2 |--(PWM_OUT)-------->| MFP |
|
||||
+--------+ +------>| |-------> to external PAD
|
||||
| +---->| |
|
||||
+--------+ | | +-->| |
|
||||
| SSP2 |---(TXD)----+ | | +---------+
|
||||
+--------+ | |
|
||||
| |
|
||||
+--------+ | |
|
||||
| Keypad |--(MKOUT4)----+ |
|
||||
+--------+ |
|
||||
|
|
||||
+--------+ |
|
||||
| UART2 |---(TXD)--------+
|
||||
+--------+
|
||||
|
||||
NOTE: the external pad is named as MFP_PIN_GPIO19, it doesn't necessarily
|
||||
mean it's dedicated for GPIO19, only as a hint that internally this pin
|
||||
can be routed from GPIO19 of the GPIO controller.
|
||||
|
||||
To better understand the change from PXA25x/PXA27x GPIO alternate function
|
||||
to this new MFP mechanism, here are several key points:
|
||||
|
||||
1. GPIO controller on PXA3xx is now a dedicated controller, same as other
|
||||
internal controllers like PWM, SSP and UART, with 128 internal signals
|
||||
which can be routed to external through one or more MFPs (e.g. GPIO<0>
|
||||
can be routed through either MFP_PIN_GPIO0 as well as MFP_PIN_GPIO0_2,
|
||||
see arch/arm/mach-pxa/mach/include/mfp-pxa300.h)
|
||||
|
||||
2. Alternate function configuration is removed from this GPIO controller,
|
||||
the remaining functions are pure GPIO-specific, i.e.
|
||||
|
||||
- GPIO signal level control
|
||||
- GPIO direction control
|
||||
- GPIO level change detection
|
||||
|
||||
3. Low power state for each pin is now controlled by MFP, this means the
|
||||
PGSRx registers on PXA2xx are now useless on PXA3xx
|
||||
|
||||
4. Wakeup detection is now controlled by MFP, PWER does not control the
|
||||
wakeup from GPIO(s) any more, depending on the sleeping state, ADxER
|
||||
(as defined in pxa3xx-regs.h) controls the wakeup from MFP
|
||||
|
||||
NOTE: with such a clear separation of MFP and GPIO, by GPIO<xx> we normally
|
||||
mean it is a GPIO signal, and by MFP<xxx> or pin xxx, we mean a physical
|
||||
pad (or ball).
|
||||
|
||||
MFP API Usage
|
||||
===============
|
||||
|
||||
For board code writers, here are some guidelines:
|
||||
|
||||
1. include ONE of the following header files in your <board>.c:
|
||||
|
||||
- #include <mach/mfp-pxa25x.h>
|
||||
- #include <mach/mfp-pxa27x.h>
|
||||
- #include <mach/mfp-pxa300.h>
|
||||
- #include <mach/mfp-pxa320.h>
|
||||
- #include <mach/mfp-pxa930.h>
|
||||
|
||||
NOTE: only one file in your <board>.c, depending on the processors used,
|
||||
because pin configuration definitions may conflict in these file (i.e.
|
||||
same name, different meaning and settings on different processors). E.g.
|
||||
for zylonite platform, which support both PXA300/PXA310 and PXA320, two
|
||||
separate files are introduced: zylonite_pxa300.c and zylonite_pxa320.c
|
||||
(in addition to handle MFP configuration differences, they also handle
|
||||
the other differences between the two combinations).
|
||||
|
||||
NOTE: PXA300 and PXA310 are almost identical in pin configurations (with
|
||||
PXA310 supporting some additional ones), thus the difference is actually
|
||||
covered in a single mfp-pxa300.h.
|
||||
|
||||
2. prepare an array for the initial pin configurations, e.g.:
|
||||
|
||||
static unsigned long mainstone_pin_config[] __initdata = {
|
||||
/* Chip Select */
|
||||
GPIO15_nCS_1,
|
||||
|
||||
/* LCD - 16bpp Active TFT */
|
||||
GPIOxx_TFT_LCD_16BPP,
|
||||
GPIO16_PWM0_OUT, /* Backlight */
|
||||
|
||||
/* MMC */
|
||||
GPIO32_MMC_CLK,
|
||||
GPIO112_MMC_CMD,
|
||||
GPIO92_MMC_DAT_0,
|
||||
GPIO109_MMC_DAT_1,
|
||||
GPIO110_MMC_DAT_2,
|
||||
GPIO111_MMC_DAT_3,
|
||||
|
||||
...
|
||||
|
||||
/* GPIO */
|
||||
GPIO1_GPIO | WAKEUP_ON_EDGE_BOTH,
|
||||
};
|
||||
|
||||
a) once the pin configurations are passed to pxa{2xx,3xx}_mfp_config(),
|
||||
and written to the actual registers, they are useless and may discard,
|
||||
adding '__initdata' will help save some additional bytes here.
|
||||
|
||||
b) when there is only one possible pin configurations for a component,
|
||||
some simplified definitions can be used, e.g. GPIOxx_TFT_LCD_16BPP on
|
||||
PXA25x and PXA27x processors
|
||||
|
||||
c) if by board design, a pin can be configured to wake up the system
|
||||
from low power state, it can be 'OR'ed with any of:
|
||||
|
||||
WAKEUP_ON_EDGE_BOTH
|
||||
WAKEUP_ON_EDGE_RISE
|
||||
WAKEUP_ON_EDGE_FALL
|
||||
WAKEUP_ON_LEVEL_HIGH - specifically for enabling of keypad GPIOs,
|
||||
|
||||
to indicate that this pin has the capability of wake-up the system,
|
||||
and on which edge(s). This, however, doesn't necessarily mean the
|
||||
pin _will_ wakeup the system, it will only when set_irq_wake() is
|
||||
invoked with the corresponding GPIO IRQ (GPIO_IRQ(xx) or gpio_to_irq())
|
||||
and eventually calls gpio_set_wake() for the actual register setting.
|
||||
|
||||
d) although PXA3xx MFP supports edge detection on each pin, the
|
||||
internal logic will only wakeup the system when those specific bits
|
||||
in ADxER registers are set, which can be well mapped to the
|
||||
corresponding peripheral, thus set_irq_wake() can be called with
|
||||
the peripheral IRQ to enable the wakeup.
|
||||
|
||||
|
||||
MFP on PXA3xx
|
||||
===============
|
||||
|
||||
Every external I/O pad on PXA3xx (excluding those for special purpose) has
|
||||
one MFP logic associated, and is controlled by one MFP register (MFPR).
|
||||
|
||||
The MFPR has the following bit definitions (for PXA300/PXA310/PXA320):
|
||||
|
||||
31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|
||||
+-------------------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||||
| RESERVED |PS|PU|PD| DRIVE |SS|SD|SO|EC|EF|ER|--| AF_SEL |
|
||||
+-------------------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||||
|
||||
Bit 3: RESERVED
|
||||
Bit 4: EDGE_RISE_EN - enable detection of rising edge on this pin
|
||||
Bit 5: EDGE_FALL_EN - enable detection of falling edge on this pin
|
||||
Bit 6: EDGE_CLEAR - disable edge detection on this pin
|
||||
Bit 7: SLEEP_OE_N - enable outputs during low power modes
|
||||
Bit 8: SLEEP_DATA - output data on the pin during low power modes
|
||||
Bit 9: SLEEP_SEL - selection control for low power modes signals
|
||||
Bit 13: PULLDOWN_EN - enable the internal pull-down resistor on this pin
|
||||
Bit 14: PULLUP_EN - enable the internal pull-up resistor on this pin
|
||||
Bit 15: PULL_SEL - pull state controlled by selected alternate function
|
||||
(0) or by PULL{UP,DOWN}_EN bits (1)
|
||||
|
||||
Bit 0 - 2: AF_SEL - alternate function selection, 8 possibilities, from 0-7
|
||||
Bit 10-12: DRIVE - drive strength and slew rate
|
||||
0b000 - fast 1mA
|
||||
0b001 - fast 2mA
|
||||
0b002 - fast 3mA
|
||||
0b003 - fast 4mA
|
||||
0b004 - slow 6mA
|
||||
0b005 - fast 6mA
|
||||
0b006 - slow 10mA
|
||||
0b007 - fast 10mA
|
||||
|
||||
MFP Design for PXA2xx/PXA3xx
|
||||
==============================
|
||||
|
||||
Due to the difference of pin-mux handling between PXA2xx and PXA3xx, a unified
|
||||
MFP API is introduced to cover both series of processors.
|
||||
|
||||
The basic idea of this design is to introduce definitions for all possible pin
|
||||
configurations, these definitions are processor and platform independent, and
|
||||
the actual API invoked to convert these definitions into register settings and
|
||||
make them effective there-after.
|
||||
|
||||
Files Involved
|
||||
--------------
|
||||
|
||||
- arch/arm/mach-pxa/include/mach/mfp.h
|
||||
|
||||
for
|
||||
1. Unified pin definitions - enum constants for all configurable pins
|
||||
2. processor-neutral bit definitions for a possible MFP configuration
|
||||
|
||||
- arch/arm/mach-pxa/include/mach/mfp-pxa3xx.h
|
||||
|
||||
for PXA3xx specific MFPR register bit definitions and PXA3xx common pin
|
||||
configurations
|
||||
|
||||
- arch/arm/mach-pxa/include/mach/mfp-pxa2xx.h
|
||||
|
||||
for PXA2xx specific definitions and PXA25x/PXA27x common pin configurations
|
||||
|
||||
- arch/arm/mach-pxa/include/mach/mfp-pxa25x.h
|
||||
arch/arm/mach-pxa/include/mach/mfp-pxa27x.h
|
||||
arch/arm/mach-pxa/include/mach/mfp-pxa300.h
|
||||
arch/arm/mach-pxa/include/mach/mfp-pxa320.h
|
||||
arch/arm/mach-pxa/include/mach/mfp-pxa930.h
|
||||
|
||||
for processor specific definitions
|
||||
|
||||
- arch/arm/mach-pxa/mfp-pxa3xx.c
|
||||
- arch/arm/mach-pxa/mfp-pxa2xx.c
|
||||
|
||||
for implementation of the pin configuration to take effect for the actual
|
||||
processor.
|
||||
|
||||
Pin Configuration
|
||||
-----------------
|
||||
|
||||
The following comments are copied from mfp.h (see the actual source code
|
||||
for most updated info)
|
||||
|
||||
/*
|
||||
* a possible MFP configuration is represented by a 32-bit integer
|
||||
*
|
||||
* bit 0.. 9 - MFP Pin Number (1024 Pins Maximum)
|
||||
* bit 10..12 - Alternate Function Selection
|
||||
* bit 13..15 - Drive Strength
|
||||
* bit 16..18 - Low Power Mode State
|
||||
* bit 19..20 - Low Power Mode Edge Detection
|
||||
* bit 21..22 - Run Mode Pull State
|
||||
*
|
||||
* to facilitate the definition, the following macros are provided
|
||||
*
|
||||
* MFP_CFG_DEFAULT - default MFP configuration value, with
|
||||
* alternate function = 0,
|
||||
* drive strength = fast 3mA (MFP_DS03X)
|
||||
* low power mode = default
|
||||
* edge detection = none
|
||||
*
|
||||
* MFP_CFG - default MFPR value with alternate function
|
||||
* MFP_CFG_DRV - default MFPR value with alternate function and
|
||||
* pin drive strength
|
||||
* MFP_CFG_LPM - default MFPR value with alternate function and
|
||||
* low power mode
|
||||
* MFP_CFG_X - default MFPR value with alternate function,
|
||||
* pin drive strength and low power mode
|
||||
*/
|
||||
|
||||
Examples of pin configurations are:
|
||||
|
||||
#define GPIO94_SSP3_RXD MFP_CFG_X(GPIO94, AF1, DS08X, FLOAT)
|
||||
|
||||
which reads GPIO94 can be configured as SSP3_RXD, with alternate function
|
||||
selection of 1, driving strength of 0b101, and a float state in low power
|
||||
modes.
|
||||
|
||||
NOTE: this is the default setting of this pin being configured as SSP3_RXD
|
||||
which can be modified a bit in board code, though it is not recommended to
|
||||
do so, simply because this default setting is usually carefully encoded,
|
||||
and is supposed to work in most cases.
|
||||
|
||||
Register Settings
|
||||
-----------------
|
||||
|
||||
Register settings on PXA3xx for a pin configuration is actually very
|
||||
straight-forward, most bits can be converted directly into MFPR value
|
||||
in a easier way. Two sets of MFPR values are calculated: the run-time
|
||||
ones and the low power mode ones, to allow different settings.
|
||||
|
||||
The conversion from a generic pin configuration to the actual register
|
||||
settings on PXA2xx is a bit complicated: many registers are involved,
|
||||
including GAFRx, GPDRx, PGSRx, PWER, PKWR, PFER and PRER. Please see
|
||||
mfp-pxa2xx.c for how the conversion is made.
|
45
Documentation/bad_memory.txt
Normal file
45
Documentation/bad_memory.txt
Normal file
@ -0,0 +1,45 @@
|
||||
March 2008
|
||||
Jan-Simon Moeller, dl9pf@gmx.de
|
||||
|
||||
|
||||
How to deal with bad memory e.g. reported by memtest86+ ?
|
||||
#########################################################
|
||||
|
||||
There are three possibilities I know of:
|
||||
|
||||
1) Reinsert/swap the memory modules
|
||||
|
||||
2) Buy new modules (best!) or try to exchange the memory
|
||||
if you have spare-parts
|
||||
|
||||
3) Use BadRAM or memmap
|
||||
|
||||
This Howto is about number 3) .
|
||||
|
||||
|
||||
BadRAM
|
||||
######
|
||||
BadRAM is the actively developed and available as kernel-patch
|
||||
here: http://rick.vanrein.org/linux/badram/
|
||||
|
||||
For more details see the BadRAM documentation.
|
||||
|
||||
memmap
|
||||
######
|
||||
|
||||
memmap is already in the kernel and usable as kernel-parameter at
|
||||
boot-time. Its syntax is slightly strange and you may need to
|
||||
calculate the values by yourself!
|
||||
|
||||
Syntax to exclude a memory area (see kernel-parameters.txt for details):
|
||||
memmap=<size>$<address>
|
||||
|
||||
Example: memtest86+ reported here errors at address 0x18691458, 0x18698424 and
|
||||
some others. All had 0x1869xxxx in common, so I chose a pattern of
|
||||
0x18690000,0xffff0000.
|
||||
|
||||
With the numbers of the example above:
|
||||
memmap=64K$0x18690000
|
||||
or
|
||||
memmap=0x10000$0x18690000
|
||||
|
@ -9,3 +9,6 @@ cachefeatures.txt
|
||||
|
||||
Filesystems
|
||||
- Requirements for mounting the root file system.
|
||||
|
||||
bfin-gpio-note.txt
|
||||
- Notes in developing/using bfin-gpio driver.
|
||||
|
71
Documentation/blackfin/bfin-gpio-notes.txt
Normal file
71
Documentation/blackfin/bfin-gpio-notes.txt
Normal file
@ -0,0 +1,71 @@
|
||||
/*
|
||||
* File: Documentation/blackfin/bfin-gpio-note.txt
|
||||
* Based on:
|
||||
* Author:
|
||||
*
|
||||
* Created: $Id: bfin-gpio-note.txt 2008-11-24 16:42 grafyang $
|
||||
* Description: This file contains the notes in developing/using bfin-gpio.
|
||||
*
|
||||
*
|
||||
* Rev:
|
||||
*
|
||||
* Modified:
|
||||
* Copyright 2004-2008 Analog Devices Inc.
|
||||
*
|
||||
* Bugs: Enter bugs at http://blackfin.uclinux.org/
|
||||
*
|
||||
*/
|
||||
|
||||
|
||||
1. Blackfin GPIO introduction
|
||||
|
||||
There are many GPIO pins on Blackfin. Most of these pins are muxed to
|
||||
multi-functions. They can be configured as peripheral, or just as GPIO,
|
||||
configured to input with interrupt enabled, or output.
|
||||
|
||||
For detailed information, please see "arch/blackfin/kernel/bfin_gpio.c",
|
||||
or the relevant HRM.
|
||||
|
||||
|
||||
2. Avoiding resource conflict
|
||||
|
||||
Followed function groups are used to avoiding resource conflict,
|
||||
- Use the pin as peripheral,
|
||||
int peripheral_request(unsigned short per, const char *label);
|
||||
int peripheral_request_list(const unsigned short per[], const char *label);
|
||||
void peripheral_free(unsigned short per);
|
||||
void peripheral_free_list(const unsigned short per[]);
|
||||
- Use the pin as GPIO,
|
||||
int bfin_gpio_request(unsigned gpio, const char *label);
|
||||
void bfin_gpio_free(unsigned gpio);
|
||||
- Use the pin as GPIO interrupt,
|
||||
int bfin_gpio_irq_request(unsigned gpio, const char *label);
|
||||
void bfin_gpio_irq_free(unsigned gpio);
|
||||
|
||||
The request functions will record the function state for a certain pin,
|
||||
the free functions will clear it's function state.
|
||||
Once a pin is requested, it can't be requested again before it is freed by
|
||||
previous caller, otherwise kernel will dump stacks, and the request
|
||||
function fail.
|
||||
These functions are wrapped by other functions, most of the users need not
|
||||
care.
|
||||
|
||||
|
||||
3. But there are some exceptions
|
||||
- Kernel permit the identical GPIO be requested both as GPIO and GPIO
|
||||
interrut.
|
||||
Some drivers, like gpio-keys, need this behavior. Kernel only print out
|
||||
warning messages like,
|
||||
bfin-gpio: GPIO 24 is already reserved by gpio-keys: BTN0, and you are
|
||||
configuring it as IRQ!
|
||||
|
||||
Note: Consider the case that, if there are two drivers need the
|
||||
identical GPIO, one of them use it as GPIO, the other use it as
|
||||
GPIO interrupt. This will really cause resource conflict. So if
|
||||
there is any abnormal driver behavior, please check the bfin-gpio
|
||||
warning messages.
|
||||
|
||||
- Kernel permit the identical GPIO be requested from the same driver twice.
|
||||
|
||||
|
||||
|
@ -914,7 +914,7 @@ I/O scheduler, a.k.a. elevator, is implemented in two layers. Generic dispatch
|
||||
queue and specific I/O schedulers. Unless stated otherwise, elevator is used
|
||||
to refer to both parts and I/O scheduler to specific I/O schedulers.
|
||||
|
||||
Block layer implements generic dispatch queue in ll_rw_blk.c and elevator.c.
|
||||
Block layer implements generic dispatch queue in block/*.c.
|
||||
The generic dispatch queue is responsible for properly ordering barrier
|
||||
requests, requeueing, handling non-fs requests and all other subtleties.
|
||||
|
||||
@ -926,8 +926,8 @@ be built inside the kernel. Each queue can choose different one and can also
|
||||
change to another one dynamically.
|
||||
|
||||
A block layer call to the i/o scheduler follows the convention elv_xxx(). This
|
||||
calls elevator_xxx_fn in the elevator switch (drivers/block/elevator.c). Oh,
|
||||
xxx and xxx might not match exactly, but use your imagination. If an elevator
|
||||
calls elevator_xxx_fn in the elevator switch (block/elevator.c). Oh, xxx
|
||||
and xxx might not match exactly, but use your imagination. If an elevator
|
||||
doesn't implement a function, the switch does nothing or some minimal house
|
||||
keeping work.
|
||||
|
||||
|
@ -227,7 +227,6 @@ Each cgroup is represented by a directory in the cgroup file system
|
||||
containing the following files describing that cgroup:
|
||||
|
||||
- tasks: list of tasks (by pid) attached to that cgroup
|
||||
- releasable flag: cgroup currently removeable?
|
||||
- notify_on_release flag: run the release agent on exit?
|
||||
- release_agent: the path to use for release notifications (this file
|
||||
exists in the top cgroup only)
|
||||
@ -360,7 +359,7 @@ Now you want to do something with this cgroup.
|
||||
|
||||
In this directory you can find several files:
|
||||
# ls
|
||||
notify_on_release releasable tasks
|
||||
notify_on_release tasks
|
||||
(plus whatever files added by the attached subsystems)
|
||||
|
||||
Now attach your shell to this cgroup:
|
||||
@ -479,7 +478,6 @@ newly-created cgroup if an error occurs after this subsystem's
|
||||
create() method has been called for the new cgroup).
|
||||
|
||||
void pre_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp);
|
||||
(cgroup_mutex held by caller)
|
||||
|
||||
Called before checking the reference count on each subsystem. This may
|
||||
be useful for subsystems which have some extra references even if
|
||||
@ -498,6 +496,7 @@ remain valid while the caller holds cgroup_mutex.
|
||||
|
||||
void attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
|
||||
struct cgroup *old_cgrp, struct task_struct *task)
|
||||
(cgroup_mutex held by caller)
|
||||
|
||||
Called after the task has been attached to the cgroup, to allow any
|
||||
post-attachment activity that requires memory allocations or blocking.
|
||||
@ -511,6 +510,7 @@ void exit(struct cgroup_subsys *ss, struct task_struct *task)
|
||||
Called during task exit.
|
||||
|
||||
int populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
|
||||
(cgroup_mutex held by caller)
|
||||
|
||||
Called after creation of a cgroup to allow a subsystem to populate
|
||||
the cgroup directory with file entries. The subsystem should make
|
||||
@ -520,6 +520,7 @@ method can return an error code, the error code is currently not
|
||||
always handled well.
|
||||
|
||||
void post_clone(struct cgroup_subsys *ss, struct cgroup *cgrp)
|
||||
(cgroup_mutex held by caller)
|
||||
|
||||
Called at the end of cgroup_clone() to do any paramater
|
||||
initialization which might be required before a task could attach. For
|
||||
@ -527,7 +528,7 @@ example in cpusets, no task may attach before 'cpus' and 'mems' are set
|
||||
up.
|
||||
|
||||
void bind(struct cgroup_subsys *ss, struct cgroup *root)
|
||||
(cgroup_mutex held by caller)
|
||||
(cgroup_mutex and ss->hierarchy_mutex held by caller)
|
||||
|
||||
Called when a cgroup subsystem is rebound to a different hierarchy
|
||||
and root cgroup. Currently this will only involve movement between
|
||||
|
32
Documentation/controllers/cpuacct.txt
Normal file
32
Documentation/controllers/cpuacct.txt
Normal file
@ -0,0 +1,32 @@
|
||||
CPU Accounting Controller
|
||||
-------------------------
|
||||
|
||||
The CPU accounting controller is used to group tasks using cgroups and
|
||||
account the CPU usage of these groups of tasks.
|
||||
|
||||
The CPU accounting controller supports multi-hierarchy groups. An accounting
|
||||
group accumulates the CPU usage of all of its child groups and the tasks
|
||||
directly present in its group.
|
||||
|
||||
Accounting groups can be created by first mounting the cgroup filesystem.
|
||||
|
||||
# mkdir /cgroups
|
||||
# mount -t cgroup -ocpuacct none /cgroups
|
||||
|
||||
With the above step, the initial or the parent accounting group
|
||||
becomes visible at /cgroups. At bootup, this group includes all the
|
||||
tasks in the system. /cgroups/tasks lists the tasks in this cgroup.
|
||||
/cgroups/cpuacct.usage gives the CPU time (in nanoseconds) obtained by
|
||||
this group which is essentially the CPU time obtained by all the tasks
|
||||
in the system.
|
||||
|
||||
New accounting groups can be created under the parent group /cgroups.
|
||||
|
||||
# cd /cgroups
|
||||
# mkdir g1
|
||||
# echo $$ > g1
|
||||
|
||||
The above steps create a new group g1 and move the current shell
|
||||
process (bash) into it. CPU time consumed by this bash and its children
|
||||
can be obtained from g1/cpuacct.usage and the same is accumulated in
|
||||
/cgroups/cpuacct.usage also.
|
342
Documentation/controllers/memcg_test.txt
Normal file
342
Documentation/controllers/memcg_test.txt
Normal file
@ -0,0 +1,342 @@
|
||||
Memory Resource Controller(Memcg) Implementation Memo.
|
||||
Last Updated: 2008/12/15
|
||||
Base Kernel Version: based on 2.6.28-rc8-mm.
|
||||
|
||||
Because VM is getting complex (one of reasons is memcg...), memcg's behavior
|
||||
is complex. This is a document for memcg's internal behavior.
|
||||
Please note that implementation details can be changed.
|
||||
|
||||
(*) Topics on API should be in Documentation/controllers/memory.txt)
|
||||
|
||||
0. How to record usage ?
|
||||
2 objects are used.
|
||||
|
||||
page_cgroup ....an object per page.
|
||||
Allocated at boot or memory hotplug. Freed at memory hot removal.
|
||||
|
||||
swap_cgroup ... an entry per swp_entry.
|
||||
Allocated at swapon(). Freed at swapoff().
|
||||
|
||||
The page_cgroup has USED bit and double count against a page_cgroup never
|
||||
occurs. swap_cgroup is used only when a charged page is swapped-out.
|
||||
|
||||
1. Charge
|
||||
|
||||
a page/swp_entry may be charged (usage += PAGE_SIZE) at
|
||||
|
||||
mem_cgroup_newpage_charge()
|
||||
Called at new page fault and Copy-On-Write.
|
||||
|
||||
mem_cgroup_try_charge_swapin()
|
||||
Called at do_swap_page() (page fault on swap entry) and swapoff.
|
||||
Followed by charge-commit-cancel protocol. (With swap accounting)
|
||||
At commit, a charge recorded in swap_cgroup is removed.
|
||||
|
||||
mem_cgroup_cache_charge()
|
||||
Called at add_to_page_cache()
|
||||
|
||||
mem_cgroup_cache_charge_swapin()
|
||||
Called at shmem's swapin.
|
||||
|
||||
mem_cgroup_prepare_migration()
|
||||
Called before migration. "extra" charge is done and followed by
|
||||
charge-commit-cancel protocol.
|
||||
At commit, charge against oldpage or newpage will be committed.
|
||||
|
||||
2. Uncharge
|
||||
a page/swp_entry may be uncharged (usage -= PAGE_SIZE) by
|
||||
|
||||
mem_cgroup_uncharge_page()
|
||||
Called when an anonymous page is fully unmapped. I.e., mapcount goes
|
||||
to 0. If the page is SwapCache, uncharge is delayed until
|
||||
mem_cgroup_uncharge_swapcache().
|
||||
|
||||
mem_cgroup_uncharge_cache_page()
|
||||
Called when a page-cache is deleted from radix-tree. If the page is
|
||||
SwapCache, uncharge is delayed until mem_cgroup_uncharge_swapcache().
|
||||
|
||||
mem_cgroup_uncharge_swapcache()
|
||||
Called when SwapCache is removed from radix-tree. The charge itself
|
||||
is moved to swap_cgroup. (If mem+swap controller is disabled, no
|
||||
charge to swap occurs.)
|
||||
|
||||
mem_cgroup_uncharge_swap()
|
||||
Called when swp_entry's refcnt goes down to 0. A charge against swap
|
||||
disappears.
|
||||
|
||||
mem_cgroup_end_migration(old, new)
|
||||
At success of migration old is uncharged (if necessary), a charge
|
||||
to new page is committed. At failure, charge to old page is committed.
|
||||
|
||||
3. charge-commit-cancel
|
||||
In some case, we can't know this "charge" is valid or not at charging
|
||||
(because of races).
|
||||
To handle such case, there are charge-commit-cancel functions.
|
||||
mem_cgroup_try_charge_XXX
|
||||
mem_cgroup_commit_charge_XXX
|
||||
mem_cgroup_cancel_charge_XXX
|
||||
these are used in swap-in and migration.
|
||||
|
||||
At try_charge(), there are no flags to say "this page is charged".
|
||||
at this point, usage += PAGE_SIZE.
|
||||
|
||||
At commit(), the function checks the page should be charged or not
|
||||
and set flags or avoid charging.(usage -= PAGE_SIZE)
|
||||
|
||||
At cancel(), simply usage -= PAGE_SIZE.
|
||||
|
||||
Under below explanation, we assume CONFIG_MEM_RES_CTRL_SWAP=y.
|
||||
|
||||
4. Anonymous
|
||||
Anonymous page is newly allocated at
|
||||
- page fault into MAP_ANONYMOUS mapping.
|
||||
- Copy-On-Write.
|
||||
It is charged right after it's allocated before doing any page table
|
||||
related operations. Of course, it's uncharged when another page is used
|
||||
for the fault address.
|
||||
|
||||
At freeing anonymous page (by exit() or munmap()), zap_pte() is called
|
||||
and pages for ptes are freed one by one.(see mm/memory.c). Uncharges
|
||||
are done at page_remove_rmap() when page_mapcount() goes down to 0.
|
||||
|
||||
Another page freeing is by page-reclaim (vmscan.c) and anonymous
|
||||
pages are swapped out. In this case, the page is marked as
|
||||
PageSwapCache(). uncharge() routine doesn't uncharge the page marked
|
||||
as SwapCache(). It's delayed until __delete_from_swap_cache().
|
||||
|
||||
4.1 Swap-in.
|
||||
At swap-in, the page is taken from swap-cache. There are 2 cases.
|
||||
|
||||
(a) If the SwapCache is newly allocated and read, it has no charges.
|
||||
(b) If the SwapCache has been mapped by processes, it has been
|
||||
charged already.
|
||||
|
||||
This swap-in is one of the most complicated work. In do_swap_page(),
|
||||
following events occur when pte is unchanged.
|
||||
|
||||
(1) the page (SwapCache) is looked up.
|
||||
(2) lock_page()
|
||||
(3) try_charge_swapin()
|
||||
(4) reuse_swap_page() (may call delete_swap_cache())
|
||||
(5) commit_charge_swapin()
|
||||
(6) swap_free().
|
||||
|
||||
Considering following situation for example.
|
||||
|
||||
(A) The page has not been charged before (2) and reuse_swap_page()
|
||||
doesn't call delete_from_swap_cache().
|
||||
(B) The page has not been charged before (2) and reuse_swap_page()
|
||||
calls delete_from_swap_cache().
|
||||
(C) The page has been charged before (2) and reuse_swap_page() doesn't
|
||||
call delete_from_swap_cache().
|
||||
(D) The page has been charged before (2) and reuse_swap_page() calls
|
||||
delete_from_swap_cache().
|
||||
|
||||
memory.usage/memsw.usage changes to this page/swp_entry will be
|
||||
Case (A) (B) (C) (D)
|
||||
Event
|
||||
Before (2) 0/ 1 0/ 1 1/ 1 1/ 1
|
||||
===========================================
|
||||
(3) +1/+1 +1/+1 +1/+1 +1/+1
|
||||
(4) - 0/ 0 - -1/ 0
|
||||
(5) 0/-1 0/ 0 -1/-1 0/ 0
|
||||
(6) - 0/-1 - 0/-1
|
||||
===========================================
|
||||
Result 1/ 1 1/ 1 1/ 1 1/ 1
|
||||
|
||||
In any cases, charges to this page should be 1/ 1.
|
||||
|
||||
4.2 Swap-out.
|
||||
At swap-out, typical state transition is below.
|
||||
|
||||
(a) add to swap cache. (marked as SwapCache)
|
||||
swp_entry's refcnt += 1.
|
||||
(b) fully unmapped.
|
||||
swp_entry's refcnt += # of ptes.
|
||||
(c) write back to swap.
|
||||
(d) delete from swap cache. (remove from SwapCache)
|
||||
swp_entry's refcnt -= 1.
|
||||
|
||||
|
||||
At (b), the page is marked as SwapCache and not uncharged.
|
||||
At (d), the page is removed from SwapCache and a charge in page_cgroup
|
||||
is moved to swap_cgroup.
|
||||
|
||||
Finally, at task exit,
|
||||
(e) zap_pte() is called and swp_entry's refcnt -=1 -> 0.
|
||||
Here, a charge in swap_cgroup disappears.
|
||||
|
||||
5. Page Cache
|
||||
Page Cache is charged at
|
||||
- add_to_page_cache_locked().
|
||||
|
||||
uncharged at
|
||||
- __remove_from_page_cache().
|
||||
|
||||
The logic is very clear. (About migration, see below)
|
||||
Note: __remove_from_page_cache() is called by remove_from_page_cache()
|
||||
and __remove_mapping().
|
||||
|
||||
6. Shmem(tmpfs) Page Cache
|
||||
Memcg's charge/uncharge have special handlers of shmem. The best way
|
||||
to understand shmem's page state transition is to read mm/shmem.c.
|
||||
But brief explanation of the behavior of memcg around shmem will be
|
||||
helpful to understand the logic.
|
||||
|
||||
Shmem's page (just leaf page, not direct/indirect block) can be on
|
||||
- radix-tree of shmem's inode.
|
||||
- SwapCache.
|
||||
- Both on radix-tree and SwapCache. This happens at swap-in
|
||||
and swap-out,
|
||||
|
||||
It's charged when...
|
||||
- A new page is added to shmem's radix-tree.
|
||||
- A swp page is read. (move a charge from swap_cgroup to page_cgroup)
|
||||
It's uncharged when
|
||||
- A page is removed from radix-tree and not SwapCache.
|
||||
- When SwapCache is removed, a charge is moved to swap_cgroup.
|
||||
- When swp_entry's refcnt goes down to 0, a charge in swap_cgroup
|
||||
disappears.
|
||||
|
||||
7. Page Migration
|
||||
One of the most complicated functions is page-migration-handler.
|
||||
Memcg has 2 routines. Assume that we are migrating a page's contents
|
||||
from OLDPAGE to NEWPAGE.
|
||||
|
||||
Usual migration logic is..
|
||||
(a) remove the page from LRU.
|
||||
(b) allocate NEWPAGE (migration target)
|
||||
(c) lock by lock_page().
|
||||
(d) unmap all mappings.
|
||||
(e-1) If necessary, replace entry in radix-tree.
|
||||
(e-2) move contents of a page.
|
||||
(f) map all mappings again.
|
||||
(g) pushback the page to LRU.
|
||||
(-) OLDPAGE will be freed.
|
||||
|
||||
Before (g), memcg should complete all necessary charge/uncharge to
|
||||
NEWPAGE/OLDPAGE.
|
||||
|
||||
The point is....
|
||||
- If OLDPAGE is anonymous, all charges will be dropped at (d) because
|
||||
try_to_unmap() drops all mapcount and the page will not be
|
||||
SwapCache.
|
||||
|
||||
- If OLDPAGE is SwapCache, charges will be kept at (g) because
|
||||
__delete_from_swap_cache() isn't called at (e-1)
|
||||
|
||||
- If OLDPAGE is page-cache, charges will be kept at (g) because
|
||||
remove_from_swap_cache() isn't called at (e-1)
|
||||
|
||||
memcg provides following hooks.
|
||||
|
||||
- mem_cgroup_prepare_migration(OLDPAGE)
|
||||
Called after (b) to account a charge (usage += PAGE_SIZE) against
|
||||
memcg which OLDPAGE belongs to.
|
||||
|
||||
- mem_cgroup_end_migration(OLDPAGE, NEWPAGE)
|
||||
Called after (f) before (g).
|
||||
If OLDPAGE is used, commit OLDPAGE again. If OLDPAGE is already
|
||||
charged, a charge by prepare_migration() is automatically canceled.
|
||||
If NEWPAGE is used, commit NEWPAGE and uncharge OLDPAGE.
|
||||
|
||||
But zap_pte() (by exit or munmap) can be called while migration,
|
||||
we have to check if OLDPAGE/NEWPAGE is a valid page after commit().
|
||||
|
||||
8. LRU
|
||||
Each memcg has its own private LRU. Now, it's handling is under global
|
||||
VM's control (means that it's handled under global zone->lru_lock).
|
||||
Almost all routines around memcg's LRU is called by global LRU's
|
||||
list management functions under zone->lru_lock().
|
||||
|
||||
A special function is mem_cgroup_isolate_pages(). This scans
|
||||
memcg's private LRU and call __isolate_lru_page() to extract a page
|
||||
from LRU.
|
||||
(By __isolate_lru_page(), the page is removed from both of global and
|
||||
private LRU.)
|
||||
|
||||
|
||||
9. Typical Tests.
|
||||
|
||||
Tests for racy cases.
|
||||
|
||||
9.1 Small limit to memcg.
|
||||
When you do test to do racy case, it's good test to set memcg's limit
|
||||
to be very small rather than GB. Many races found in the test under
|
||||
xKB or xxMB limits.
|
||||
(Memory behavior under GB and Memory behavior under MB shows very
|
||||
different situation.)
|
||||
|
||||
9.2 Shmem
|
||||
Historically, memcg's shmem handling was poor and we saw some amount
|
||||
of troubles here. This is because shmem is page-cache but can be
|
||||
SwapCache. Test with shmem/tmpfs is always good test.
|
||||
|
||||
9.3 Migration
|
||||
For NUMA, migration is an another special case. To do easy test, cpuset
|
||||
is useful. Following is a sample script to do migration.
|
||||
|
||||
mount -t cgroup -o cpuset none /opt/cpuset
|
||||
|
||||
mkdir /opt/cpuset/01
|
||||
echo 1 > /opt/cpuset/01/cpuset.cpus
|
||||
echo 0 > /opt/cpuset/01/cpuset.mems
|
||||
echo 1 > /opt/cpuset/01/cpuset.memory_migrate
|
||||
mkdir /opt/cpuset/02
|
||||
echo 1 > /opt/cpuset/02/cpuset.cpus
|
||||
echo 1 > /opt/cpuset/02/cpuset.mems
|
||||
echo 1 > /opt/cpuset/02/cpuset.memory_migrate
|
||||
|
||||
In above set, when you moves a task from 01 to 02, page migration to
|
||||
node 0 to node 1 will occur. Following is a script to migrate all
|
||||
under cpuset.
|
||||
--
|
||||
move_task()
|
||||
{
|
||||
for pid in $1
|
||||
do
|
||||
/bin/echo $pid >$2/tasks 2>/dev/null
|
||||
echo -n $pid
|
||||
echo -n " "
|
||||
done
|
||||
echo END
|
||||
}
|
||||
|
||||
G1_TASK=`cat ${G1}/tasks`
|
||||
G2_TASK=`cat ${G2}/tasks`
|
||||
move_task "${G1_TASK}" ${G2} &
|
||||
--
|
||||
9.4 Memory hotplug.
|
||||
memory hotplug test is one of good test.
|
||||
to offline memory, do following.
|
||||
# echo offline > /sys/devices/system/memory/memoryXXX/state
|
||||
(XXX is the place of memory)
|
||||
This is an easy way to test page migration, too.
|
||||
|
||||
9.5 mkdir/rmdir
|
||||
When using hierarchy, mkdir/rmdir test should be done.
|
||||
Use tests like the following.
|
||||
|
||||
echo 1 >/opt/cgroup/01/memory/use_hierarchy
|
||||
mkdir /opt/cgroup/01/child_a
|
||||
mkdir /opt/cgroup/01/child_b
|
||||
|
||||
set limit to 01.
|
||||
add limit to 01/child_b
|
||||
run jobs under child_a and child_b
|
||||
|
||||
create/delete following groups at random while jobs are running.
|
||||
/opt/cgroup/01/child_a/child_aa
|
||||
/opt/cgroup/01/child_b/child_bb
|
||||
/opt/cgroup/01/child_c
|
||||
|
||||
running new jobs in new group is also good.
|
||||
|
||||
9.6 Mount with other subsystems.
|
||||
Mounting with other subsystems is a good test because there is a
|
||||
race and lock dependency with other cgroup subsystems.
|
||||
|
||||
example)
|
||||
# mount -t cgroup none /cgroup -t cpuset,memory,cpu,devices
|
||||
|
||||
and do task move, mkdir, rmdir etc...under this.
|
@ -137,7 +137,32 @@ behind this approach is that a cgroup that aggressively uses a shared
|
||||
page will eventually get charged for it (once it is uncharged from
|
||||
the cgroup that brought it in -- this will happen on memory pressure).
|
||||
|
||||
2.4 Reclaim
|
||||
Exception: If CONFIG_CGROUP_CGROUP_MEM_RES_CTLR_SWAP is not used..
|
||||
When you do swapoff and make swapped-out pages of shmem(tmpfs) to
|
||||
be backed into memory in force, charges for pages are accounted against the
|
||||
caller of swapoff rather than the users of shmem.
|
||||
|
||||
|
||||
2.4 Swap Extension (CONFIG_CGROUP_MEM_RES_CTLR_SWAP)
|
||||
Swap Extension allows you to record charge for swap. A swapped-in page is
|
||||
charged back to original page allocator if possible.
|
||||
|
||||
When swap is accounted, following files are added.
|
||||
- memory.memsw.usage_in_bytes.
|
||||
- memory.memsw.limit_in_bytes.
|
||||
|
||||
usage of mem+swap is limited by memsw.limit_in_bytes.
|
||||
|
||||
Note: why 'mem+swap' rather than swap.
|
||||
The global LRU(kswapd) can swap out arbitrary pages. Swap-out means
|
||||
to move account from memory to swap...there is no change in usage of
|
||||
mem+swap.
|
||||
|
||||
In other words, when we want to limit the usage of swap without affecting
|
||||
global LRU, mem+swap limit is better than just limiting swap from OS point
|
||||
of view.
|
||||
|
||||
2.5 Reclaim
|
||||
|
||||
Each cgroup maintains a per cgroup LRU that consists of an active
|
||||
and inactive list. When a cgroup goes over its limit, we first try
|
||||
@ -207,12 +232,6 @@ exceeded.
|
||||
The memory.stat file gives accounting information. Now, the number of
|
||||
caches, RSS and Active pages/Inactive pages are shown.
|
||||
|
||||
The memory.force_empty gives an interface to drop *all* charges by force.
|
||||
|
||||
# echo 1 > memory.force_empty
|
||||
|
||||
will drop all charges in cgroup. Currently, this is maintained for test.
|
||||
|
||||
4. Testing
|
||||
|
||||
Balbir posted lmbench, AIM9, LTP and vmmstress results [10] and [11].
|
||||
@ -242,10 +261,106 @@ reclaimed.
|
||||
|
||||
A cgroup can be removed by rmdir, but as discussed in sections 4.1 and 4.2, a
|
||||
cgroup might have some charge associated with it, even though all
|
||||
tasks have migrated away from it. Such charges are automatically dropped at
|
||||
rmdir() if there are no tasks.
|
||||
tasks have migrated away from it.
|
||||
Such charges are freed(at default) or moved to its parent. When moved,
|
||||
both of RSS and CACHES are moved to parent.
|
||||
If both of them are busy, rmdir() returns -EBUSY. See 5.1 Also.
|
||||
|
||||
5. TODO
|
||||
Charges recorded in swap information is not updated at removal of cgroup.
|
||||
Recorded information is discarded and a cgroup which uses swap (swapcache)
|
||||
will be charged as a new owner of it.
|
||||
|
||||
|
||||
5. Misc. interfaces.
|
||||
|
||||
5.1 force_empty
|
||||
memory.force_empty interface is provided to make cgroup's memory usage empty.
|
||||
You can use this interface only when the cgroup has no tasks.
|
||||
When writing anything to this
|
||||
|
||||
# echo 0 > memory.force_empty
|
||||
|
||||
Almost all pages tracked by this memcg will be unmapped and freed. Some of
|
||||
pages cannot be freed because it's locked or in-use. Such pages are moved
|
||||
to parent and this cgroup will be empty. But this may return -EBUSY in
|
||||
some too busy case.
|
||||
|
||||
Typical use case of this interface is that calling this before rmdir().
|
||||
Because rmdir() moves all pages to parent, some out-of-use page caches can be
|
||||
moved to the parent. If you want to avoid that, force_empty will be useful.
|
||||
|
||||
5.2 stat file
|
||||
memory.stat file includes following statistics (now)
|
||||
cache - # of pages from page-cache and shmem.
|
||||
rss - # of pages from anonymous memory.
|
||||
pgpgin - # of event of charging
|
||||
pgpgout - # of event of uncharging
|
||||
active_anon - # of pages on active lru of anon, shmem.
|
||||
inactive_anon - # of pages on active lru of anon, shmem
|
||||
active_file - # of pages on active lru of file-cache
|
||||
inactive_file - # of pages on inactive lru of file cache
|
||||
unevictable - # of pages cannot be reclaimed.(mlocked etc)
|
||||
|
||||
Below is depend on CONFIG_DEBUG_VM.
|
||||
inactive_ratio - VM inernal parameter. (see mm/page_alloc.c)
|
||||
recent_rotated_anon - VM internal parameter. (see mm/vmscan.c)
|
||||
recent_rotated_file - VM internal parameter. (see mm/vmscan.c)
|
||||
recent_scanned_anon - VM internal parameter. (see mm/vmscan.c)
|
||||
recent_scanned_file - VM internal parameter. (see mm/vmscan.c)
|
||||
|
||||
Memo:
|
||||
recent_rotated means recent frequency of lru rotation.
|
||||
recent_scanned means recent # of scans to lru.
|
||||
showing for better debug please see the code for meanings.
|
||||
|
||||
|
||||
5.3 swappiness
|
||||
Similar to /proc/sys/vm/swappiness, but affecting a hierarchy of groups only.
|
||||
|
||||
Following cgroup's swapiness can't be changed.
|
||||
- root cgroup (uses /proc/sys/vm/swappiness).
|
||||
- a cgroup which uses hierarchy and it has child cgroup.
|
||||
- a cgroup which uses hierarchy and not the root of hierarchy.
|
||||
|
||||
|
||||
6. Hierarchy support
|
||||
|
||||
The memory controller supports a deep hierarchy and hierarchical accounting.
|
||||
The hierarchy is created by creating the appropriate cgroups in the
|
||||
cgroup filesystem. Consider for example, the following cgroup filesystem
|
||||
hierarchy
|
||||
|
||||
root
|
||||
/ | \
|
||||
/ | \
|
||||
a b c
|
||||
| \
|
||||
| \
|
||||
d e
|
||||
|
||||
In the diagram above, with hierarchical accounting enabled, all memory
|
||||
usage of e, is accounted to its ancestors up until the root (i.e, c and root),
|
||||
that has memory.use_hierarchy enabled. If one of the ancestors goes over its
|
||||
limit, the reclaim algorithm reclaims from the tasks in the ancestor and the
|
||||
children of the ancestor.
|
||||
|
||||
6.1 Enabling hierarchical accounting and reclaim
|
||||
|
||||
The memory controller by default disables the hierarchy feature. Support
|
||||
can be enabled by writing 1 to memory.use_hierarchy file of the root cgroup
|
||||
|
||||
# echo 1 > memory.use_hierarchy
|
||||
|
||||
The feature can be disabled by
|
||||
|
||||
# echo 0 > memory.use_hierarchy
|
||||
|
||||
NOTE1: Enabling/disabling will fail if the cgroup already has other
|
||||
cgroups created below it.
|
||||
|
||||
NOTE2: This feature can be enabled/disabled per subtree.
|
||||
|
||||
7. TODO
|
||||
|
||||
1. Add support for accounting huge pages (as a separate controller)
|
||||
2. Make per-cgroup scanner reclaim not-shared pages first
|
||||
|
@ -93,10 +93,8 @@ Several "PowerBook" and "iBook2" notebooks are supported.
|
||||
1.5 SuperH
|
||||
----------
|
||||
|
||||
The following SuperH processors are supported by cpufreq:
|
||||
|
||||
SH-3
|
||||
SH-4
|
||||
All SuperH processors supporting rate rounding through the clock
|
||||
framework are supported by cpufreq.
|
||||
|
||||
1.6 Blackfin
|
||||
------------
|
||||
|
@ -50,16 +50,17 @@ additional_cpus=n (*) Use this to limit hotpluggable cpus. This option sets
|
||||
cpu_possible_map = cpu_present_map + additional_cpus
|
||||
|
||||
(*) Option valid only for following architectures
|
||||
- x86_64, ia64
|
||||
- ia64
|
||||
|
||||
ia64 and x86_64 use the number of disabled local apics in ACPI tables MADT
|
||||
to determine the number of potentially hot-pluggable cpus. The implementation
|
||||
should only rely on this to count the # of cpus, but *MUST* not rely on the
|
||||
apicid values in those tables for disabled apics. In the event BIOS doesn't
|
||||
mark such hot-pluggable cpus as disabled entries, one could use this
|
||||
parameter "additional_cpus=x" to represent those cpus in the cpu_possible_map.
|
||||
ia64 uses the number of disabled local apics in ACPI tables MADT to
|
||||
determine the number of potentially hot-pluggable cpus. The implementation
|
||||
should only rely on this to count the # of cpus, but *MUST* not rely
|
||||
on the apicid values in those tables for disabled apics. In the event
|
||||
BIOS doesn't mark such hot-pluggable cpus as disabled entries, one could
|
||||
use this parameter "additional_cpus=x" to represent those cpus in the
|
||||
cpu_possible_map.
|
||||
|
||||
possible_cpus=n [s390 only] use this to set hotpluggable cpus.
|
||||
possible_cpus=n [s390,x86_64] use this to set hotpluggable cpus.
|
||||
This option sets possible_cpus bits in
|
||||
cpu_possible_map. Thus keeping the numbers of bits set
|
||||
constant even if the machine gets rebooted.
|
||||
|
@ -31,3 +31,51 @@ not defined by include/asm-XXX/topology.h:
|
||||
2) core_id: 0
|
||||
3) thread_siblings: just the given CPU
|
||||
4) core_siblings: just the given CPU
|
||||
|
||||
Additionally, cpu topology information is provided under
|
||||
/sys/devices/system/cpu and includes these files. The internal
|
||||
source for the output is in brackets ("[]").
|
||||
|
||||
kernel_max: the maximum cpu index allowed by the kernel configuration.
|
||||
[NR_CPUS-1]
|
||||
|
||||
offline: cpus that are not online because they have been
|
||||
HOTPLUGGED off (see cpu-hotplug.txt) or exceed the limit
|
||||
of cpus allowed by the kernel configuration (kernel_max
|
||||
above). [~cpu_online_mask + cpus >= NR_CPUS]
|
||||
|
||||
online: cpus that are online and being scheduled [cpu_online_mask]
|
||||
|
||||
possible: cpus that have been allocated resources and can be
|
||||
brought online if they are present. [cpu_possible_mask]
|
||||
|
||||
present: cpus that have been identified as being present in the
|
||||
system. [cpu_present_mask]
|
||||
|
||||
The format for the above output is compatible with cpulist_parse()
|
||||
[see <linux/cpumask.h>]. Some examples follow.
|
||||
|
||||
In this example, there are 64 cpus in the system but cpus 32-63 exceed
|
||||
the kernel max which is limited to 0..31 by the NR_CPUS config option
|
||||
being 32. Note also that cpus 2 and 4-31 are not online but could be
|
||||
brought online as they are both present and possible.
|
||||
|
||||
kernel_max: 31
|
||||
offline: 2,4-31,32-63
|
||||
online: 0-1,3
|
||||
possible: 0-31
|
||||
present: 0-31
|
||||
|
||||
In this example, the NR_CPUS config option is 128, but the kernel was
|
||||
started with possible_cpus=144. There are 4 cpus in the system and cpu2
|
||||
was manually taken offline (and is the only cpu that can be brought
|
||||
online.)
|
||||
|
||||
kernel_max: 127
|
||||
offline: 2,4-127,128-143
|
||||
online: 0-1,3
|
||||
possible: 0-127
|
||||
present: 0-3
|
||||
|
||||
See cpu-hotplug.txt for the possible_cpus=NUM kernel start parameter
|
||||
as well as more information on the various cpumask's.
|
||||
|
582
Documentation/credentials.txt
Normal file
582
Documentation/credentials.txt
Normal file
@ -0,0 +1,582 @@
|
||||
====================
|
||||
CREDENTIALS IN LINUX
|
||||
====================
|
||||
|
||||
By: David Howells <dhowells@redhat.com>
|
||||
|
||||
Contents:
|
||||
|
||||
(*) Overview.
|
||||
|
||||
(*) Types of credentials.
|
||||
|
||||
(*) File markings.
|
||||
|
||||
(*) Task credentials.
|
||||
|
||||
- Immutable credentials.
|
||||
- Accessing task credentials.
|
||||
- Accessing another task's credentials.
|
||||
- Altering credentials.
|
||||
- Managing credentials.
|
||||
|
||||
(*) Open file credentials.
|
||||
|
||||
(*) Overriding the VFS's use of credentials.
|
||||
|
||||
|
||||
========
|
||||
OVERVIEW
|
||||
========
|
||||
|
||||
There are several parts to the security check performed by Linux when one
|
||||
object acts upon another:
|
||||
|
||||
(1) Objects.
|
||||
|
||||
Objects are things in the system that may be acted upon directly by
|
||||
userspace programs. Linux has a variety of actionable objects, including:
|
||||
|
||||
- Tasks
|
||||
- Files/inodes
|
||||
- Sockets
|
||||
- Message queues
|
||||
- Shared memory segments
|
||||
- Semaphores
|
||||
- Keys
|
||||
|
||||
As a part of the description of all these objects there is a set of
|
||||
credentials. What's in the set depends on the type of object.
|
||||
|
||||
(2) Object ownership.
|
||||
|
||||
Amongst the credentials of most objects, there will be a subset that
|
||||
indicates the ownership of that object. This is used for resource
|
||||
accounting and limitation (disk quotas and task rlimits for example).
|
||||
|
||||
In a standard UNIX filesystem, for instance, this will be defined by the
|
||||
UID marked on the inode.
|
||||
|
||||
(3) The objective context.
|
||||
|
||||
Also amongst the credentials of those objects, there will be a subset that
|
||||
indicates the 'objective context' of that object. This may or may not be
|
||||
the same set as in (2) - in standard UNIX files, for instance, this is the
|
||||
defined by the UID and the GID marked on the inode.
|
||||
|
||||
The objective context is used as part of the security calculation that is
|
||||
carried out when an object is acted upon.
|
||||
|
||||
(4) Subjects.
|
||||
|
||||
A subject is an object that is acting upon another object.
|
||||
|
||||
Most of the objects in the system are inactive: they don't act on other
|
||||
objects within the system. Processes/tasks are the obvious exception:
|
||||
they do stuff; they access and manipulate things.
|
||||
|
||||
Objects other than tasks may under some circumstances also be subjects.
|
||||
For instance an open file may send SIGIO to a task using the UID and EUID
|
||||
given to it by a task that called fcntl(F_SETOWN) upon it. In this case,
|
||||
the file struct will have a subjective context too.
|
||||
|
||||
(5) The subjective context.
|
||||
|
||||
A subject has an additional interpretation of its credentials. A subset
|
||||
of its credentials forms the 'subjective context'. The subjective context
|
||||
is used as part of the security calculation that is carried out when a
|
||||
subject acts.
|
||||
|
||||
A Linux task, for example, has the FSUID, FSGID and the supplementary
|
||||
group list for when it is acting upon a file - which are quite separate
|
||||
from the real UID and GID that normally form the objective context of the
|
||||
task.
|
||||
|
||||
(6) Actions.
|
||||
|
||||
Linux has a number of actions available that a subject may perform upon an
|
||||
object. The set of actions available depends on the nature of the subject
|
||||
and the object.
|
||||
|
||||
Actions include reading, writing, creating and deleting files; forking or
|
||||
signalling and tracing tasks.
|
||||
|
||||
(7) Rules, access control lists and security calculations.
|
||||
|
||||
When a subject acts upon an object, a security calculation is made. This
|
||||
involves taking the subjective context, the objective context and the
|
||||
action, and searching one or more sets of rules to see whether the subject
|
||||
is granted or denied permission to act in the desired manner on the
|
||||
object, given those contexts.
|
||||
|
||||
There are two main sources of rules:
|
||||
|
||||
(a) Discretionary access control (DAC):
|
||||
|
||||
Sometimes the object will include sets of rules as part of its
|
||||
description. This is an 'Access Control List' or 'ACL'. A Linux
|
||||
file may supply more than one ACL.
|
||||
|
||||
A traditional UNIX file, for example, includes a permissions mask that
|
||||
is an abbreviated ACL with three fixed classes of subject ('user',
|
||||
'group' and 'other'), each of which may be granted certain privileges
|
||||
('read', 'write' and 'execute' - whatever those map to for the object
|
||||
in question). UNIX file permissions do not allow the arbitrary
|
||||
specification of subjects, however, and so are of limited use.
|
||||
|
||||
A Linux file might also sport a POSIX ACL. This is a list of rules
|
||||
that grants various permissions to arbitrary subjects.
|
||||
|
||||
(b) Mandatory access control (MAC):
|
||||
|
||||
The system as a whole may have one or more sets of rules that get
|
||||
applied to all subjects and objects, regardless of their source.
|
||||
SELinux and Smack are examples of this.
|
||||
|
||||
In the case of SELinux and Smack, each object is given a label as part
|
||||
of its credentials. When an action is requested, they take the
|
||||
subject label, the object label and the action and look for a rule
|
||||
that says that this action is either granted or denied.
|
||||
|
||||
|
||||
====================
|
||||
TYPES OF CREDENTIALS
|
||||
====================
|
||||
|
||||
The Linux kernel supports the following types of credentials:
|
||||
|
||||
(1) Traditional UNIX credentials.
|
||||
|
||||
Real User ID
|
||||
Real Group ID
|
||||
|
||||
The UID and GID are carried by most, if not all, Linux objects, even if in
|
||||
some cases it has to be invented (FAT or CIFS files for example, which are
|
||||
derived from Windows). These (mostly) define the objective context of
|
||||
that object, with tasks being slightly different in some cases.
|
||||
|
||||
Effective, Saved and FS User ID
|
||||
Effective, Saved and FS Group ID
|
||||
Supplementary groups
|
||||
|
||||
These are additional credentials used by tasks only. Usually, an
|
||||
EUID/EGID/GROUPS will be used as the subjective context, and real UID/GID
|
||||
will be used as the objective. For tasks, it should be noted that this is
|
||||
not always true.
|
||||
|
||||
(2) Capabilities.
|
||||
|
||||
Set of permitted capabilities
|
||||
Set of inheritable capabilities
|
||||
Set of effective capabilities
|
||||
Capability bounding set
|
||||
|
||||
These are only carried by tasks. They indicate superior capabilities
|
||||
granted piecemeal to a task that an ordinary task wouldn't otherwise have.
|
||||
These are manipulated implicitly by changes to the traditional UNIX
|
||||
credentials, but can also be manipulated directly by the capset() system
|
||||
call.
|
||||
|
||||
The permitted capabilities are those caps that the process might grant
|
||||
itself to its effective or permitted sets through capset(). This
|
||||
inheritable set might also be so constrained.
|
||||
|
||||
The effective capabilities are the ones that a task is actually allowed to
|
||||
make use of itself.
|
||||
|
||||
The inheritable capabilities are the ones that may get passed across
|
||||
execve().
|
||||
|
||||
The bounding set limits the capabilities that may be inherited across
|
||||
execve(), especially when a binary is executed that will execute as UID 0.
|
||||
|
||||
(3) Secure management flags (securebits).
|
||||
|
||||
These are only carried by tasks. These govern the way the above
|
||||
credentials are manipulated and inherited over certain operations such as
|
||||
execve(). They aren't used directly as objective or subjective
|
||||
credentials.
|
||||
|
||||
(4) Keys and keyrings.
|
||||
|
||||
These are only carried by tasks. They carry and cache security tokens
|
||||
that don't fit into the other standard UNIX credentials. They are for
|
||||
making such things as network filesystem keys available to the file
|
||||
accesses performed by processes, without the necessity of ordinary
|
||||
programs having to know about security details involved.
|
||||
|
||||
Keyrings are a special type of key. They carry sets of other keys and can
|
||||
be searched for the desired key. Each process may subscribe to a number
|
||||
of keyrings:
|
||||
|
||||
Per-thread keying
|
||||
Per-process keyring
|
||||
Per-session keyring
|
||||
|
||||
When a process accesses a key, if not already present, it will normally be
|
||||
cached on one of these keyrings for future accesses to find.
|
||||
|
||||
For more information on using keys, see Documentation/keys.txt.
|
||||
|
||||
(5) LSM
|
||||
|
||||
The Linux Security Module allows extra controls to be placed over the
|
||||
operations that a task may do. Currently Linux supports two main
|
||||
alternate LSM options: SELinux and Smack.
|
||||
|
||||
Both work by labelling the objects in a system and then applying sets of
|
||||
rules (policies) that say what operations a task with one label may do to
|
||||
an object with another label.
|
||||
|
||||
(6) AF_KEY
|
||||
|
||||
This is a socket-based approach to credential management for networking
|
||||
stacks [RFC 2367]. It isn't discussed by this document as it doesn't
|
||||
interact directly with task and file credentials; rather it keeps system
|
||||
level credentials.
|
||||
|
||||
|
||||
When a file is opened, part of the opening task's subjective context is
|
||||
recorded in the file struct created. This allows operations using that file
|
||||
struct to use those credentials instead of the subjective context of the task
|
||||
that issued the operation. An example of this would be a file opened on a
|
||||
network filesystem where the credentials of the opened file should be presented
|
||||
to the server, regardless of who is actually doing a read or a write upon it.
|
||||
|
||||
|
||||
=============
|
||||
FILE MARKINGS
|
||||
=============
|
||||
|
||||
Files on disk or obtained over the network may have annotations that form the
|
||||
objective security context of that file. Depending on the type of filesystem,
|
||||
this may include one or more of the following:
|
||||
|
||||
(*) UNIX UID, GID, mode;
|
||||
|
||||
(*) Windows user ID;
|
||||
|
||||
(*) Access control list;
|
||||
|
||||
(*) LSM security label;
|
||||
|
||||
(*) UNIX exec privilege escalation bits (SUID/SGID);
|
||||
|
||||
(*) File capabilities exec privilege escalation bits.
|
||||
|
||||
These are compared to the task's subjective security context, and certain
|
||||
operations allowed or disallowed as a result. In the case of execve(), the
|
||||
privilege escalation bits come into play, and may allow the resulting process
|
||||
extra privileges, based on the annotations on the executable file.
|
||||
|
||||
|
||||
================
|
||||
TASK CREDENTIALS
|
||||
================
|
||||
|
||||
In Linux, all of a task's credentials are held in (uid, gid) or through
|
||||
(groups, keys, LSM security) a refcounted structure of type 'struct cred'.
|
||||
Each task points to its credentials by a pointer called 'cred' in its
|
||||
task_struct.
|
||||
|
||||
Once a set of credentials has been prepared and committed, it may not be
|
||||
changed, barring the following exceptions:
|
||||
|
||||
(1) its reference count may be changed;
|
||||
|
||||
(2) the reference count on the group_info struct it points to may be changed;
|
||||
|
||||
(3) the reference count on the security data it points to may be changed;
|
||||
|
||||
(4) the reference count on any keyrings it points to may be changed;
|
||||
|
||||
(5) any keyrings it points to may be revoked, expired or have their security
|
||||
attributes changed; and
|
||||
|
||||
(6) the contents of any keyrings to which it points may be changed (the whole
|
||||
point of keyrings being a shared set of credentials, modifiable by anyone
|
||||
with appropriate access).
|
||||
|
||||
To alter anything in the cred struct, the copy-and-replace principle must be
|
||||
adhered to. First take a copy, then alter the copy and then use RCU to change
|
||||
the task pointer to make it point to the new copy. There are wrappers to aid
|
||||
with this (see below).
|
||||
|
||||
A task may only alter its _own_ credentials; it is no longer permitted for a
|
||||
task to alter another's credentials. This means the capset() system call is no
|
||||
longer permitted to take any PID other than the one of the current process.
|
||||
Also keyctl_instantiate() and keyctl_negate() functions no longer permit
|
||||
attachment to process-specific keyrings in the requesting process as the
|
||||
instantiating process may need to create them.
|
||||
|
||||
|
||||
IMMUTABLE CREDENTIALS
|
||||
---------------------
|
||||
|
||||
Once a set of credentials has been made public (by calling commit_creds() for
|
||||
example), it must be considered immutable, barring two exceptions:
|
||||
|
||||
(1) The reference count may be altered.
|
||||
|
||||
(2) Whilst the keyring subscriptions of a set of credentials may not be
|
||||
changed, the keyrings subscribed to may have their contents altered.
|
||||
|
||||
To catch accidental credential alteration at compile time, struct task_struct
|
||||
has _const_ pointers to its credential sets, as does struct file. Furthermore,
|
||||
certain functions such as get_cred() and put_cred() operate on const pointers,
|
||||
thus rendering casts unnecessary, but require to temporarily ditch the const
|
||||
qualification to be able to alter the reference count.
|
||||
|
||||
|
||||
ACCESSING TASK CREDENTIALS
|
||||
--------------------------
|
||||
|
||||
A task being able to alter only its own credentials permits the current process
|
||||
to read or replace its own credentials without the need for any form of locking
|
||||
- which simplifies things greatly. It can just call:
|
||||
|
||||
const struct cred *current_cred()
|
||||
|
||||
to get a pointer to its credentials structure, and it doesn't have to release
|
||||
it afterwards.
|
||||
|
||||
There are convenience wrappers for retrieving specific aspects of a task's
|
||||
credentials (the value is simply returned in each case):
|
||||
|
||||
uid_t current_uid(void) Current's real UID
|
||||
gid_t current_gid(void) Current's real GID
|
||||
uid_t current_euid(void) Current's effective UID
|
||||
gid_t current_egid(void) Current's effective GID
|
||||
uid_t current_fsuid(void) Current's file access UID
|
||||
gid_t current_fsgid(void) Current's file access GID
|
||||
kernel_cap_t current_cap(void) Current's effective capabilities
|
||||
void *current_security(void) Current's LSM security pointer
|
||||
struct user_struct *current_user(void) Current's user account
|
||||
|
||||
There are also convenience wrappers for retrieving specific associated pairs of
|
||||
a task's credentials:
|
||||
|
||||
void current_uid_gid(uid_t *, gid_t *);
|
||||
void current_euid_egid(uid_t *, gid_t *);
|
||||
void current_fsuid_fsgid(uid_t *, gid_t *);
|
||||
|
||||
which return these pairs of values through their arguments after retrieving
|
||||
them from the current task's credentials.
|
||||
|
||||
|
||||
In addition, there is a function for obtaining a reference on the current
|
||||
process's current set of credentials:
|
||||
|
||||
const struct cred *get_current_cred(void);
|
||||
|
||||
and functions for getting references to one of the credentials that don't
|
||||
actually live in struct cred:
|
||||
|
||||
struct user_struct *get_current_user(void);
|
||||
struct group_info *get_current_groups(void);
|
||||
|
||||
which get references to the current process's user accounting structure and
|
||||
supplementary groups list respectively.
|
||||
|
||||
Once a reference has been obtained, it must be released with put_cred(),
|
||||
free_uid() or put_group_info() as appropriate.
|
||||
|
||||
|
||||
ACCESSING ANOTHER TASK'S CREDENTIALS
|
||||
------------------------------------
|
||||
|
||||
Whilst a task may access its own credentials without the need for locking, the
|
||||
same is not true of a task wanting to access another task's credentials. It
|
||||
must use the RCU read lock and rcu_dereference().
|
||||
|
||||
The rcu_dereference() is wrapped by:
|
||||
|
||||
const struct cred *__task_cred(struct task_struct *task);
|
||||
|
||||
This should be used inside the RCU read lock, as in the following example:
|
||||
|
||||
void foo(struct task_struct *t, struct foo_data *f)
|
||||
{
|
||||
const struct cred *tcred;
|
||||
...
|
||||
rcu_read_lock();
|
||||
tcred = __task_cred(t);
|
||||
f->uid = tcred->uid;
|
||||
f->gid = tcred->gid;
|
||||
f->groups = get_group_info(tcred->groups);
|
||||
rcu_read_unlock();
|
||||
...
|
||||
}
|
||||
|
||||
A function need not get RCU read lock to use __task_cred() if it is holding a
|
||||
spinlock at the time as this implicitly holds the RCU read lock.
|
||||
|
||||
Should it be necessary to hold another task's credentials for a long period of
|
||||
time, and possibly to sleep whilst doing so, then the caller should get a
|
||||
reference on them using:
|
||||
|
||||
const struct cred *get_task_cred(struct task_struct *task);
|
||||
|
||||
This does all the RCU magic inside of it. The caller must call put_cred() on
|
||||
the credentials so obtained when they're finished with.
|
||||
|
||||
There are a couple of convenience functions to access bits of another task's
|
||||
credentials, hiding the RCU magic from the caller:
|
||||
|
||||
uid_t task_uid(task) Task's real UID
|
||||
uid_t task_euid(task) Task's effective UID
|
||||
|
||||
If the caller is holding a spinlock or the RCU read lock at the time anyway,
|
||||
then:
|
||||
|
||||
__task_cred(task)->uid
|
||||
__task_cred(task)->euid
|
||||
|
||||
should be used instead. Similarly, if multiple aspects of a task's credentials
|
||||
need to be accessed, RCU read lock or a spinlock should be used, __task_cred()
|
||||
called, the result stored in a temporary pointer and then the credential
|
||||
aspects called from that before dropping the lock. This prevents the
|
||||
potentially expensive RCU magic from being invoked multiple times.
|
||||
|
||||
Should some other single aspect of another task's credentials need to be
|
||||
accessed, then this can be used:
|
||||
|
||||
task_cred_xxx(task, member)
|
||||
|
||||
where 'member' is a non-pointer member of the cred struct. For instance:
|
||||
|
||||
uid_t task_cred_xxx(task, suid);
|
||||
|
||||
will retrieve 'struct cred::suid' from the task, doing the appropriate RCU
|
||||
magic. This may not be used for pointer members as what they point to may
|
||||
disappear the moment the RCU read lock is dropped.
|
||||
|
||||
|
||||
ALTERING CREDENTIALS
|
||||
--------------------
|
||||
|
||||
As previously mentioned, a task may only alter its own credentials, and may not
|
||||
alter those of another task. This means that it doesn't need to use any
|
||||
locking to alter its own credentials.
|
||||
|
||||
To alter the current process's credentials, a function should first prepare a
|
||||
new set of credentials by calling:
|
||||
|
||||
struct cred *prepare_creds(void);
|
||||
|
||||
this locks current->cred_replace_mutex and then allocates and constructs a
|
||||
duplicate of the current process's credentials, returning with the mutex still
|
||||
held if successful. It returns NULL if not successful (out of memory).
|
||||
|
||||
The mutex prevents ptrace() from altering the ptrace state of a process whilst
|
||||
security checks on credentials construction and changing is taking place as
|
||||
the ptrace state may alter the outcome, particularly in the case of execve().
|
||||
|
||||
The new credentials set should be altered appropriately, and any security
|
||||
checks and hooks done. Both the current and the proposed sets of credentials
|
||||
are available for this purpose as current_cred() will return the current set
|
||||
still at this point.
|
||||
|
||||
|
||||
When the credential set is ready, it should be committed to the current process
|
||||
by calling:
|
||||
|
||||
int commit_creds(struct cred *new);
|
||||
|
||||
This will alter various aspects of the credentials and the process, giving the
|
||||
LSM a chance to do likewise, then it will use rcu_assign_pointer() to actually
|
||||
commit the new credentials to current->cred, it will release
|
||||
current->cred_replace_mutex to allow ptrace() to take place, and it will notify
|
||||
the scheduler and others of the changes.
|
||||
|
||||
This function is guaranteed to return 0, so that it can be tail-called at the
|
||||
end of such functions as sys_setresuid().
|
||||
|
||||
Note that this function consumes the caller's reference to the new credentials.
|
||||
The caller should _not_ call put_cred() on the new credentials afterwards.
|
||||
|
||||
Furthermore, once this function has been called on a new set of credentials,
|
||||
those credentials may _not_ be changed further.
|
||||
|
||||
|
||||
Should the security checks fail or some other error occur after prepare_creds()
|
||||
has been called, then the following function should be invoked:
|
||||
|
||||
void abort_creds(struct cred *new);
|
||||
|
||||
This releases the lock on current->cred_replace_mutex that prepare_creds() got
|
||||
and then releases the new credentials.
|
||||
|
||||
|
||||
A typical credentials alteration function would look something like this:
|
||||
|
||||
int alter_suid(uid_t suid)
|
||||
{
|
||||
struct cred *new;
|
||||
int ret;
|
||||
|
||||
new = prepare_creds();
|
||||
if (!new)
|
||||
return -ENOMEM;
|
||||
|
||||
new->suid = suid;
|
||||
ret = security_alter_suid(new);
|
||||
if (ret < 0) {
|
||||
abort_creds(new);
|
||||
return ret;
|
||||
}
|
||||
|
||||
return commit_creds(new);
|
||||
}
|
||||
|
||||
|
||||
MANAGING CREDENTIALS
|
||||
--------------------
|
||||
|
||||
There are some functions to help manage credentials:
|
||||
|
||||
(*) void put_cred(const struct cred *cred);
|
||||
|
||||
This releases a reference to the given set of credentials. If the
|
||||
reference count reaches zero, the credentials will be scheduled for
|
||||
destruction by the RCU system.
|
||||
|
||||
(*) const struct cred *get_cred(const struct cred *cred);
|
||||
|
||||
This gets a reference on a live set of credentials, returning a pointer to
|
||||
that set of credentials.
|
||||
|
||||
(*) struct cred *get_new_cred(struct cred *cred);
|
||||
|
||||
This gets a reference on a set of credentials that is under construction
|
||||
and is thus still mutable, returning a pointer to that set of credentials.
|
||||
|
||||
|
||||
=====================
|
||||
OPEN FILE CREDENTIALS
|
||||
=====================
|
||||
|
||||
When a new file is opened, a reference is obtained on the opening task's
|
||||
credentials and this is attached to the file struct as 'f_cred' in place of
|
||||
'f_uid' and 'f_gid'. Code that used to access file->f_uid and file->f_gid
|
||||
should now access file->f_cred->fsuid and file->f_cred->fsgid.
|
||||
|
||||
It is safe to access f_cred without the use of RCU or locking because the
|
||||
pointer will not change over the lifetime of the file struct, and nor will the
|
||||
contents of the cred struct pointed to, barring the exceptions listed above
|
||||
(see the Task Credentials section).
|
||||
|
||||
|
||||
=======================================
|
||||
OVERRIDING THE VFS'S USE OF CREDENTIALS
|
||||
=======================================
|
||||
|
||||
Under some circumstances it is desirable to override the credentials used by
|
||||
the VFS, and that can be done by calling into such as vfs_mkdir() with a
|
||||
different set of credentials. This is done in the following places:
|
||||
|
||||
(*) sys_faccessat().
|
||||
|
||||
(*) do_coredump().
|
||||
|
||||
(*) nfs4recover.c.
|
@ -81,8 +81,8 @@ Until this step is completed the driver cannot be unloaded.
|
||||
Also echoing either mono ,packet or init in to image_type will free up the
|
||||
memory allocated by the driver.
|
||||
|
||||
If an user by accident executes steps 1 and 3 above without executing step 2;
|
||||
it will make the /sys/class/firmware/dell_rbu/ entries to disappear.
|
||||
If a user by accident executes steps 1 and 3 above without executing step 2;
|
||||
it will make the /sys/class/firmware/dell_rbu/ entries disappear.
|
||||
The entries can be recreated by doing the following
|
||||
echo init > /sys/devices/platform/dell_rbu/image_type
|
||||
NOTE: echoing init in image_type does not change it original value.
|
||||
|
@ -375,10 +375,10 @@ say, this can be a large job, so it is best to be sure that the
|
||||
justification is solid.
|
||||
|
||||
When making an incompatible API change, one should, whenever possible,
|
||||
ensure that code which has not been updated is caught by the compiler.
|
||||
ensure that code which has not been updated is caught by the compiler.
|
||||
This will help you to be sure that you have found all in-tree uses of that
|
||||
interface. It will also alert developers of out-of-tree code that there is
|
||||
a change that they need to respond to. Supporting out-of-tree code is not
|
||||
something that kernel developers need to be worried about, but we also do
|
||||
not have to make life harder for out-of-tree developers than it it needs to
|
||||
be.
|
||||
not have to make life harder for out-of-tree developers than it needs to
|
||||
be.
|
||||
|
69
Documentation/dvb/technisat.txt
Normal file
69
Documentation/dvb/technisat.txt
Normal file
@ -0,0 +1,69 @@
|
||||
How to set up the Technisat devices
|
||||
===================================
|
||||
|
||||
1) Find out what device you have
|
||||
================================
|
||||
|
||||
First start your linux box with a shipped kernel:
|
||||
lspci -vvv for a PCI device (lsusb -vvv for an USB device) will show you for example:
|
||||
02:0b.0 Network controller: Techsan Electronics Co Ltd B2C2 FlexCopII DVB chip / Technisat SkyStar2 DVB card (rev 02)
|
||||
|
||||
dmesg | grep frontend may show you for example:
|
||||
DVB: registering frontend 0 (Conexant CX24123/CX24109)...
|
||||
|
||||
2) Kernel compilation:
|
||||
======================
|
||||
|
||||
If the Technisat is the only TV device in your box get rid of unnecessary modules and check this one:
|
||||
"Multimedia devices" => "Customise analog and hybrid tuner modules to build"
|
||||
In this directory uncheck every driver which is activated there.
|
||||
|
||||
Then please activate:
|
||||
2a) Main module part:
|
||||
|
||||
a.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters"
|
||||
b.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Technisat/B2C2 Air/Sky/Cable2PC PCI" in case of a PCI card OR
|
||||
c.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Technisat/B2C2 Air/Sky/Cable2PC USB" in case of an USB 1.1 adapter
|
||||
d.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Enable debug for the B2C2 FlexCop drivers"
|
||||
Notice: d.) is helpful for troubleshooting
|
||||
|
||||
2b) Frontend module part:
|
||||
|
||||
1.) Revision 2.3:
|
||||
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
|
||||
b.)"Multimedia devices" => "Customise DVB frontends" => "Zarlink VP310/MT312/ZL10313 based"
|
||||
|
||||
2.) Revision 2.6:
|
||||
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
|
||||
b.)"Multimedia devices" => "Customise DVB frontends" => "ST STV0299 based"
|
||||
|
||||
3.) Revision 2.7:
|
||||
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
|
||||
b.)"Multimedia devices" => "Customise DVB frontends" => "Samsung S5H1420 based"
|
||||
c.)"Multimedia devices" => "Customise DVB frontends" => "Integrant ITD1000 Zero IF tuner for DVB-S/DSS"
|
||||
d.)"Multimedia devices" => "Customise DVB frontends" => "ISL6421 SEC controller"
|
||||
|
||||
4.) Revision 2.8:
|
||||
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
|
||||
b.)"Multimedia devices" => "Customise DVB frontends" => "Conexant CX24113/CX24128 tuner for DVB-S/DSS"
|
||||
c.)"Multimedia devices" => "Customise DVB frontends" => "Conexant CX24123 based"
|
||||
d.)"Multimedia devices" => "Customise DVB frontends" => "ISL6421 SEC controller"
|
||||
|
||||
5.) DVB-T card:
|
||||
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
|
||||
b.)"Multimedia devices" => "Customise DVB frontends" => "Zarlink MT352 based"
|
||||
|
||||
6.) DVB-C card:
|
||||
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
|
||||
b.)"Multimedia devices" => "Customise DVB frontends" => "ST STV0297 based"
|
||||
|
||||
7.) ATSC card 1st generation:
|
||||
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
|
||||
b.)"Multimedia devices" => "Customise DVB frontends" => "Broadcom BCM3510"
|
||||
|
||||
8.) ATSC card 2nd generation:
|
||||
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
|
||||
b.)"Multimedia devices" => "Customise DVB frontends" => "NxtWave Communications NXT2002/NXT2004 based"
|
||||
c.)"Multimedia devices" => "Customise DVB frontends" => "LG Electronics LGDT3302/LGDT3303 based"
|
||||
|
||||
Author: Uwe Bugla <uwe.bugla@gmx.de> December 2008
|
@ -5,9 +5,13 @@ The driver supports the following options, either via
|
||||
options=<OPTIONS> when modular or video=pxafb:<OPTIONS> when built in.
|
||||
|
||||
For example:
|
||||
modprobe pxafb options=mode:640x480-8,passive
|
||||
modprobe pxafb options=vmem:2M,mode:640x480-8,passive
|
||||
or on the kernel command line
|
||||
video=pxafb:mode:640x480-8,passive
|
||||
video=pxafb:vmem:2M,mode:640x480-8,passive
|
||||
|
||||
vmem: VIDEO_MEM_SIZE
|
||||
Amount of video memory to allocate (can be suffixed with K or M
|
||||
for kilobytes or megabytes)
|
||||
|
||||
mode:XRESxYRES[-BPP]
|
||||
XRES == LCCR1_PPL + 1
|
||||
@ -52,3 +56,87 @@ outputen:POLARITY
|
||||
pixclockpol:POLARITY
|
||||
pixel clock polarity
|
||||
0 => falling edge, 1 => rising edge
|
||||
|
||||
|
||||
Overlay Support for PXA27x and later LCD controllers
|
||||
====================================================
|
||||
|
||||
PXA27x and later processors support overlay1 and overlay2 on-top of the
|
||||
base framebuffer (although under-neath the base is also possible). They
|
||||
support palette and no-palette RGB formats, as well as YUV formats (only
|
||||
available on overlay2). These overlays have dedicated DMA channels and
|
||||
behave in a similar way as a framebuffer.
|
||||
|
||||
However, there are some differences between these overlay framebuffers
|
||||
and normal framebuffers, as listed below:
|
||||
|
||||
1. overlay can start at a 32-bit word aligned position within the base
|
||||
framebuffer, which means they have a start (x, y). This information
|
||||
is encoded into var->nonstd (no, var->xoffset and var->yoffset are
|
||||
not for such purpose).
|
||||
|
||||
2. overlay framebuffer is allocated dynamically according to specified
|
||||
'struct fb_var_screeninfo', the amount is decided by:
|
||||
|
||||
var->xres_virtual * var->yres_virtual * bpp
|
||||
|
||||
bpp = 16 -- for RGB565 or RGBT555
|
||||
= 24 -- for YUV444 packed
|
||||
= 24 -- for YUV444 planar
|
||||
= 16 -- for YUV422 planar (1 pixel = 1 Y + 1/2 Cb + 1/2 Cr)
|
||||
= 12 -- for YUV420 planar (1 pixel = 1 Y + 1/4 Cb + 1/4 Cr)
|
||||
|
||||
NOTE:
|
||||
|
||||
a. overlay does not support panning in x-direction, thus
|
||||
var->xres_virtual will always be equal to var->xres
|
||||
|
||||
b. line length of overlay(s) must be on a 32-bit word boundary,
|
||||
for YUV planar modes, it is a requirement for the component
|
||||
with minimum bits per pixel, e.g. for YUV420, Cr component
|
||||
for one pixel is actually 2-bits, it means the line length
|
||||
should be a multiple of 16-pixels
|
||||
|
||||
c. starting horizontal position (XPOS) should start on a 32-bit
|
||||
word boundary, otherwise the fb_check_var() will just fail.
|
||||
|
||||
d. the rectangle of the overlay should be within the base plane,
|
||||
otherwise fail
|
||||
|
||||
Applications should follow the sequence below to operate an overlay
|
||||
framebuffer:
|
||||
|
||||
a. open("/dev/fb[1-2]", ...)
|
||||
b. ioctl(fd, FBIOGET_VSCREENINFO, ...)
|
||||
c. modify 'var' with desired parameters:
|
||||
1) var->xres and var->yres
|
||||
2) larger var->yres_virtual if more memory is required,
|
||||
usually for double-buffering
|
||||
3) var->nonstd for starting (x, y) and color format
|
||||
4) var->{red, green, blue, transp} if RGB mode is to be used
|
||||
d. ioctl(fd, FBIOPUT_VSCREENINFO, ...)
|
||||
e. ioctl(fd, FBIOGET_FSCREENINFO, ...)
|
||||
f. mmap
|
||||
g. ...
|
||||
|
||||
3. for YUV planar formats, these are actually not supported within the
|
||||
framebuffer framework, application has to take care of the offsets
|
||||
and lengths of each component within the framebuffer.
|
||||
|
||||
4. var->nonstd is used to pass starting (x, y) position and color format,
|
||||
the detailed bit fields are shown below:
|
||||
|
||||
31 23 20 10 0
|
||||
+-----------------+---+----------+----------+
|
||||
| ... unused ... |FOR| XPOS | YPOS |
|
||||
+-----------------+---+----------+----------+
|
||||
|
||||
FOR - color format, as defined by OVERLAY_FORMAT_* in pxafb.h
|
||||
0 - RGB
|
||||
1 - YUV444 PACKED
|
||||
2 - YUV444 PLANAR
|
||||
3 - YUV422 PLANAR
|
||||
4 - YUR420 PLANAR
|
||||
|
||||
XPOS - starting horizontal position
|
||||
YPOS - starting vertical position
|
||||
|
@ -120,13 +120,6 @@ Who: Christoph Hellwig <hch@lst.de>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: eepro100 network driver
|
||||
When: January 2007
|
||||
Why: replaced by the e100 driver
|
||||
Who: Adrian Bunk <bunk@stusta.de>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: Unused EXPORT_SYMBOL/EXPORT_SYMBOL_GPL exports
|
||||
(temporary transition config option provided until then)
|
||||
The transition config option will also be removed at the same time.
|
||||
@ -244,18 +237,6 @@ Who: Michael Buesch <mb@bu3sch.de>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: init_mm export
|
||||
When: 2.6.26
|
||||
Why: Not used in-tree. The current out-of-tree users used it to
|
||||
work around problems in the CPA code which should be resolved
|
||||
by now. One usecase was described to provide verification code
|
||||
of the CPA operation. That's a good idea in general, but such
|
||||
code / infrastructure should be in the kernel and not in some
|
||||
out-of-tree driver.
|
||||
Who: Thomas Gleixner <tglx@linutronix.de>
|
||||
|
||||
----------------------------
|
||||
|
||||
What: usedac i386 kernel parameter
|
||||
When: 2.6.27
|
||||
Why: replaced by allowdac and no dac combination
|
||||
@ -329,17 +310,28 @@ Who: Krzysztof Piotr Oledzki <ole@ans.pl>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: ide-scsi (BLK_DEV_IDESCSI)
|
||||
When: 2.6.29
|
||||
Why: The 2.6 kernel supports direct writing to ide CD drives, which
|
||||
eliminates the need for ide-scsi. The new method is more
|
||||
efficient in every way.
|
||||
Who: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: i2c_attach_client(), i2c_detach_client(), i2c_driver->detach_client()
|
||||
When: 2.6.29 (ideally) or 2.6.30 (more likely)
|
||||
Why: Deprecated by the new (standard) device driver binding model. Use
|
||||
i2c_driver->probe() and ->remove() instead.
|
||||
Who: Jean Delvare <khali@linux-fr.org>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: fscher and fscpos drivers
|
||||
When: June 2009
|
||||
Why: Deprecated by the new fschmd driver.
|
||||
Who: Hans de Goede <hdegoede@redhat.com>
|
||||
Jean Delvare <khali@linux-fr.org>
|
||||
|
||||
---------------------------
|
||||
|
||||
What: SELinux "compat_net" functionality
|
||||
When: 2.6.30 at the earliest
|
||||
Why: In 2.6.18 the Secmark concept was introduced to replace the "compat_net"
|
||||
network access control functionality of SELinux. Secmark offers both
|
||||
better performance and greater flexibility than the "compat_net"
|
||||
mechanism. Now that the major Linux distributions have moved to
|
||||
Secmark, it is time to deprecate the older mechanism and start the
|
||||
process of removing the old code.
|
||||
Who: Paul Moore <paul.moore@hp.com>
|
||||
|
@ -394,11 +394,10 @@ prototypes:
|
||||
unsigned long (*get_unmapped_area)(struct file *, unsigned long,
|
||||
unsigned long, unsigned long, unsigned long);
|
||||
int (*check_flags)(int);
|
||||
int (*dir_notify)(struct file *, unsigned long);
|
||||
};
|
||||
|
||||
locking rules:
|
||||
All except ->poll() may block.
|
||||
All may block.
|
||||
BKL
|
||||
llseek: no (see below)
|
||||
read: no
|
||||
@ -424,7 +423,6 @@ sendfile: no
|
||||
sendpage: no
|
||||
get_unmapped_area: no
|
||||
check_flags: no
|
||||
dir_notify: no
|
||||
|
||||
->llseek() locking has moved from llseek to the individual llseek
|
||||
implementations. If your fs is not using generic_file_llseek, you
|
||||
|
132
Documentation/filesystems/devpts.txt
Normal file
132
Documentation/filesystems/devpts.txt
Normal file
@ -0,0 +1,132 @@
|
||||
|
||||
To support containers, we now allow multiple instances of devpts filesystem,
|
||||
such that indices of ptys allocated in one instance are independent of indices
|
||||
allocated in other instances of devpts.
|
||||
|
||||
To preserve backward compatibility, this support for multiple instances is
|
||||
enabled only if:
|
||||
|
||||
- CONFIG_DEVPTS_MULTIPLE_INSTANCES=y, and
|
||||
- '-o newinstance' mount option is specified while mounting devpts
|
||||
|
||||
IOW, devpts now supports both single-instance and multi-instance semantics.
|
||||
|
||||
If CONFIG_DEVPTS_MULTIPLE_INSTANCES=n, there is no change in behavior and
|
||||
this referred to as the "legacy" mode. In this mode, the new mount options
|
||||
(-o newinstance and -o ptmxmode) will be ignored with a 'bogus option' message
|
||||
on console.
|
||||
|
||||
If CONFIG_DEVPTS_MULTIPLE_INSTANCES=y and devpts is mounted without the
|
||||
'newinstance' option (as in current start-up scripts) the new mount binds
|
||||
to the initial kernel mount of devpts. This mode is referred to as the
|
||||
'single-instance' mode and the current, single-instance semantics are
|
||||
preserved, i.e PTYs are common across the system.
|
||||
|
||||
The only difference between this single-instance mode and the legacy mode
|
||||
is the presence of new, '/dev/pts/ptmx' node with permissions 0000, which
|
||||
can safely be ignored.
|
||||
|
||||
If CONFIG_DEVPTS_MULTIPLE_INSTANCES=y and 'newinstance' option is specified,
|
||||
the mount is considered to be in the multi-instance mode and a new instance
|
||||
of the devpts fs is created. Any ptys created in this instance are independent
|
||||
of ptys in other instances of devpts. Like in the single-instance mode, the
|
||||
/dev/pts/ptmx node is present. To effectively use the multi-instance mode,
|
||||
open of /dev/ptmx must be a redirected to '/dev/pts/ptmx' using a symlink or
|
||||
bind-mount.
|
||||
|
||||
Eg: A container startup script could do the following:
|
||||
|
||||
$ chmod 0666 /dev/pts/ptmx
|
||||
$ rm /dev/ptmx
|
||||
$ ln -s pts/ptmx /dev/ptmx
|
||||
$ ns_exec -cm /bin/bash
|
||||
|
||||
# We are now in new container
|
||||
|
||||
$ umount /dev/pts
|
||||
$ mount -t devpts -o newinstance lxcpts /dev/pts
|
||||
$ sshd -p 1234
|
||||
|
||||
where 'ns_exec -cm /bin/bash' calls clone() with CLONE_NEWNS flag and execs
|
||||
/bin/bash in the child process. A pty created by the sshd is not visible in
|
||||
the original mount of /dev/pts.
|
||||
|
||||
User-space changes
|
||||
------------------
|
||||
|
||||
In multi-instance mode (i.e '-o newinstance' mount option is specified at least
|
||||
once), following user-space issues should be noted.
|
||||
|
||||
1. If -o newinstance mount option is never used, /dev/pts/ptmx can be ignored
|
||||
and no change is needed to system-startup scripts.
|
||||
|
||||
2. To effectively use multi-instance mode (i.e -o newinstance is specified)
|
||||
administrators or startup scripts should "redirect" open of /dev/ptmx to
|
||||
/dev/pts/ptmx using either a bind mount or symlink.
|
||||
|
||||
$ mount -t devpts -o newinstance devpts /dev/pts
|
||||
|
||||
followed by either
|
||||
|
||||
$ rm /dev/ptmx
|
||||
$ ln -s pts/ptmx /dev/ptmx
|
||||
$ chmod 666 /dev/pts/ptmx
|
||||
or
|
||||
$ mount -o bind /dev/pts/ptmx /dev/ptmx
|
||||
|
||||
3. The '/dev/ptmx -> pts/ptmx' symlink is the preferred method since it
|
||||
enables better error-reporting and treats both single-instance and
|
||||
multi-instance mounts similarly.
|
||||
|
||||
But this method requires that system-startup scripts set the mode of
|
||||
/dev/pts/ptmx correctly (default mode is 0000). The scripts can set the
|
||||
mode by, either
|
||||
|
||||
- adding ptmxmode mount option to devpts entry in /etc/fstab, or
|
||||
- using 'chmod 0666 /dev/pts/ptmx'
|
||||
|
||||
4. If multi-instance mode mount is needed for containers, but the system
|
||||
startup scripts have not yet been updated, container-startup scripts
|
||||
should bind mount /dev/ptmx to /dev/pts/ptmx to avoid breaking single-
|
||||
instance mounts.
|
||||
|
||||
Or, in general, container-startup scripts should use:
|
||||
|
||||
mount -t devpts -o newinstance -o ptmxmode=0666 devpts /dev/pts
|
||||
if [ ! -L /dev/ptmx ]; then
|
||||
mount -o bind /dev/pts/ptmx /dev/ptmx
|
||||
fi
|
||||
|
||||
When all devpts mounts are multi-instance, /dev/ptmx can permanently be
|
||||
a symlink to pts/ptmx and the bind mount can be ignored.
|
||||
|
||||
5. A multi-instance mount that is not accompanied by the /dev/ptmx to
|
||||
/dev/pts/ptmx redirection would result in an unusable/unreachable pty.
|
||||
|
||||
mount -t devpts -o newinstance lxcpts /dev/pts
|
||||
|
||||
immediately followed by:
|
||||
|
||||
open("/dev/ptmx")
|
||||
|
||||
would create a pty, say /dev/pts/7, in the initial kernel mount.
|
||||
But /dev/pts/7 would be invisible in the new mount.
|
||||
|
||||
6. The permissions for /dev/pts/ptmx node should be specified when mounting
|
||||
/dev/pts, using the '-o ptmxmode=%o' mount option (default is 0000).
|
||||
|
||||
mount -t devpts -o newinstance -o ptmxmode=0644 devpts /dev/pts
|
||||
|
||||
The permissions can be later be changed as usual with 'chmod'.
|
||||
|
||||
chmod 666 /dev/pts/ptmx
|
||||
|
||||
7. A mount of devpts without the 'newinstance' option results in binding to
|
||||
initial kernel mount. This behavior while preserving legacy semantics,
|
||||
does not provide strict isolation in a container environment. i.e by
|
||||
mounting devpts without the 'newinstance' option, a container could
|
||||
get visibility into the 'host' or root container's devpts.
|
||||
|
||||
To workaround this and have strict isolation, all mounts of devpts,
|
||||
including the mount in the root container, should use the newinstance
|
||||
option.
|
@ -58,13 +58,22 @@ Note: More extensive information for getting started with ext4 can be
|
||||
|
||||
# mount -t ext4 /dev/hda1 /wherever
|
||||
|
||||
- When comparing performance with other filesystems, remember that
|
||||
ext3/4 by default offers higher data integrity guarantees than most.
|
||||
So when comparing with a metadata-only journalling filesystem, such
|
||||
as ext3, use `mount -o data=writeback'. And you might as well use
|
||||
`mount -o nobh' too along with it. Making the journal larger than
|
||||
the mke2fs default often helps performance with metadata-intensive
|
||||
workloads.
|
||||
- When comparing performance with other filesystems, it's always
|
||||
important to try multiple workloads; very often a subtle change in a
|
||||
workload parameter can completely change the ranking of which
|
||||
filesystems do well compared to others. When comparing versus ext3,
|
||||
note that ext4 enables write barriers by default, while ext3 does
|
||||
not enable write barriers by default. So it is useful to use
|
||||
explicitly specify whether barriers are enabled or not when via the
|
||||
'-o barriers=[0|1]' mount option for both ext3 and ext4 filesystems
|
||||
for a fair comparison. When tuning ext3 for best benchmark numbers,
|
||||
it is often worthwhile to try changing the data journaling mode; '-o
|
||||
data=writeback,nobh' can be faster for some workloads. (Note
|
||||
however that running mounted with data=writeback can potentially
|
||||
leave stale data exposed in recently written files in case of an
|
||||
unclean shutdown, which could be a security exposure in some
|
||||
situations.) Configuring the filesystem with a large journal can
|
||||
also be helpful for metadata-intensive workloads.
|
||||
|
||||
2. Features
|
||||
===========
|
||||
@ -74,7 +83,7 @@ Note: More extensive information for getting started with ext4 can be
|
||||
* ability to use filesystems > 16TB (e2fsprogs support not available yet)
|
||||
* extent format reduces metadata overhead (RAM, IO for access, transactions)
|
||||
* extent format more robust in face of on-disk corruption due to magics,
|
||||
* internal redunancy in tree
|
||||
* internal redundancy in tree
|
||||
* improved file allocation (multi-block alloc)
|
||||
* fix 32000 subdirectory limit
|
||||
* nsec timestamps for mtime, atime, ctime, create time
|
||||
@ -116,10 +125,11 @@ grouping of bitmaps and inode tables. Some test results available here:
|
||||
When mounting an ext4 filesystem, the following option are accepted:
|
||||
(*) == default
|
||||
|
||||
extents (*) ext4 will use extents to address file data. The
|
||||
file system will no longer be mountable by ext3.
|
||||
|
||||
noextents ext4 will not use extents for newly created files
|
||||
ro Mount filesystem read only. Note that ext4 will
|
||||
replay the journal (and thus write to the
|
||||
partition) even when mounted "read only". The
|
||||
mount options "ro,noload" can be used to prevent
|
||||
writes to the filesystem.
|
||||
|
||||
journal_checksum Enable checksumming of the journal transactions.
|
||||
This will allow the recovery code in e2fsck and the
|
||||
@ -134,17 +144,17 @@ journal_async_commit Commit block can be written to disk without waiting
|
||||
journal=update Update the ext4 file system's journal to the current
|
||||
format.
|
||||
|
||||
journal=inum When a journal already exists, this option is ignored.
|
||||
Otherwise, it specifies the number of the inode which
|
||||
will represent the ext4 file system's journal file.
|
||||
|
||||
journal_dev=devnum When the external journal device's major/minor numbers
|
||||
have changed, this option allows the user to specify
|
||||
the new journal location. The journal device is
|
||||
identified through its new major/minor numbers encoded
|
||||
in devnum.
|
||||
|
||||
noload Don't load the journal on mounting.
|
||||
noload Don't load the journal on mounting. Note that
|
||||
if the filesystem was not unmounted cleanly,
|
||||
skipping the journal replay will lead to the
|
||||
filesystem containing inconsistencies that can
|
||||
lead to any number of problems.
|
||||
|
||||
data=journal All data are committed into the journal prior to being
|
||||
written into the main file system.
|
||||
@ -219,9 +229,12 @@ minixdf Make 'df' act like Minix.
|
||||
|
||||
debug Extra debugging information is sent to syslog.
|
||||
|
||||
errors=remount-ro(*) Remount the filesystem read-only on an error.
|
||||
errors=remount-ro Remount the filesystem read-only on an error.
|
||||
errors=continue Keep going on a filesystem error.
|
||||
errors=panic Panic and halt the machine if an error occurs.
|
||||
(These mount options override the errors behavior
|
||||
specified in the superblock, which can be configured
|
||||
using tune2fs)
|
||||
|
||||
data_err=ignore(*) Just print an error message if an error occurs
|
||||
in a file data buffer in ordered mode.
|
||||
@ -261,6 +274,42 @@ delalloc (*) Deferring block allocation until write-out time.
|
||||
nodelalloc Disable delayed allocation. Blocks are allocation
|
||||
when data is copied from user to page cache.
|
||||
|
||||
max_batch_time=usec Maximum amount of time ext4 should wait for
|
||||
additional filesystem operations to be batch
|
||||
together with a synchronous write operation.
|
||||
Since a synchronous write operation is going to
|
||||
force a commit and then a wait for the I/O
|
||||
complete, it doesn't cost much, and can be a
|
||||
huge throughput win, we wait for a small amount
|
||||
of time to see if any other transactions can
|
||||
piggyback on the synchronous write. The
|
||||
algorithm used is designed to automatically tune
|
||||
for the speed of the disk, by measuring the
|
||||
amount of time (on average) that it takes to
|
||||
finish committing a transaction. Call this time
|
||||
the "commit time". If the time that the
|
||||
transactoin has been running is less than the
|
||||
commit time, ext4 will try sleeping for the
|
||||
commit time to see if other operations will join
|
||||
the transaction. The commit time is capped by
|
||||
the max_batch_time, which defaults to 15000us
|
||||
(15ms). This optimization can be turned off
|
||||
entirely by setting max_batch_time to 0.
|
||||
|
||||
min_batch_time=usec This parameter sets the commit time (as
|
||||
described above) to be at least min_batch_time.
|
||||
It defaults to zero microseconds. Increasing
|
||||
this parameter may improve the throughput of
|
||||
multi-threaded, synchronous workloads on very
|
||||
fast disks, at the cost of increasing latency.
|
||||
|
||||
journal_ioprio=prio The I/O priority (from 0 to 7, where 0 is the
|
||||
highest priorty) which should be used for I/O
|
||||
operations submitted by kjournald2 during a
|
||||
commit operation. This defaults to 3, which is
|
||||
a slightly higher priority than the default I/O
|
||||
priority.
|
||||
|
||||
Data Mode
|
||||
=========
|
||||
There are 3 different data modes:
|
||||
|
@ -76,13 +76,13 @@ the fdtable structure -
|
||||
5. Handling of the file structures is special. Since the look-up
|
||||
of the fd (fget()/fget_light()) are lock-free, it is possible
|
||||
that look-up may race with the last put() operation on the
|
||||
file structure. This is avoided using atomic_inc_not_zero()
|
||||
file structure. This is avoided using atomic_long_inc_not_zero()
|
||||
on ->f_count :
|
||||
|
||||
rcu_read_lock();
|
||||
file = fcheck_files(files, fd);
|
||||
if (file) {
|
||||
if (atomic_inc_not_zero(&file->f_count))
|
||||
if (atomic_long_inc_not_zero(&file->f_count))
|
||||
*fput_needed = 1;
|
||||
else
|
||||
/* Didn't get the reference, someone's freed */
|
||||
@ -92,7 +92,7 @@ the fdtable structure -
|
||||
....
|
||||
return file;
|
||||
|
||||
atomic_inc_not_zero() detects if refcounts is already zero or
|
||||
atomic_long_inc_not_zero() detects if refcounts is already zero or
|
||||
goes to zero during increment. If it does, we fail
|
||||
fget()/fget_light().
|
||||
|
||||
|
@ -31,7 +31,6 @@ Features which OCFS2 does not support yet:
|
||||
- quotas
|
||||
- Directory change notification (F_NOTIFY)
|
||||
- Distributed Caching (F_SETLEASE/F_GETLEASE/break_lease)
|
||||
- POSIX ACLs
|
||||
|
||||
Mount options
|
||||
=============
|
||||
@ -79,3 +78,5 @@ inode64 Indicates that Ocfs2 is allowed to create inodes at
|
||||
bits of significance.
|
||||
user_xattr (*) Enables Extended User Attributes.
|
||||
nouser_xattr Disables Extended User Attributes.
|
||||
acl Enables POSIX Access Control Lists support.
|
||||
noacl (*) Disables POSIX Access Control Lists support.
|
||||
|
@ -140,6 +140,7 @@ Table 1-1: Process specific entries in /proc
|
||||
statm Process memory status information
|
||||
status Process status in human readable form
|
||||
wchan If CONFIG_KALLSYMS is set, a pre-decoded wchan
|
||||
stack Report full stack trace, enable via CONFIG_STACKTRACE
|
||||
smaps Extension based on maps, the rss size for each mapped file
|
||||
..............................................................................
|
||||
|
||||
@ -1339,10 +1340,13 @@ nmi_watchdog
|
||||
|
||||
Enables/Disables the NMI watchdog on x86 systems. When the value is non-zero
|
||||
the NMI watchdog is enabled and will continuously test all online cpus to
|
||||
determine whether or not they are still functioning properly.
|
||||
determine whether or not they are still functioning properly. Currently,
|
||||
passing "nmi_watchdog=" parameter at boot time is required for this function
|
||||
to work.
|
||||
|
||||
Because the NMI watchdog shares registers with oprofile, by disabling the NMI
|
||||
watchdog, oprofile may have more registers to utilize.
|
||||
If LAPIC NMI watchdog method is in use (nmi_watchdog=2 kernel parameter), the
|
||||
NMI watchdog shares registers with oprofile. By disabling the NMI watchdog,
|
||||
oprofile may have more registers to utilize.
|
||||
|
||||
msgmni
|
||||
------
|
||||
@ -1382,6 +1386,15 @@ swapcache reclaim. Decreasing vfs_cache_pressure causes the kernel to prefer
|
||||
to retain dentry and inode caches. Increasing vfs_cache_pressure beyond 100
|
||||
causes the kernel to prefer to reclaim dentries and inodes.
|
||||
|
||||
dirty_background_bytes
|
||||
----------------------
|
||||
|
||||
Contains the amount of dirty memory at which the pdflush background writeback
|
||||
daemon will start writeback.
|
||||
|
||||
If dirty_background_bytes is written, dirty_background_ratio becomes a function
|
||||
of its value (dirty_background_bytes / the amount of dirtyable system memory).
|
||||
|
||||
dirty_background_ratio
|
||||
----------------------
|
||||
|
||||
@ -1390,14 +1403,29 @@ pages + file cache, not including locked pages and HugePages), the number of
|
||||
pages at which the pdflush background writeback daemon will start writing out
|
||||
dirty data.
|
||||
|
||||
If dirty_background_ratio is written, dirty_background_bytes becomes a function
|
||||
of its value (dirty_background_ratio * the amount of dirtyable system memory).
|
||||
|
||||
dirty_bytes
|
||||
-----------
|
||||
|
||||
Contains the amount of dirty memory at which a process generating disk writes
|
||||
will itself start writeback.
|
||||
|
||||
If dirty_bytes is written, dirty_ratio becomes a function of its value
|
||||
(dirty_bytes / the amount of dirtyable system memory).
|
||||
|
||||
dirty_ratio
|
||||
-----------------
|
||||
-----------
|
||||
|
||||
Contains, as a percentage of the dirtyable system memory (free pages + mapped
|
||||
pages + file cache, not including locked pages and HugePages), the number of
|
||||
pages at which a process which is generating disk writes will itself start
|
||||
writing out dirty data.
|
||||
|
||||
If dirty_ratio is written, dirty_bytes becomes a function of its value
|
||||
(dirty_ratio * the amount of dirtyable system memory).
|
||||
|
||||
dirty_writeback_centisecs
|
||||
-------------------------
|
||||
|
||||
|
@ -95,6 +95,9 @@ no_chk_data_crc skip checking of CRCs on data nodes in order to
|
||||
of this option is that corruption of the contents
|
||||
of a file can go unnoticed.
|
||||
chk_data_crc (*) do not skip checking CRCs on data nodes
|
||||
compr=none override default compressor and set it to "none"
|
||||
compr=lzo override default compressor and set it to "lzo"
|
||||
compr=zlib override default compressor and set it to "zlib"
|
||||
|
||||
|
||||
Quick usage instructions
|
||||
|
@ -733,7 +733,6 @@ struct file_operations {
|
||||
ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int);
|
||||
unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
|
||||
int (*check_flags)(int);
|
||||
int (*dir_notify)(struct file *filp, unsigned long arg);
|
||||
int (*flock) (struct file *, int, struct file_lock *);
|
||||
ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, size_t, unsigned int);
|
||||
ssize_t (*splice_read)(struct file *, struct pipe_inode_info *, size_t, unsigned int);
|
||||
@ -800,8 +799,6 @@ otherwise noted.
|
||||
|
||||
check_flags: called by the fcntl(2) system call for F_SETFL command
|
||||
|
||||
dir_notify: called by the fcntl(2) system call for F_NOTIFY command
|
||||
|
||||
flock: called by the flock(2) system call
|
||||
|
||||
splice_write: called by the VFS to splice data from a pipe to a file. This
|
||||
@ -931,7 +928,7 @@ manipulate dentries:
|
||||
d_lookup: look up a dentry given its parent and path name component
|
||||
It looks up the child of that given name from the dcache
|
||||
hash table. If it is found, the reference count is incremented
|
||||
and the dentry is returned. The caller must use d_put()
|
||||
and the dentry is returned. The caller must use dput()
|
||||
to free the dentry when it finishes using it.
|
||||
|
||||
For further information on dentry locking, please refer to the document
|
||||
|
@ -229,10 +229,6 @@ The following sysctls are available for the XFS filesystem:
|
||||
ISGID bit is cleared if the irix_sgid_inherit compatibility sysctl
|
||||
is set.
|
||||
|
||||
fs.xfs.restrict_chown (Min: 0 Default: 1 Max: 1)
|
||||
Controls whether unprivileged users can use chown to "give away"
|
||||
a file to another user.
|
||||
|
||||
fs.xfs.inherit_sync (Min: 0 Default: 1 Max: 1)
|
||||
Setting this to "1" will cause the "sync" flag set
|
||||
by the xfs_io(8) chattr command on a directory to be
|
||||
|
@ -82,7 +82,7 @@ of ftrace. Here is a list of some of the key files:
|
||||
tracer is not adding more data, they will display
|
||||
the same information every time they are read.
|
||||
|
||||
iter_ctrl: This file lets the user control the amount of data
|
||||
trace_options: This file lets the user control the amount of data
|
||||
that is displayed in one of the above output
|
||||
files.
|
||||
|
||||
@ -94,10 +94,10 @@ of ftrace. Here is a list of some of the key files:
|
||||
only be recorded if the latency is greater than
|
||||
the value in this file. (in microseconds)
|
||||
|
||||
trace_entries: This sets or displays the number of bytes each CPU
|
||||
buffer_size_kb: This sets or displays the number of kilobytes each CPU
|
||||
buffer can hold. The tracer buffers are the same size
|
||||
for each CPU. The displayed number is the size of the
|
||||
CPU buffer and not total size of all buffers. The
|
||||
CPU buffer and not total size of all buffers. The
|
||||
trace buffers are allocated in pages (blocks of memory
|
||||
that the kernel uses for allocation, usually 4 KB in size).
|
||||
If the last page allocated has room for more bytes
|
||||
@ -127,6 +127,8 @@ of ftrace. Here is a list of some of the key files:
|
||||
be traced. If a function exists in both set_ftrace_filter
|
||||
and set_ftrace_notrace, the function will _not_ be traced.
|
||||
|
||||
set_ftrace_pid: Have the function tracer only trace a single thread.
|
||||
|
||||
available_filter_functions: This lists the functions that ftrace
|
||||
has processed and can trace. These are the function
|
||||
names that you can pass to "set_ftrace_filter" or
|
||||
@ -316,23 +318,23 @@ The above is mostly meaningful for kernel developers.
|
||||
The rest is the same as the 'trace' file.
|
||||
|
||||
|
||||
iter_ctrl
|
||||
---------
|
||||
trace_options
|
||||
-------------
|
||||
|
||||
The iter_ctrl file is used to control what gets printed in the trace
|
||||
The trace_options file is used to control what gets printed in the trace
|
||||
output. To see what is available, simply cat the file:
|
||||
|
||||
cat /debug/tracing/iter_ctrl
|
||||
cat /debug/tracing/trace_options
|
||||
print-parent nosym-offset nosym-addr noverbose noraw nohex nobin \
|
||||
noblock nostacktrace nosched-tree
|
||||
noblock nostacktrace nosched-tree nouserstacktrace nosym-userobj
|
||||
|
||||
To disable one of the options, echo in the option prepended with "no".
|
||||
|
||||
echo noprint-parent > /debug/tracing/iter_ctrl
|
||||
echo noprint-parent > /debug/tracing/trace_options
|
||||
|
||||
To enable an option, leave off the "no".
|
||||
|
||||
echo sym-offset > /debug/tracing/iter_ctrl
|
||||
echo sym-offset > /debug/tracing/trace_options
|
||||
|
||||
Here are the available options:
|
||||
|
||||
@ -378,6 +380,20 @@ Here are the available options:
|
||||
When a trace is recorded, so is the stack of functions.
|
||||
This allows for back traces of trace sites.
|
||||
|
||||
userstacktrace - This option changes the trace.
|
||||
It records a stacktrace of the current userspace thread.
|
||||
|
||||
sym-userobj - when user stacktrace are enabled, look up which object the
|
||||
address belongs to, and print a relative address
|
||||
This is especially useful when ASLR is on, otherwise you don't
|
||||
get a chance to resolve the address to object/file/line after the app is no
|
||||
longer running
|
||||
|
||||
The lookup is performed when you read trace,trace_pipe,latency_trace. Example:
|
||||
|
||||
a.out-1623 [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
|
||||
x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
|
||||
|
||||
sched-tree - TBD (any users??)
|
||||
|
||||
|
||||
@ -1059,6 +1075,83 @@ For simple one time traces, the above is sufficent. For anything else,
|
||||
a search through /proc/mounts may be needed to find where the debugfs
|
||||
file-system is mounted.
|
||||
|
||||
|
||||
Single thread tracing
|
||||
---------------------
|
||||
|
||||
By writing into /debug/tracing/set_ftrace_pid you can trace a
|
||||
single thread. For example:
|
||||
|
||||
# cat /debug/tracing/set_ftrace_pid
|
||||
no pid
|
||||
# echo 3111 > /debug/tracing/set_ftrace_pid
|
||||
# cat /debug/tracing/set_ftrace_pid
|
||||
3111
|
||||
# echo function > /debug/tracing/current_tracer
|
||||
# cat /debug/tracing/trace | head
|
||||
# tracer: function
|
||||
#
|
||||
# TASK-PID CPU# TIMESTAMP FUNCTION
|
||||
# | | | | |
|
||||
yum-updatesd-3111 [003] 1637.254676: finish_task_switch <-thread_return
|
||||
yum-updatesd-3111 [003] 1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
|
||||
yum-updatesd-3111 [003] 1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
|
||||
yum-updatesd-3111 [003] 1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
|
||||
yum-updatesd-3111 [003] 1637.254685: fget_light <-do_sys_poll
|
||||
yum-updatesd-3111 [003] 1637.254686: pipe_poll <-do_sys_poll
|
||||
# echo -1 > /debug/tracing/set_ftrace_pid
|
||||
# cat /debug/tracing/trace |head
|
||||
# tracer: function
|
||||
#
|
||||
# TASK-PID CPU# TIMESTAMP FUNCTION
|
||||
# | | | | |
|
||||
##### CPU 3 buffer started ####
|
||||
yum-updatesd-3111 [003] 1701.957688: free_poll_entry <-poll_freewait
|
||||
yum-updatesd-3111 [003] 1701.957689: remove_wait_queue <-free_poll_entry
|
||||
yum-updatesd-3111 [003] 1701.957691: fput <-free_poll_entry
|
||||
yum-updatesd-3111 [003] 1701.957692: audit_syscall_exit <-sysret_audit
|
||||
yum-updatesd-3111 [003] 1701.957693: path_put <-audit_syscall_exit
|
||||
|
||||
If you want to trace a function when executing, you could use
|
||||
something like this simple program:
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h>
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
|
||||
int main (int argc, char **argv)
|
||||
{
|
||||
if (argc < 1)
|
||||
exit(-1);
|
||||
|
||||
if (fork() > 0) {
|
||||
int fd, ffd;
|
||||
char line[64];
|
||||
int s;
|
||||
|
||||
ffd = open("/debug/tracing/current_tracer", O_WRONLY);
|
||||
if (ffd < 0)
|
||||
exit(-1);
|
||||
write(ffd, "nop", 3);
|
||||
|
||||
fd = open("/debug/tracing/set_ftrace_pid", O_WRONLY);
|
||||
s = sprintf(line, "%d\n", getpid());
|
||||
write(fd, line, s);
|
||||
|
||||
write(ffd, "function", 8);
|
||||
|
||||
close(fd);
|
||||
close(ffd);
|
||||
|
||||
execvp(argv[1], argv+1);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
dynamic ftrace
|
||||
--------------
|
||||
|
||||
@ -1158,7 +1251,11 @@ These are the only wild cards which are supported.
|
||||
|
||||
<match>*<match> will not work.
|
||||
|
||||
# echo hrtimer_* > /debug/tracing/set_ftrace_filter
|
||||
Note: It is better to use quotes to enclose the wild cards, otherwise
|
||||
the shell may expand the parameters into names of files in the local
|
||||
directory.
|
||||
|
||||
# echo 'hrtimer_*' > /debug/tracing/set_ftrace_filter
|
||||
|
||||
Produces:
|
||||
|
||||
@ -1213,7 +1310,7 @@ Again, now we want to append.
|
||||
# echo sys_nanosleep > /debug/tracing/set_ftrace_filter
|
||||
# cat /debug/tracing/set_ftrace_filter
|
||||
sys_nanosleep
|
||||
# echo hrtimer_* >> /debug/tracing/set_ftrace_filter
|
||||
# echo 'hrtimer_*' >> /debug/tracing/set_ftrace_filter
|
||||
# cat /debug/tracing/set_ftrace_filter
|
||||
hrtimer_run_queues
|
||||
hrtimer_run_pending
|
||||
@ -1299,41 +1396,29 @@ trace entries
|
||||
-------------
|
||||
|
||||
Having too much or not enough data can be troublesome in diagnosing
|
||||
an issue in the kernel. The file trace_entries is used to modify
|
||||
an issue in the kernel. The file buffer_size_kb is used to modify
|
||||
the size of the internal trace buffers. The number listed
|
||||
is the number of entries that can be recorded per CPU. To know
|
||||
the full size, multiply the number of possible CPUS with the
|
||||
number of entries.
|
||||
|
||||
# cat /debug/tracing/trace_entries
|
||||
65620
|
||||
# cat /debug/tracing/buffer_size_kb
|
||||
1408 (units kilobytes)
|
||||
|
||||
Note, to modify this, you must have tracing completely disabled. To do that,
|
||||
echo "nop" into the current_tracer. If the current_tracer is not set
|
||||
to "nop", an EINVAL error will be returned.
|
||||
|
||||
# echo nop > /debug/tracing/current_tracer
|
||||
# echo 100000 > /debug/tracing/trace_entries
|
||||
# cat /debug/tracing/trace_entries
|
||||
100045
|
||||
|
||||
|
||||
Notice that we echoed in 100,000 but the size is 100,045. The entries
|
||||
are held in individual pages. It allocates the number of pages it takes
|
||||
to fulfill the request. If more entries may fit on the last page
|
||||
then they will be added.
|
||||
|
||||
# echo 1 > /debug/tracing/trace_entries
|
||||
# cat /debug/tracing/trace_entries
|
||||
85
|
||||
|
||||
This shows us that 85 entries can fit in a single page.
|
||||
# echo 10000 > /debug/tracing/buffer_size_kb
|
||||
# cat /debug/tracing/buffer_size_kb
|
||||
10000 (units kilobytes)
|
||||
|
||||
The number of pages which will be allocated is limited to a percentage
|
||||
of available memory. Allocating too much will produce an error.
|
||||
|
||||
# echo 1000000000000 > /debug/tracing/trace_entries
|
||||
# echo 1000000000000 > /debug/tracing/buffer_size_kb
|
||||
-bash: echo: write error: Cannot allocate memory
|
||||
# cat /debug/tracing/trace_entries
|
||||
# cat /debug/tracing/buffer_size_kb
|
||||
85
|
||||
|
||||
|
@ -74,7 +74,7 @@ a sensor.
|
||||
Notice that some banks have both a read and a write address this is how the
|
||||
uGuru determines if a read from or a write to the bank is taking place, thus
|
||||
when reading you should always use the read address and when writing the
|
||||
write address. The write address is always one (1) more then the read address.
|
||||
write address. The write address is always one (1) more than the read address.
|
||||
|
||||
|
||||
uGuru ready
|
||||
@ -121,7 +121,7 @@ Once all bytes have been read data will hold 0x09, but there is no reason to
|
||||
test for this. Notice that the number of bytes is bank address dependent see
|
||||
above and below.
|
||||
|
||||
After completing a successfull read it is advised to put the uGuru back in
|
||||
After completing a successful read it is advised to put the uGuru back in
|
||||
ready mode, so that it is ready for the next read / write cycle. This way
|
||||
if your program / driver is unloaded and later loaded again the detection
|
||||
algorithm described above will still work.
|
||||
@ -141,7 +141,7 @@ don't ask why this is the way it is.
|
||||
|
||||
Once DATA holds 0x01 read CMD it should hold 0xAC now.
|
||||
|
||||
After completing a successfull write it is advised to put the uGuru back in
|
||||
After completing a successful write it is advised to put the uGuru back in
|
||||
ready mode, so that it is ready for the next read / write cycle. This way
|
||||
if your program / driver is unloaded and later loaded again the detection
|
||||
algorithm described above will still work.
|
||||
@ -224,7 +224,7 @@ Bit 3: Beep if alarm (RW)
|
||||
Bit 4: 1 if alarm cause measured temp is over the warning threshold (R)
|
||||
Bit 5: 1 if alarm cause measured volt is over the max threshold (R)
|
||||
Bit 6: 1 if alarm cause measured volt is under the min threshold (R)
|
||||
Bit 7: Volt sensor: Shutdown if alarm persist for more then 4 seconds (RW)
|
||||
Bit 7: Volt sensor: Shutdown if alarm persist for more than 4 seconds (RW)
|
||||
Temp sensor: Shutdown if temp is over the shutdown threshold (RW)
|
||||
|
||||
* This bit is only honored/used by the uGuru if a temp sensor is connected
|
||||
@ -293,7 +293,7 @@ Byte 0:
|
||||
Alarm behaviour for the selected sensor. A 1 enables the described behaviour.
|
||||
Bit 0: Give an alarm if measured rpm is under the min threshold (RW)
|
||||
Bit 3: Beep if alarm (RW)
|
||||
Bit 7: Shutdown if alarm persist for more then 4 seconds (RW)
|
||||
Bit 7: Shutdown if alarm persist for more than 4 seconds (RW)
|
||||
|
||||
Byte 1:
|
||||
min threshold (scale as bank 0x26)
|
||||
|
@ -31,15 +31,11 @@ Each of the measured inputs (temperature, fan speed) has corresponding high/low
|
||||
limit values. The ADT7470 will signal an ALARM if any measured value exceeds
|
||||
either limit.
|
||||
|
||||
The ADT7470 DOES NOT sample all inputs continuously. A single pin on the
|
||||
ADT7470 is connected to a multitude of thermal diodes, but the chip must be
|
||||
instructed explicitly to read the multitude of diodes. If you want to use
|
||||
automatic fan control mode, you must manually read any of the temperature
|
||||
sensors or the fan control algorithm will not run. The chip WILL NOT DO THIS
|
||||
AUTOMATICALLY; this must be done from userspace. This may be a bug in the chip
|
||||
design, given that many other AD chips take care of this. The driver will not
|
||||
read the registers more often than once every 5 seconds. Further,
|
||||
configuration data is only read once per minute.
|
||||
The ADT7470 samples all inputs continuously. A kernel thread is started up for
|
||||
the purpose of periodically querying the temperature sensors, thus allowing the
|
||||
automatic fan pwm control to set the fan speed. The driver will not read the
|
||||
registers more often than once every 5 seconds. Further, configuration data is
|
||||
only read once per minute.
|
||||
|
||||
Special Features
|
||||
----------------
|
||||
@ -72,5 +68,6 @@ pwm#_auto_point2_temp.
|
||||
Notes
|
||||
-----
|
||||
|
||||
As stated above, the temperature inputs must be read periodically from
|
||||
userspace in order for the automatic pwm algorithm to run.
|
||||
The temperature inputs no longer need to be read periodically from userspace in
|
||||
order for the automatic pwm algorithm to run. This was the case for earlier
|
||||
versions of the driver.
|
||||
|
89
Documentation/hwmon/f71882fg
Normal file
89
Documentation/hwmon/f71882fg
Normal file
@ -0,0 +1,89 @@
|
||||
Kernel driver f71882fg
|
||||
======================
|
||||
|
||||
Supported chips:
|
||||
* Fintek F71882FG and F71883FG
|
||||
Prefix: 'f71882fg'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Available from the Fintek website
|
||||
* Fintek F71862FG and F71863FG
|
||||
Prefix: 'f71862fg'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Available from the Fintek website
|
||||
* Fintek F8000
|
||||
Prefix: 'f8000'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Not public
|
||||
|
||||
Author: Hans de Goede <hdegoede@redhat.com>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
Fintek F718xxFG/F8000 Super I/O chips include complete hardware monitoring
|
||||
capabilities. They can monitor up to 9 voltages (3 for the F8000), 4 fans and
|
||||
3 temperature sensors.
|
||||
|
||||
These chips also have fan controlling features, using either DC or PWM, in
|
||||
three different modes (one manual, two automatic).
|
||||
|
||||
The driver assumes that no more than one chip is present, which seems
|
||||
reasonable.
|
||||
|
||||
|
||||
Monitoring
|
||||
----------
|
||||
|
||||
The Voltage, Fan and Temperature Monitoring uses the standard sysfs
|
||||
interface as documented in sysfs-interface, without any exceptions.
|
||||
|
||||
|
||||
Fan Control
|
||||
-----------
|
||||
|
||||
Both PWM (pulse-width modulation) and DC fan speed control methods are
|
||||
supported. The right one to use depends on external circuitry on the
|
||||
motherboard, so the driver assumes that the BIOS set the method
|
||||
properly.
|
||||
|
||||
There are 2 modes to specify the speed of the fan, PWM duty cycle (or DC
|
||||
voltage) mode, where 0-100% duty cycle (0-100% of 12V) is specified. And RPM
|
||||
mode where the actual RPM of the fan (as measured) is controlled and the speed
|
||||
gets specified as 0-100% of the fan#_full_speed file.
|
||||
|
||||
Since both modes work in a 0-100% (mapped to 0-255) scale, there isn't a
|
||||
whole lot of a difference when modifying fan control settings. The only
|
||||
important difference is that in RPM mode the 0-100% controls the fan speed
|
||||
between 0-100% of fan#_full_speed. It is assumed that if the BIOS programs
|
||||
RPM mode, it will also set fan#_full_speed properly, if it does not then
|
||||
fan control will not work properly, unless you set a sane fan#_full_speed
|
||||
value yourself.
|
||||
|
||||
Switching between these modes requires re-initializing a whole bunch of
|
||||
registers, so the mode which the BIOS has set is kept. The mode is
|
||||
printed when loading the driver.
|
||||
|
||||
Three different fan control modes are supported; the mode number is written
|
||||
to the pwm#_enable file. Note that not all modes are supported on all
|
||||
chips, and some modes may only be available in RPM / PWM mode on the F8000.
|
||||
Writing an unsupported mode will result in an invalid parameter error.
|
||||
|
||||
* 1: Manual mode
|
||||
You ask for a specific PWM duty cycle / DC voltage or a specific % of
|
||||
fan#_full_speed by writing to the pwm# file. This mode is only
|
||||
available on the F8000 if the fan channel is in RPM mode.
|
||||
|
||||
* 2: Normal auto mode
|
||||
You can define a number of temperature/fan speed trip points, which % the
|
||||
fan should run at at this temp and which temp a fan should follow using the
|
||||
standard sysfs interface. The number and type of trip points is chip
|
||||
depended, see which files are available in sysfs.
|
||||
Fan/PWM channel 3 of the F8000 is always in this mode!
|
||||
|
||||
* 3: Thermostat mode (Only available on the F8000 when in duty cycle mode)
|
||||
The fan speed is regulated to keep the temp the fan is mapped to between
|
||||
temp#_auto_point2_temp and temp#_auto_point3_temp.
|
||||
|
||||
Both of the automatic modes require that pwm1 corresponds to fan1, pwm2 to
|
||||
fan2 and pwm3 to fan3.
|
@ -26,6 +26,10 @@ Supported chips:
|
||||
Datasheet: Publicly available at the ITE website
|
||||
http://www.ite.com.tw/product_info/file/pc/IT8718F_V0.2.zip
|
||||
http://www.ite.com.tw/product_info/file/pc/IT8718F_V0%203_(for%20C%20version).zip
|
||||
* IT8720F
|
||||
Prefix: 'it8720'
|
||||
Addresses scanned: from Super I/O config space (8 I/O ports)
|
||||
Datasheet: Not yet publicly available.
|
||||
* SiS950 [clone of IT8705F]
|
||||
Prefix: 'it87'
|
||||
Addresses scanned: from Super I/O config space (8 I/O ports)
|
||||
@ -71,7 +75,7 @@ Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the IT8705F, IT8712F, IT8716F,
|
||||
IT8718F, IT8726F and SiS950 chips.
|
||||
IT8718F, IT8720F, IT8726F and SiS950 chips.
|
||||
|
||||
These chips are 'Super I/O chips', supporting floppy disks, infrared ports,
|
||||
joysticks and other miscellaneous stuff. For hardware monitoring, they
|
||||
@ -84,19 +88,19 @@ the IT8716F and late IT8712F have 6. They are shared with other functions
|
||||
though, so the functionality may not be available on a given system.
|
||||
The driver dumbly assume it is there.
|
||||
|
||||
The IT8718F also features VID inputs (up to 8 pins) but the value is
|
||||
stored in the Super-I/O configuration space. Due to technical limitations,
|
||||
The IT8718F and IT8720F also features VID inputs (up to 8 pins) but the value
|
||||
is stored in the Super-I/O configuration space. Due to technical limitations,
|
||||
this value can currently only be read once at initialization time, so
|
||||
the driver won't notice and report changes in the VID value. The two
|
||||
upper VID bits share their pins with voltage inputs (in5 and in6) so you
|
||||
can't have both on a given board.
|
||||
|
||||
The IT8716F, IT8718F and later IT8712F revisions have support for
|
||||
The IT8716F, IT8718F, IT8720F and later IT8712F revisions have support for
|
||||
2 additional fans. The additional fans are supported by the driver.
|
||||
|
||||
The IT8716F and IT8718F, and late IT8712F and IT8705F also have optional
|
||||
16-bit tachometer counters for fans 1 to 3. This is better (no more fan
|
||||
clock divider mess) but not compatible with the older chips and
|
||||
The IT8716F, IT8718F and IT8720F, and late IT8712F and IT8705F also have
|
||||
optional 16-bit tachometer counters for fans 1 to 3. This is better (no more
|
||||
fan clock divider mess) but not compatible with the older chips and
|
||||
revisions. The 16-bit tachometer mode is enabled by the driver when one
|
||||
of the above chips is detected.
|
||||
|
||||
@ -122,7 +126,7 @@ zero'; this is important for negative voltage measurements. All voltage
|
||||
inputs can measure voltages between 0 and 4.08 volts, with a resolution of
|
||||
0.016 volt. The battery voltage in8 does not have limit registers.
|
||||
|
||||
The VID lines (IT8712F/IT8716F/IT8718F) encode the core voltage value:
|
||||
The VID lines (IT8712F/IT8716F/IT8718F/IT8720F) encode the core voltage value:
|
||||
the voltage level your processor should work with. This is hardcoded by
|
||||
the mainboard and/or processor itself. It is a value in volts.
|
||||
|
||||
|
@ -1,9 +1,11 @@
|
||||
Kernel driver lm70
|
||||
==================
|
||||
|
||||
Supported chip:
|
||||
Supported chips:
|
||||
* National Semiconductor LM70
|
||||
Datasheet: http://www.national.com/pf/LM/LM70.html
|
||||
* Texas Instruments TMP121/TMP123
|
||||
Information: http://focus.ti.com/docs/prod/folders/print/tmp121.html
|
||||
|
||||
Author:
|
||||
Kaiwan N Billimoria <kaiwan@designergraphix.com>
|
||||
@ -25,6 +27,14 @@ complement digital temperature (sent via the SIO line), is available in the
|
||||
driver for interpretation. This driver makes use of the kernel's in-core
|
||||
SPI support.
|
||||
|
||||
As a real (in-tree) example of this "SPI protocol driver" interfacing
|
||||
with a "SPI master controller driver", see drivers/spi/spi_lm70llp.c
|
||||
and its associated documentation.
|
||||
|
||||
The TMP121/TMP123 are very similar; main differences are 4 wire SPI inter-
|
||||
face (read only) and 13-bit temperature data (0.0625 degrees celsius reso-
|
||||
lution).
|
||||
|
||||
Thanks to
|
||||
---------
|
||||
Jean Delvare <khali@linux-fr.org> for mentoring the hwmon-side driver
|
||||
|
@ -164,7 +164,7 @@ configured individually according to the following options.
|
||||
temperature. (PWM value from 0 to 255)
|
||||
|
||||
* pwm#_auto_pwm_minctl - this flags selects for temp#_auto_temp_off temperature
|
||||
the bahaviour of fans. Write 1 to let fans spinning at
|
||||
the behaviour of fans. Write 1 to let fans spinning at
|
||||
pwm#_auto_pwm_min or write 0 to let them off.
|
||||
|
||||
NOTE: It has been reported that there is a bug in the LM85 that causes the flag
|
||||
|
81
Documentation/hwmon/ltc4245
Normal file
81
Documentation/hwmon/ltc4245
Normal file
@ -0,0 +1,81 @@
|
||||
Kernel driver ltc4245
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Linear Technology LTC4245
|
||||
Prefix: 'ltc4245'
|
||||
Addresses scanned: 0x20-0x3f
|
||||
Datasheet:
|
||||
http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1003,C1006,C1140,P19392,D13517
|
||||
|
||||
Author: Ira W. Snyder <iws@ovro.caltech.edu>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The LTC4245 controller allows a board to be safely inserted and removed
|
||||
from a live backplane in multiple supply systems such as CompactPCI and
|
||||
PCI Express.
|
||||
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver does not probe for LTC4245 devices, due to the fact that some
|
||||
of the possible addresses are unfriendly to probing. You will need to use
|
||||
the "force" parameter to tell the driver where to find the device.
|
||||
|
||||
Example: the following will load the driver for an LTC4245 at address 0x23
|
||||
on I2C bus #1:
|
||||
$ modprobe ltc4245 force=1,0x23
|
||||
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
The LTC4245 has built-in limits for over and under current warnings. This
|
||||
makes it very likely that the reference circuit will be used.
|
||||
|
||||
This driver uses the values in the datasheet to change the register values
|
||||
into the values specified in the sysfs-interface document. The current readings
|
||||
rely on the sense resistors listed in Table 2: "Sense Resistor Values".
|
||||
|
||||
in1_input 12v input voltage (mV)
|
||||
in2_input 5v input voltage (mV)
|
||||
in3_input 3v input voltage (mV)
|
||||
in4_input Vee (-12v) input voltage (mV)
|
||||
|
||||
in1_min_alarm 12v input undervoltage alarm
|
||||
in2_min_alarm 5v input undervoltage alarm
|
||||
in3_min_alarm 3v input undervoltage alarm
|
||||
in4_min_alarm Vee (-12v) input undervoltage alarm
|
||||
|
||||
curr1_input 12v current (mA)
|
||||
curr2_input 5v current (mA)
|
||||
curr3_input 3v current (mA)
|
||||
curr4_input Vee (-12v) current (mA)
|
||||
|
||||
curr1_max_alarm 12v overcurrent alarm
|
||||
curr2_max_alarm 5v overcurrent alarm
|
||||
curr3_max_alarm 3v overcurrent alarm
|
||||
curr4_max_alarm Vee (-12v) overcurrent alarm
|
||||
|
||||
in5_input 12v output voltage (mV)
|
||||
in6_input 5v output voltage (mV)
|
||||
in7_input 3v output voltage (mV)
|
||||
in8_input Vee (-12v) output voltage (mV)
|
||||
|
||||
in5_min_alarm 12v output undervoltage alarm
|
||||
in6_min_alarm 5v output undervoltage alarm
|
||||
in7_min_alarm 3v output undervoltage alarm
|
||||
in8_min_alarm Vee (-12v) output undervoltage alarm
|
||||
|
||||
in9_input GPIO #1 voltage data
|
||||
in10_input GPIO #2 voltage data
|
||||
in11_input GPIO #3 voltage data
|
||||
|
||||
power1_input 12v power usage (mW)
|
||||
power2_input 5v power usage (mW)
|
||||
power3_input 3v power usage (mW)
|
||||
power4_input Vee (-12v) power usage (mW)
|
@ -11,3 +11,8 @@ unplug old device(s) and plug new device(s)
|
||||
# echo -n "1" > /sys/class/ide_port/idex/scan
|
||||
|
||||
done
|
||||
|
||||
NOTE: please make sure that partitions are unmounted and that there are
|
||||
no other active references to devices before doing "delete_devices" step,
|
||||
also do not attempt "scan" step on devices currently in use -- otherwise
|
||||
results may be unpredictable and lead to data loss if you're unlucky
|
||||
|
109
Documentation/input/walkera0701.txt
Normal file
109
Documentation/input/walkera0701.txt
Normal file
@ -0,0 +1,109 @@
|
||||
|
||||
Walkera WK-0701 transmitter is supplied with a ready to fly Walkera
|
||||
helicopters such as HM36, HM37, HM60. The walkera0701 module enables to use
|
||||
this transmitter as joystick
|
||||
|
||||
Devel homepage and download:
|
||||
http://zub.fei.tuke.sk/walkera-wk0701/
|
||||
|
||||
or use cogito:
|
||||
cg-clone http://zub.fei.tuke.sk/GIT/walkera0701-joystick
|
||||
|
||||
|
||||
Connecting to PC:
|
||||
|
||||
At back side of transmitter S-video connector can be found. Modulation
|
||||
pulses from processor to HF part can be found at pin 2 of this connector,
|
||||
pin 3 is GND. Between pin 3 and CPU 5k6 resistor can be found. To get
|
||||
modulation pulses to PC, signal pulses must be amplified.
|
||||
|
||||
Cable: (walkera TX to parport)
|
||||
|
||||
Walkera WK-0701 TX S-VIDEO connector:
|
||||
(back side of TX)
|
||||
__ __ S-video: canon25
|
||||
/ |_| \ pin 2 (signal) NPN parport
|
||||
/ O 4 3 O \ pin 3 (GND) LED ________________ 10 ACK
|
||||
( O 2 1 O ) | C
|
||||
\ ___ / 2 ________________________|\|_____|/
|
||||
| [___] | |/| B |\
|
||||
------- 3 __________________________________|________________ 25 GND
|
||||
E
|
||||
|
||||
|
||||
I use green LED and BC109 NPN transistor.
|
||||
|
||||
Software:
|
||||
|
||||
Build kernel with walkera0701 module. Module walkera0701 need exclusive
|
||||
access to parport, modules like lp must be unloaded before loading
|
||||
walkera0701 module, check dmesg for error messages. Connect TX to PC by
|
||||
cable and run jstest /dev/input/js0 to see values from TX. If no value can
|
||||
be changed by TX "joystick", check output from /proc/interrupts. Value for
|
||||
(usually irq7) parport must increase if TX is on.
|
||||
|
||||
|
||||
|
||||
Technical details:
|
||||
|
||||
Driver use interrupt from parport ACK input bit to measure pulse length
|
||||
using hrtimers.
|
||||
|
||||
Frame format:
|
||||
Based on walkera WK-0701 PCM Format description by Shaul Eizikovich.
|
||||
(downloaded from http://www.smartpropoplus.com/Docs/Walkera_Wk-0701_PCM.pdf)
|
||||
|
||||
Signal pulses:
|
||||
(ANALOG)
|
||||
SYNC BIN OCT
|
||||
+---------+ +------+
|
||||
| | | |
|
||||
--+ +------+ +---
|
||||
|
||||
Frame:
|
||||
SYNC , BIN1, OCT1, BIN2, OCT2 ... BIN24, OCT24, BIN25, next frame SYNC ..
|
||||
|
||||
pulse length:
|
||||
Binary values: Analog octal values:
|
||||
|
||||
288 uS Binary 0 318 uS 000
|
||||
438 uS Binary 1 398 uS 001
|
||||
478 uS 010
|
||||
558 uS 011
|
||||
638 uS 100
|
||||
1306 uS SYNC 718 uS 101
|
||||
798 uS 110
|
||||
878 uS 111
|
||||
|
||||
24 bin+oct values + 1 bin value = 24*4+1 bits = 97 bits
|
||||
|
||||
(Warning, pulses on ACK ar inverted by transistor, irq is rised up on sync
|
||||
to bin change or octal value to bin change).
|
||||
|
||||
Binary data representations:
|
||||
|
||||
One binary and octal value can be grouped to nibble. 24 nibbles + one binary
|
||||
values can be sampled between sync pulses.
|
||||
|
||||
Values for first four channels (analog joystick values) can be found in
|
||||
first 10 nibbles. Analog value is represented by one sign bit and 9 bit
|
||||
absolute binary value. (10 bits per channel). Next nibble is checksum for
|
||||
first ten nibbles.
|
||||
|
||||
Next nibbles 12 .. 21 represents four channels (not all channels can be
|
||||
directly controlled from TX). Binary representations ar the same as in first
|
||||
four channels. In nibbles 22 and 23 is a special magic number. Nibble 24 is
|
||||
checksum for nibbles 12..23.
|
||||
|
||||
After last octal value for nibble 24 and next sync pulse one additional
|
||||
binary value can be sampled. This bit and magic number is not used in
|
||||
software driver. Some details about this magic numbers can be found in
|
||||
Walkera_Wk-0701_PCM.pdf.
|
||||
|
||||
Checksum calculation:
|
||||
|
||||
Summary of octal values in nibbles must be same as octal value in checksum
|
||||
nibble (only first 3 bits are used). Binary value for checksum nibble is
|
||||
calculated by sum of binary values in checked nibbles + sum of octal values
|
||||
in checked nibbles divided by 8. Only bit 0 of this sum is used.
|
||||
|
@ -84,7 +84,7 @@ Code Seq# Include File Comments
|
||||
'B' C0-FF advanced bbus
|
||||
<mailto:maassen@uni-freiburg.de>
|
||||
'C' all linux/soundcard.h
|
||||
'D' all asm-s390/dasd.h
|
||||
'D' all arch/s390/include/asm/dasd.h
|
||||
'E' all linux/input.h
|
||||
'F' all linux/fb.h
|
||||
'H' all linux/hiddev.h
|
||||
@ -97,6 +97,7 @@ Code Seq# Include File Comments
|
||||
<http://linux01.gwdg.de/~alatham/ppdd.html>
|
||||
'M' all linux/soundcard.h
|
||||
'N' 00-1F drivers/usb/scanner.h
|
||||
'O' 00-02 include/mtd/ubi-user.h UBI
|
||||
'P' all linux/soundcard.h
|
||||
'Q' all linux/soundcard.h
|
||||
'R' 00-1F linux/random.h
|
||||
@ -104,7 +105,7 @@ Code Seq# Include File Comments
|
||||
'S' 80-81 scsi/scsi_ioctl.h conflict!
|
||||
'S' 82-FF scsi/scsi.h conflict!
|
||||
'T' all linux/soundcard.h conflict!
|
||||
'T' all asm-i386/ioctls.h conflict!
|
||||
'T' all arch/x86/include/asm/ioctls.h conflict!
|
||||
'U' 00-EF linux/drivers/usb/usb.h
|
||||
'V' all linux/vt.h
|
||||
'W' 00-1F linux/watchdog.h conflict!
|
||||
@ -119,7 +120,7 @@ Code Seq# Include File Comments
|
||||
<mailto:natalia@nikhefk.nikhef.nl>
|
||||
'c' 00-7F linux/comstats.h conflict!
|
||||
'c' 00-7F linux/coda.h conflict!
|
||||
'c' 80-9F asm-s390/chsc.h
|
||||
'c' 80-9F arch/s390/include/asm/chsc.h
|
||||
'd' 00-FF linux/char/drm/drm/h conflict!
|
||||
'd' 00-DF linux/video_decoder.h conflict!
|
||||
'd' F0-FF linux/digi1.h
|
||||
@ -142,6 +143,9 @@ Code Seq# Include File Comments
|
||||
'n' 00-7F linux/ncp_fs.h
|
||||
'n' E0-FF video/matrox.h matroxfb
|
||||
'o' 00-1F fs/ocfs2/ocfs2_fs.h OCFS2
|
||||
'o' 00-03 include/mtd/ubi-user.h conflict! (OCFS2 and UBI overlaps)
|
||||
'o' 40-41 include/mtd/ubi-user.h UBI
|
||||
'o' 01-A1 include/linux/dvb/*.h DVB
|
||||
'p' 00-0F linux/phantom.h conflict! (OpenHaptics needs this)
|
||||
'p' 00-3F linux/mc146818rtc.h conflict!
|
||||
'p' 40-7F linux/nvram.h
|
||||
@ -166,7 +170,7 @@ Code Seq# Include File Comments
|
||||
<mailto:oe@port.de>
|
||||
0x80 00-1F linux/fb.h
|
||||
0x81 00-1F linux/videotext.h
|
||||
0x89 00-06 asm-i386/sockios.h
|
||||
0x89 00-06 arch/x86/include/asm/sockios.h
|
||||
0x89 0B-DF linux/sockios.h
|
||||
0x89 E0-EF linux/sockios.h SIOCPROTOPRIVATE range
|
||||
0x89 F0-FF linux/sockios.h SIOCDEVPRIVATE range
|
||||
|
@ -1,5 +1,9 @@
|
||||
00-INDEX
|
||||
- this file: info on the kernel build process
|
||||
- this file: info on the kernel build process
|
||||
kbuild.txt
|
||||
- developer information on kbuild
|
||||
kconfig.txt
|
||||
- usage help for make *config
|
||||
kconfig-language.txt
|
||||
- specification of Config Language, the language in Kconfig files
|
||||
makefiles.txt
|
||||
|
133
Documentation/kbuild/kbuild.txt
Normal file
133
Documentation/kbuild/kbuild.txt
Normal file
@ -0,0 +1,133 @@
|
||||
Environment variables
|
||||
|
||||
KCPPFLAGS
|
||||
--------------------------------------------------
|
||||
Additional options to pass when preprocessing. The preprocessing options
|
||||
will be used in all cases where kbuild do preprocessing including
|
||||
building C files and assembler files.
|
||||
|
||||
KAFLAGS
|
||||
--------------------------------------------------
|
||||
Additional options to the assembler.
|
||||
|
||||
KCFLAGS
|
||||
--------------------------------------------------
|
||||
Additional options to the C compiler.
|
||||
|
||||
KBUILD_VERBOSE
|
||||
--------------------------------------------------
|
||||
Set the kbuild verbosity. Can be assinged same values as "V=...".
|
||||
See make help for the full list.
|
||||
Setting "V=..." takes precedence over KBUILD_VERBOSE.
|
||||
|
||||
KBUILD_EXTMOD
|
||||
--------------------------------------------------
|
||||
Set the directory to look for the kernel source when building external
|
||||
modules.
|
||||
The directory can be specified in several ways:
|
||||
1) Use "M=..." on the command line
|
||||
2) Environmnet variable KBUILD_EXTMOD
|
||||
3) Environmnet variable SUBDIRS
|
||||
The possibilities are listed in the order they take precedence.
|
||||
Using "M=..." will always override the others.
|
||||
|
||||
KBUILD_OUTPUT
|
||||
--------------------------------------------------
|
||||
Specify the output directory when building the kernel.
|
||||
The output directory can also be specificed using "O=...".
|
||||
Setting "O=..." takes precedence over KBUILD_OUTPUT
|
||||
|
||||
ARCH
|
||||
--------------------------------------------------
|
||||
Set ARCH to the architecture to be built.
|
||||
In most cases the name of the architecture is the same as the
|
||||
directory name found in the arch/ directory.
|
||||
But some architectures suach as x86 and sparc has aliases.
|
||||
x86: i386 for 32 bit, x86_64 for 64 bit
|
||||
sparc: sparc for 32 bit, sparc64 for 64 bit
|
||||
|
||||
CROSS_COMPILE
|
||||
--------------------------------------------------
|
||||
Specify an optional fixed part of the binutils filename.
|
||||
CROSS_COMPILE can be a part of the filename or the full path.
|
||||
|
||||
CROSS_COMPILE is also used for ccache is some setups.
|
||||
|
||||
CF
|
||||
--------------------------------------------------
|
||||
Additional options for sparse.
|
||||
CF is often used on the command-line like this:
|
||||
|
||||
make CF=-Wbitwise C=2
|
||||
|
||||
INSTALL_PATH
|
||||
--------------------------------------------------
|
||||
INSTALL_PATH specifies where to place the updated kernel and system map
|
||||
images. Default is /boot, but you can set it to other values
|
||||
|
||||
|
||||
MODLIB
|
||||
--------------------------------------------------
|
||||
Specify where to install modules.
|
||||
The default value is:
|
||||
|
||||
$(INSTALL_MOD_PATH)/lib/modules/$(KERNELRELEASE)
|
||||
|
||||
The value can be overridden in which case the default value is ignored.
|
||||
|
||||
INSTALL_MOD_PATH
|
||||
--------------------------------------------------
|
||||
INSTALL_MOD_PATH specifies a prefix to MODLIB for module directory
|
||||
relocations required by build roots. This is not defined in the
|
||||
makefile but the argument can be passed to make if needed.
|
||||
|
||||
INSTALL_MOD_STRIP
|
||||
--------------------------------------------------
|
||||
INSTALL_MOD_STRIP, if defined, will cause modules to be
|
||||
stripped after they are installed. If INSTALL_MOD_STRIP is '1', then
|
||||
the default option --strip-debug will be used. Otherwise,
|
||||
INSTALL_MOD_STRIP will used as the options to the strip command.
|
||||
|
||||
INSTALL_FW_PATH
|
||||
--------------------------------------------------
|
||||
INSTALL_FW_PATH specify where to install the firmware blobs.
|
||||
The default value is:
|
||||
|
||||
$(INSTALL_MOD_PATH)/lib/firmware
|
||||
|
||||
The value can be overridden in which case the default value is ignored.
|
||||
|
||||
INSTALL_HDR_PATH
|
||||
--------------------------------------------------
|
||||
INSTALL_HDR_PATH specify where to install user space headers when
|
||||
executing "make headers_*".
|
||||
The default value is:
|
||||
|
||||
$(objtree)/usr
|
||||
|
||||
$(objtree) is the directory where output files are saved.
|
||||
The output directory is often set using "O=..." on the commandline.
|
||||
|
||||
The value can be overridden in which case the default value is ignored.
|
||||
|
||||
KBUILD_MODPOST_WARN
|
||||
--------------------------------------------------
|
||||
KBUILD_MODPOST_WARN can be set to avoid error out in case of undefined
|
||||
symbols in the final module linking stage.
|
||||
|
||||
KBUILD_MODPOST_FINAL
|
||||
--------------------------------------------------
|
||||
KBUILD_MODPOST_NOFINAL can be set to skip the final link of modules.
|
||||
This is solely usefull to speed up test compiles.
|
||||
|
||||
KBUILD_EXTRA_SYMBOLS
|
||||
--------------------------------------------------
|
||||
For modules use symbols from another modules.
|
||||
See more details in modules.txt.
|
||||
|
||||
ALLSOURCE_ARCHS
|
||||
--------------------------------------------------
|
||||
For tags/TAGS/cscope targets, you can specify more than one archs
|
||||
to be included in the databases, separated by blankspace. e.g.
|
||||
|
||||
$ make ALLSOURCE_ARCHS="x86 mips arm" tags
|
188
Documentation/kbuild/kconfig.txt
Normal file
188
Documentation/kbuild/kconfig.txt
Normal file
@ -0,0 +1,188 @@
|
||||
This file contains some assistance for using "make *config".
|
||||
|
||||
Use "make help" to list all of the possible configuration targets.
|
||||
|
||||
The xconfig ('qconf') and menuconfig ('mconf') programs also
|
||||
have embedded help text. Be sure to check it for navigation,
|
||||
search, and other general help text.
|
||||
|
||||
======================================================================
|
||||
General
|
||||
--------------------------------------------------
|
||||
|
||||
New kernel releases often introduce new config symbols. Often more
|
||||
important, new kernel releases may rename config symbols. When
|
||||
this happens, using a previously working .config file and running
|
||||
"make oldconfig" won't necessarily produce a working new kernel
|
||||
for you, so you may find that you need to see what NEW kernel
|
||||
symbols have been introduced.
|
||||
|
||||
To see a list of new config symbols when using "make oldconfig", use
|
||||
|
||||
cp user/some/old.config .config
|
||||
yes "" | make oldconfig >conf.new
|
||||
|
||||
and the config program will list as (NEW) any new symbols that have
|
||||
unknown values. Of course, the .config file is also updated with
|
||||
new (default) values, so you can use:
|
||||
|
||||
grep "(NEW)" conf.new
|
||||
|
||||
to see the new config symbols or you can 'diff' the previous and
|
||||
new .config files to see the differences:
|
||||
|
||||
diff .config.old .config | less
|
||||
|
||||
(Yes, we need something better here.)
|
||||
|
||||
|
||||
======================================================================
|
||||
menuconfig
|
||||
--------------------------------------------------
|
||||
|
||||
SEARCHING for CONFIG symbols
|
||||
|
||||
Searching in menuconfig:
|
||||
|
||||
The Search function searches for kernel configuration symbol
|
||||
names, so you have to know something close to what you are
|
||||
looking for.
|
||||
|
||||
Example:
|
||||
/hotplug
|
||||
This lists all config symbols that contain "hotplug",
|
||||
e.g., HOTPLUG, HOTPLUG_CPU, MEMORY_HOTPLUG.
|
||||
|
||||
For search help, enter / followed TAB-TAB-TAB (to highlight
|
||||
<Help>) and Enter. This will tell you that you can also use
|
||||
regular expressions (regexes) in the search string, so if you
|
||||
are not interested in MEMORY_HOTPLUG, you could try
|
||||
|
||||
/^hotplug
|
||||
|
||||
|
||||
______________________________________________________________________
|
||||
Color Themes for 'menuconfig'
|
||||
|
||||
It is possible to select different color themes using the variable
|
||||
MENUCONFIG_COLOR. To select a theme use:
|
||||
|
||||
make MENUCONFIG_COLOR=<theme> menuconfig
|
||||
|
||||
Available themes are:
|
||||
mono => selects colors suitable for monochrome displays
|
||||
blackbg => selects a color scheme with black background
|
||||
classic => theme with blue background. The classic look
|
||||
bluetitle => a LCD friendly version of classic. (default)
|
||||
|
||||
______________________________________________________________________
|
||||
Environment variables in 'menuconfig'
|
||||
|
||||
KCONFIG_ALLCONFIG
|
||||
--------------------------------------------------
|
||||
(partially based on lkml email from/by Rob Landley, re: miniconfig)
|
||||
--------------------------------------------------
|
||||
The allyesconfig/allmodconfig/allnoconfig/randconfig variants can
|
||||
also use the environment variable KCONFIG_ALLCONFIG as a flag or a
|
||||
filename that contains config symbols that the user requires to be
|
||||
set to a specific value. If KCONFIG_ALLCONFIG is used without a
|
||||
filename, "make *config" checks for a file named
|
||||
"all{yes/mod/no/random}.config" (corresponding to the *config command
|
||||
that was used) for symbol values that are to be forced. If this file
|
||||
is not found, it checks for a file named "all.config" to contain forced
|
||||
values.
|
||||
|
||||
This enables you to create "miniature" config (miniconfig) or custom
|
||||
config files containing just the config symbols that you are interested
|
||||
in. Then the kernel config system generates the full .config file,
|
||||
including dependencies of your miniconfig file, based on the miniconfig
|
||||
file.
|
||||
|
||||
This 'KCONFIG_ALLCONFIG' file is a config file which contains
|
||||
(usually a subset of all) preset config symbols. These variable
|
||||
settings are still subject to normal dependency checks.
|
||||
|
||||
Examples:
|
||||
KCONFIG_ALLCONFIG=custom-notebook.config make allnoconfig
|
||||
or
|
||||
KCONFIG_ALLCONFIG=mini.config make allnoconfig
|
||||
or
|
||||
make KCONFIG_ALLCONFIG=mini.config allnoconfig
|
||||
|
||||
These examples will disable most options (allnoconfig) but enable or
|
||||
disable the options that are explicitly listed in the specified
|
||||
mini-config files.
|
||||
|
||||
KCONFIG_NOSILENTUPDATE
|
||||
--------------------------------------------------
|
||||
If this variable has a non-blank value, it prevents silent kernel
|
||||
config udpates (requires explicit updates).
|
||||
|
||||
KCONFIG_CONFIG
|
||||
--------------------------------------------------
|
||||
This environment variable can be used to specify a default kernel config
|
||||
file name to override the default name of ".config".
|
||||
|
||||
KCONFIG_OVERWRITECONFIG
|
||||
--------------------------------------------------
|
||||
If you set KCONFIG_OVERWRITECONFIG in the environment, Kconfig will not
|
||||
break symlinks when .config is a symlink to somewhere else.
|
||||
|
||||
KCONFIG_NOTIMESTAMP
|
||||
--------------------------------------------------
|
||||
If this environment variable exists and is non-null, the timestamp line
|
||||
in generated .config files is omitted.
|
||||
|
||||
KCONFIG_AUTOCONFIG
|
||||
--------------------------------------------------
|
||||
This environment variable can be set to specify the path & name of the
|
||||
"auto.conf" file. Its default value is "include/config/auto.conf".
|
||||
|
||||
KCONFIG_AUTOHEADER
|
||||
--------------------------------------------------
|
||||
This environment variable can be set to specify the path & name of the
|
||||
"autoconf.h" (header) file. Its default value is "include/linux/autoconf.h".
|
||||
|
||||
______________________________________________________________________
|
||||
menuconfig User Interface Options
|
||||
----------------------------------------------------------------------
|
||||
MENUCONFIG_MODE
|
||||
--------------------------------------------------
|
||||
This mode shows all sub-menus in one large tree.
|
||||
|
||||
Example:
|
||||
MENUCONFIG_MODE=single_menu make menuconfig
|
||||
|
||||
======================================================================
|
||||
xconfig
|
||||
--------------------------------------------------
|
||||
|
||||
Searching in xconfig:
|
||||
|
||||
The Search function searches for kernel configuration symbol
|
||||
names, so you have to know something close to what you are
|
||||
looking for.
|
||||
|
||||
Example:
|
||||
Ctrl-F hotplug
|
||||
or
|
||||
Menu: File, Search, hotplug
|
||||
|
||||
lists all config symbol entries that contain "hotplug" in
|
||||
the symbol name. In this Search dialog, you may change the
|
||||
config setting for any of the entries that are not grayed out.
|
||||
You can also enter a different search string without having
|
||||
to return to the main menu.
|
||||
|
||||
|
||||
======================================================================
|
||||
gconfig
|
||||
--------------------------------------------------
|
||||
|
||||
Searching in gconfig:
|
||||
|
||||
None (gconfig isn't maintained as well as xconfig or menuconfig);
|
||||
however, gconfig does have a few more viewing choices than
|
||||
xconfig does.
|
||||
|
||||
###
|
@ -383,6 +383,20 @@ more details, with real examples.
|
||||
to prerequisites are referenced with $(src) (because they are not
|
||||
generated files).
|
||||
|
||||
$(kecho)
|
||||
echoing information to user in a rule is often a good practice
|
||||
but when execution "make -s" one does not expect to see any output
|
||||
except for warnings/errors.
|
||||
To support this kbuild define $(kecho) which will echo out the
|
||||
text following $(kecho) to stdout except if "make -s" is used.
|
||||
|
||||
Example:
|
||||
#arch/blackfin/boot/Makefile
|
||||
$(obj)/vmImage: $(obj)/vmlinux.gz
|
||||
$(call if_changed,uimage)
|
||||
@$(kecho) 'Kernel: $@ is ready'
|
||||
|
||||
|
||||
--- 3.11 $(CC) support functions
|
||||
|
||||
The kernel may be built with several different versions of
|
||||
|
@ -253,7 +253,7 @@ following files:
|
||||
|
||||
# Module specific targets
|
||||
genbin:
|
||||
echo "X" > 8123_bin_shipped
|
||||
echo "X" > 8123_bin.o_shipped
|
||||
|
||||
|
||||
In example 2, we are down to two fairly simple files and for simple
|
||||
@ -279,7 +279,7 @@ following files:
|
||||
|
||||
# Module specific targets
|
||||
genbin:
|
||||
echo "X" > 8123_bin_shipped
|
||||
echo "X" > 8123_bin.o_shipped
|
||||
|
||||
endif
|
||||
|
||||
|
@ -71,6 +71,11 @@ The @argument descriptions must begin on the very next line following
|
||||
this opening short function description line, with no intervening
|
||||
empty comment lines.
|
||||
|
||||
If a function parameter is "..." (varargs), it should be listed in
|
||||
kernel-doc notation as:
|
||||
* @...: description
|
||||
|
||||
|
||||
Example kernel-doc data structure comment.
|
||||
|
||||
/**
|
||||
@ -282,6 +287,32 @@ struct my_struct {
|
||||
};
|
||||
|
||||
|
||||
Including documentation blocks in source files
|
||||
----------------------------------------------
|
||||
|
||||
To facilitate having source code and comments close together, you can
|
||||
include kernel-doc documentation blocks that are free-form comments
|
||||
instead of being kernel-doc for functions, structures, unions,
|
||||
enums, or typedefs. This could be used for something like a
|
||||
theory of operation for a driver or library code, for example.
|
||||
|
||||
This is done by using a DOC: section keyword with a section title. E.g.:
|
||||
|
||||
/**
|
||||
* DOC: Theory of Operation
|
||||
*
|
||||
* The whizbang foobar is a dilly of a gizmo. It can do whatever you
|
||||
* want it to do, at any time. It reads your mind. Here's how it works.
|
||||
*
|
||||
* foo bar splat
|
||||
*
|
||||
* The only drawback to this gizmo is that is can sometimes damage
|
||||
* hardware, software, or its subject(s).
|
||||
*/
|
||||
|
||||
DOC: sections are used in SGML templates files as indicated below.
|
||||
|
||||
|
||||
How to make new SGML template files
|
||||
-----------------------------------
|
||||
|
||||
@ -302,6 +333,9 @@ exported using EXPORT_SYMBOL.
|
||||
!F<filename> <function [functions...]> is replaced by the
|
||||
documentation, in <filename>, for the functions listed.
|
||||
|
||||
!P<filename> <section title> is replaced by the contents of the DOC:
|
||||
section titled <section title> from <filename>.
|
||||
Spaces are allowed in <section title>; do not quote the <section title>.
|
||||
|
||||
Tim.
|
||||
*/ <twaugh@redhat.com>
|
||||
|
@ -89,7 +89,9 @@ parameter is applicable:
|
||||
SPARC Sparc architecture is enabled.
|
||||
SWSUSP Software suspend (hibernation) is enabled.
|
||||
SUSPEND System suspend states are enabled.
|
||||
FTRACE Function tracing enabled.
|
||||
TS Appropriate touchscreen support is enabled.
|
||||
UMS USB Mass Storage support is enabled.
|
||||
USB USB support is enabled.
|
||||
USBHID USB Human Interface Device support is enabled.
|
||||
V4L Video For Linux support is enabled.
|
||||
@ -473,8 +475,8 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
|
||||
clearcpuid=BITNUM [X86]
|
||||
Disable CPUID feature X for the kernel. See
|
||||
include/asm-x86/cpufeature.h for the valid bit numbers.
|
||||
Note the Linux specific bits are not necessarily
|
||||
arch/x86/include/asm/cpufeature.h for the valid bit
|
||||
numbers. Note the Linux specific bits are not necessarily
|
||||
stable over kernel options, but the vendor specific
|
||||
ones should be.
|
||||
Also note that user programs calling CPUID directly
|
||||
@ -555,6 +557,11 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
not work reliably with all consoles, but is known
|
||||
to work with serial and VGA consoles.
|
||||
|
||||
coredump_filter=
|
||||
[KNL] Change the default value for
|
||||
/proc/<pid>/coredump_filter.
|
||||
See also Documentation/filesystems/proc.txt.
|
||||
|
||||
cpcihp_generic= [HW,PCI] Generic port I/O CompactPCI driver
|
||||
Format:
|
||||
<first_slot>,<last_slot>,<port>,<enum_bit>[,<debug>]
|
||||
@ -758,6 +765,14 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
parameter will force ia64_sal_cache_flush to call
|
||||
ia64_pal_cache_flush instead of SAL_CACHE_FLUSH.
|
||||
|
||||
ftrace=[tracer]
|
||||
[ftrace] will set and start the specified tracer
|
||||
as early as possible in order to facilitate early
|
||||
boot debugging.
|
||||
|
||||
ftrace_dump_on_oops
|
||||
[ftrace] will dump the trace buffers on oops.
|
||||
|
||||
gamecon.map[2|3]=
|
||||
[HW,JOY] Multisystem joystick and NES/SNES/PSX pad
|
||||
support via parallel port (up to 5 devices per port)
|
||||
@ -819,6 +834,9 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
|
||||
hlt [BUGS=ARM,SH]
|
||||
|
||||
hvc_iucv= [S390] Number of z/VM IUCV Hypervisor console (HVC)
|
||||
back-ends. Valid parameters: 0..8
|
||||
|
||||
i8042.debug [HW] Toggle i8042 debug mode
|
||||
i8042.direct [HW] Put keyboard port into non-translated mode
|
||||
i8042.dumbkbd [HW] Pretend that controller can only read data from
|
||||
@ -908,6 +926,10 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
|
||||
inttest= [IA64]
|
||||
|
||||
iomem= Disable strict checking of access to MMIO memory
|
||||
strict regions from userspace.
|
||||
relaxed
|
||||
|
||||
iommu= [x86]
|
||||
off
|
||||
force
|
||||
@ -1112,6 +1134,8 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
If there are multiple matching configurations changing
|
||||
the same attribute, the last one is used.
|
||||
|
||||
lmb=debug [KNL] Enable lmb debug messages.
|
||||
|
||||
load_ramdisk= [RAM] List of ramdisks to load from floppy
|
||||
See Documentation/blockdev/ramdisk.txt.
|
||||
|
||||
@ -1403,7 +1427,20 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
when a NMI is triggered.
|
||||
Format: [state][,regs][,debounce][,die]
|
||||
|
||||
nmi_watchdog= [KNL,BUGS=X86-32] Debugging features for SMP kernels
|
||||
nmi_watchdog= [KNL,BUGS=X86-32,X86-64] Debugging features for SMP kernels
|
||||
Format: [panic,][num]
|
||||
Valid num: 0,1,2
|
||||
0 - turn nmi_watchdog off
|
||||
1 - use the IO-APIC timer for the NMI watchdog
|
||||
2 - use the local APIC for the NMI watchdog using
|
||||
a performance counter. Note: This will use one performance
|
||||
counter and the local APIC's performance vector.
|
||||
When panic is specified panic when an NMI watchdog timeout occurs.
|
||||
This is useful when you use a panic=... timeout and need the box
|
||||
quickly up again.
|
||||
Instead of 1 and 2 it is possible to use the following
|
||||
symbolic names: lapic and ioapic
|
||||
Example: nmi_watchdog=2 or nmi_watchdog=panic,lapic
|
||||
|
||||
no387 [BUGS=X86-32] Tells the kernel to use the 387 maths
|
||||
emulation library even if a 387 maths coprocessor
|
||||
@ -1459,6 +1496,10 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
instruction doesn't work correctly and not to
|
||||
use it.
|
||||
|
||||
no_file_caps Tells the kernel not to honor file capabilities. The
|
||||
only way then for a file to be executed with privilege
|
||||
is to be setuid root or executed by root.
|
||||
|
||||
nohalt [IA-64] Tells the kernel not to use the power saving
|
||||
function PAL_HALT_LIGHT when idle. This increases
|
||||
power-consumption. On the positive side, it reduces
|
||||
@ -1528,6 +1569,9 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
|
||||
nosoftlockup [KNL] Disable the soft-lockup detector.
|
||||
|
||||
noswapaccount [KNL] Disable accounting of swap in memory resource
|
||||
controller. (See Documentation/controllers/memory.txt)
|
||||
|
||||
nosync [HW,M68K] Disables sync negotiation for all devices.
|
||||
|
||||
notsc [BUGS=X86-32] Disable Time Stamp Counter
|
||||
@ -1547,6 +1591,10 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
|
||||
nr_uarts= [SERIAL] maximum number of UARTs to be registered.
|
||||
|
||||
ohci1394_dma=early [HW] enable debugging via the ohci1394 driver.
|
||||
See Documentation/debugging-via-ohci1394.txt for more
|
||||
info.
|
||||
|
||||
olpc_ec_timeout= [OLPC] ms delay when issuing EC commands
|
||||
Rather than timing out after 20 ms if an EC
|
||||
command is not properly ACKed, override the length
|
||||
@ -1636,6 +1684,17 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
nomsi [MSI] If the PCI_MSI kernel config parameter is
|
||||
enabled, this kernel boot option can be used to
|
||||
disable the use of MSI interrupts system-wide.
|
||||
noioapicquirk [APIC] Disable all boot interrupt quirks.
|
||||
Safety option to keep boot IRQs enabled. This
|
||||
should never be necessary.
|
||||
ioapicreroute [APIC] Enable rerouting of boot IRQs to the
|
||||
primary IO-APIC for bridges that cannot disable
|
||||
boot IRQs. This fixes a source of spurious IRQs
|
||||
when the system masks IRQs.
|
||||
noioapicreroute [APIC] Disable workaround that uses the
|
||||
boot IRQ equivalent of an IRQ that connects to
|
||||
a chipset where boot IRQs cannot be disabled.
|
||||
The opposite of ioapicreroute.
|
||||
biosirq [X86-32] Use PCI BIOS calls to get the interrupt
|
||||
routing table. These calls are known to be buggy
|
||||
on several machines and they hang the machine
|
||||
@ -1760,10 +1819,10 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
autoconfiguration.
|
||||
Ranges are in pairs (memory base and size).
|
||||
|
||||
dynamic_printk
|
||||
Enables pr_debug()/dev_dbg() calls if
|
||||
CONFIG_DYNAMIC_PRINTK_DEBUG has been enabled. These can also
|
||||
be switched on/off via <debugfs>/dynamic_printk/modules
|
||||
dynamic_printk Enables pr_debug()/dev_dbg() calls if
|
||||
CONFIG_DYNAMIC_PRINTK_DEBUG has been enabled.
|
||||
These can also be switched on/off via
|
||||
<debugfs>/dynamic_printk/modules
|
||||
|
||||
print-fatal-signals=
|
||||
[KNL] debug: print fatal signals
|
||||
@ -1851,7 +1910,7 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
|
||||
reboot= [BUGS=X86-32,BUGS=ARM,BUGS=IA-64] Rebooting mode
|
||||
Format: <reboot_mode>[,<reboot_mode2>[,...]]
|
||||
See arch/*/kernel/reboot.c or arch/*/kernel/process.c
|
||||
See arch/*/kernel/reboot.c or arch/*/kernel/process.c
|
||||
|
||||
relax_domain_level=
|
||||
[KNL, SMP] Set scheduler's default relax_domain_level.
|
||||
@ -2175,6 +2234,9 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
st= [HW,SCSI] SCSI tape parameters (buffers, etc.)
|
||||
See Documentation/scsi/st.txt.
|
||||
|
||||
stacktrace [FTRACE]
|
||||
Enabled the stack tracer on boot up.
|
||||
|
||||
sti= [PARISC,HW]
|
||||
Format: <num>
|
||||
Set the STI (builtin display/keyboard on the HP-PARISC
|
||||
@ -2260,12 +2322,27 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
See comment before function dc390_setup() in
|
||||
drivers/scsi/tmscsim.c.
|
||||
|
||||
topology= [S390]
|
||||
Format: {off | on}
|
||||
Specify if the kernel should make use of the cpu
|
||||
topology informations if the hardware supports these.
|
||||
The scheduler will make use of these informations and
|
||||
e.g. base its process migration decisions on it.
|
||||
Default is off.
|
||||
|
||||
tp720= [HW,PS2]
|
||||
|
||||
trix= [HW,OSS] MediaTrix AudioTrix Pro
|
||||
Format:
|
||||
<io>,<irq>,<dma>,<dma2>,<sb_io>,<sb_irq>,<sb_dma>,<mpu_io>,<mpu_irq>
|
||||
|
||||
tsc= Disable clocksource-must-verify flag for TSC.
|
||||
Format: <string>
|
||||
[x86] reliable: mark tsc clocksource as reliable, this
|
||||
disables clocksource verification at runtime.
|
||||
Used to enable high-resolution timer mode on older
|
||||
hardware, and in virtualized environment.
|
||||
|
||||
turbografx.map[2|3]= [HW,JOY]
|
||||
TurboGraFX parallel port interface
|
||||
Format:
|
||||
@ -2322,6 +2399,41 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
usbhid.mousepoll=
|
||||
[USBHID] The interval which mice are to be polled at.
|
||||
|
||||
usb-storage.delay_use=
|
||||
[UMS] The delay in seconds before a new device is
|
||||
scanned for Logical Units (default 5).
|
||||
|
||||
usb-storage.quirks=
|
||||
[UMS] A list of quirks entries to supplement or
|
||||
override the built-in unusual_devs list. List
|
||||
entries are separated by commas. Each entry has
|
||||
the form VID:PID:Flags where VID and PID are Vendor
|
||||
and Product ID values (4-digit hex numbers) and
|
||||
Flags is a set of characters, each corresponding
|
||||
to a common usb-storage quirk flag as follows:
|
||||
a = SANE_SENSE (collect more than 18 bytes
|
||||
of sense data);
|
||||
c = FIX_CAPACITY (decrease the reported
|
||||
device capacity by one sector);
|
||||
h = CAPACITY_HEURISTICS (decrease the
|
||||
reported device capacity by one
|
||||
sector if the number is odd);
|
||||
i = IGNORE_DEVICE (don't bind to this
|
||||
device);
|
||||
l = NOT_LOCKABLE (don't try to lock and
|
||||
unlock ejectable media);
|
||||
m = MAX_SECTORS_64 (don't transfer more
|
||||
than 64 sectors = 32 KB at a time);
|
||||
o = CAPACITY_OK (accept the capacity
|
||||
reported by the device);
|
||||
r = IGNORE_RESIDUE (the device reports
|
||||
bogus residue values);
|
||||
s = SINGLE_LUN (the device has only one
|
||||
Logical Unit);
|
||||
w = NO_WP_DETECT (don't test whether the
|
||||
medium is write-protected).
|
||||
Example: quirks=0419:aaf5:rl,0421:0433:rc
|
||||
|
||||
add_efi_memmap [EFI; x86-32,X86-64] Include EFI memory map in
|
||||
kernel's map of available physical RAM.
|
||||
|
||||
@ -2382,8 +2494,8 @@ and is between 256 and 4096 characters. It is defined in the file
|
||||
Format:
|
||||
<irq>,<irq_mask>,<io>,<full_duplex>,<do_sound>,<lockup_hack>[,<irq2>[,<irq3>[,<irq4>]]]
|
||||
|
||||
norandmaps Don't use address space randomization
|
||||
Equivalent to echo 0 > /proc/sys/kernel/randomize_va_space
|
||||
norandmaps Don't use address space randomization. Equivalent to
|
||||
echo 0 > /proc/sys/kernel/randomize_va_space
|
||||
|
||||
______________________________________________________________________
|
||||
|
||||
|
@ -118,8 +118,8 @@ the name of the kobject, call kobject_rename():
|
||||
|
||||
int kobject_rename(struct kobject *kobj, const char *new_name);
|
||||
|
||||
Note kobject_rename does perform any locking or have a solid notion of
|
||||
what names are valid so the provide must provide their own sanity checking
|
||||
kobject_rename does not perform any locking or have a solid notion of
|
||||
what names are valid so the caller must provide their own sanity checking
|
||||
and serialization.
|
||||
|
||||
There is a function called kobject_set_name() but that is legacy cruft and
|
||||
|
@ -497,7 +497,10 @@ The first column provides the kernel address where the probe is inserted.
|
||||
The second column identifies the type of probe (k - kprobe, r - kretprobe
|
||||
and j - jprobe), while the third column specifies the symbol+offset of
|
||||
the probe. If the probed function belongs to a module, the module name
|
||||
is also specified.
|
||||
is also specified. Following columns show probe status. If the probe is on
|
||||
a virtual address that is no longer valid (module init sections, module
|
||||
virtual addresses that correspond to modules that've been unloaded),
|
||||
such probes are marked with [GONE].
|
||||
|
||||
/debug/kprobes/enabled: Turn kprobes ON/OFF
|
||||
|
||||
|
@ -1475,7 +1475,7 @@ Sysfs interface changelog:
|
||||
|
||||
0x020100: Marker for thinkpad-acpi with hot key NVRAM polling
|
||||
support. If you must, use it to know you should not
|
||||
start an userspace NVRAM poller (allows to detect when
|
||||
start a userspace NVRAM poller (allows to detect when
|
||||
NVRAM is compiled out by the user because it is
|
||||
unneeded/undesired in the first place).
|
||||
0x020101: Marker for thinkpad-acpi with hot key NVRAM polling
|
||||
|
@ -481,51 +481,6 @@ static unsigned long load_initrd(const char *name, unsigned long mem)
|
||||
/* We return the initrd size. */
|
||||
return len;
|
||||
}
|
||||
|
||||
/* Once we know how much memory we have we can construct simple linear page
|
||||
* tables which set virtual == physical which will get the Guest far enough
|
||||
* into the boot to create its own.
|
||||
*
|
||||
* We lay them out of the way, just below the initrd (which is why we need to
|
||||
* know its size here). */
|
||||
static unsigned long setup_pagetables(unsigned long mem,
|
||||
unsigned long initrd_size)
|
||||
{
|
||||
unsigned long *pgdir, *linear;
|
||||
unsigned int mapped_pages, i, linear_pages;
|
||||
unsigned int ptes_per_page = getpagesize()/sizeof(void *);
|
||||
|
||||
mapped_pages = mem/getpagesize();
|
||||
|
||||
/* Each PTE page can map ptes_per_page pages: how many do we need? */
|
||||
linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
|
||||
|
||||
/* We put the toplevel page directory page at the top of memory. */
|
||||
pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
|
||||
|
||||
/* Now we use the next linear_pages pages as pte pages */
|
||||
linear = (void *)pgdir - linear_pages*getpagesize();
|
||||
|
||||
/* Linear mapping is easy: put every page's address into the mapping in
|
||||
* order. PAGE_PRESENT contains the flags Present, Writable and
|
||||
* Executable. */
|
||||
for (i = 0; i < mapped_pages; i++)
|
||||
linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
|
||||
|
||||
/* The top level points to the linear page table pages above. */
|
||||
for (i = 0; i < mapped_pages; i += ptes_per_page) {
|
||||
pgdir[i/ptes_per_page]
|
||||
= ((to_guest_phys(linear) + i*sizeof(void *))
|
||||
| PAGE_PRESENT);
|
||||
}
|
||||
|
||||
verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
|
||||
mapped_pages, linear_pages, to_guest_phys(linear));
|
||||
|
||||
/* We return the top level (guest-physical) address: the kernel needs
|
||||
* to know where it is. */
|
||||
return to_guest_phys(pgdir);
|
||||
}
|
||||
/*:*/
|
||||
|
||||
/* Simple routine to roll all the commandline arguments together with spaces
|
||||
@ -548,13 +503,13 @@ static void concat(char *dst, char *args[])
|
||||
|
||||
/*L:185 This is where we actually tell the kernel to initialize the Guest. We
|
||||
* saw the arguments it expects when we looked at initialize() in lguest_user.c:
|
||||
* the base of Guest "physical" memory, the top physical page to allow, the
|
||||
* top level pagetable and the entry point for the Guest. */
|
||||
static int tell_kernel(unsigned long pgdir, unsigned long start)
|
||||
* the base of Guest "physical" memory, the top physical page to allow and the
|
||||
* entry point for the Guest. */
|
||||
static int tell_kernel(unsigned long start)
|
||||
{
|
||||
unsigned long args[] = { LHREQ_INITIALIZE,
|
||||
(unsigned long)guest_base,
|
||||
guest_limit / getpagesize(), pgdir, start };
|
||||
guest_limit / getpagesize(), start };
|
||||
int fd;
|
||||
|
||||
verbose("Guest: %p - %p (%#lx)\n",
|
||||
@ -1030,7 +985,7 @@ static void update_device_status(struct device *dev)
|
||||
/* Zero out the virtqueues. */
|
||||
for (vq = dev->vq; vq; vq = vq->next) {
|
||||
memset(vq->vring.desc, 0,
|
||||
vring_size(vq->config.num, getpagesize()));
|
||||
vring_size(vq->config.num, LGUEST_VRING_ALIGN));
|
||||
lg_last_avail(vq) = 0;
|
||||
}
|
||||
} else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
|
||||
@ -1211,7 +1166,7 @@ static void add_virtqueue(struct device *dev, unsigned int num_descs,
|
||||
void *p;
|
||||
|
||||
/* First we need some memory for this virtqueue. */
|
||||
pages = (vring_size(num_descs, getpagesize()) + getpagesize() - 1)
|
||||
pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
|
||||
/ getpagesize();
|
||||
p = get_pages(pages);
|
||||
|
||||
@ -1228,7 +1183,7 @@ static void add_virtqueue(struct device *dev, unsigned int num_descs,
|
||||
vq->config.pfn = to_guest_phys(p) / getpagesize();
|
||||
|
||||
/* Initialize the vring. */
|
||||
vring_init(&vq->vring, num_descs, p, getpagesize());
|
||||
vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
|
||||
|
||||
/* Append virtqueue to this device's descriptor. We use
|
||||
* device_config() to get the end of the device's current virtqueues;
|
||||
@ -1941,7 +1896,7 @@ int main(int argc, char *argv[])
|
||||
{
|
||||
/* Memory, top-level pagetable, code startpoint and size of the
|
||||
* (optional) initrd. */
|
||||
unsigned long mem = 0, pgdir, start, initrd_size = 0;
|
||||
unsigned long mem = 0, start, initrd_size = 0;
|
||||
/* Two temporaries and the /dev/lguest file descriptor. */
|
||||
int i, c, lguest_fd;
|
||||
/* The boot information for the Guest. */
|
||||
@ -2040,9 +1995,6 @@ int main(int argc, char *argv[])
|
||||
boot->hdr.type_of_loader = 0xFF;
|
||||
}
|
||||
|
||||
/* Set up the initial linear pagetables, starting below the initrd. */
|
||||
pgdir = setup_pagetables(mem, initrd_size);
|
||||
|
||||
/* The Linux boot header contains an "E820" memory map: ours is a
|
||||
* simple, single region. */
|
||||
boot->e820_entries = 1;
|
||||
@ -2064,7 +2016,7 @@ int main(int argc, char *argv[])
|
||||
|
||||
/* We tell the kernel to initialize the Guest: this returns the open
|
||||
* /dev/lguest file descriptor. */
|
||||
lguest_fd = tell_kernel(pgdir, start);
|
||||
lguest_fd = tell_kernel(start);
|
||||
|
||||
/* We clone off a thread, which wakes the Launcher whenever one of the
|
||||
* input file descriptors needs attention. We call this the Waker, and
|
||||
|
@ -71,35 +71,50 @@ Look at the current lock statistics:
|
||||
|
||||
# less /proc/lock_stat
|
||||
|
||||
01 lock_stat version 0.2
|
||||
01 lock_stat version 0.3
|
||||
02 -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
||||
03 class name con-bounces contentions waittime-min waittime-max waittime-total acq-bounces acquisitions holdtime-min holdtime-max holdtime-total
|
||||
04 -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
||||
05
|
||||
06 &inode->i_data.tree_lock-W: 15 21657 0.18 1093295.30 11547131054.85 58 10415 0.16 87.51 6387.60
|
||||
07 &inode->i_data.tree_lock-R: 0 0 0.00 0.00 0.00 23302 231198 0.25 8.45 98023.38
|
||||
08 --------------------------
|
||||
09 &inode->i_data.tree_lock 0 [<ffffffff8027c08f>] add_to_page_cache+0x5f/0x190
|
||||
10
|
||||
11 ...............................................................................................................................................................................................
|
||||
12
|
||||
13 dcache_lock: 1037 1161 0.38 45.32 774.51 6611 243371 0.15 306.48 77387.24
|
||||
14 -----------
|
||||
15 dcache_lock 180 [<ffffffff802c0d7e>] sys_getcwd+0x11e/0x230
|
||||
16 dcache_lock 165 [<ffffffff802c002a>] d_alloc+0x15a/0x210
|
||||
17 dcache_lock 33 [<ffffffff8035818d>] _atomic_dec_and_lock+0x4d/0x70
|
||||
18 dcache_lock 1 [<ffffffff802beef8>] shrink_dcache_parent+0x18/0x130
|
||||
06 &mm->mmap_sem-W: 233 538 18446744073708 22924.27 607243.51 1342 45806 1.71 8595.89 1180582.34
|
||||
07 &mm->mmap_sem-R: 205 587 18446744073708 28403.36 731975.00 1940 412426 0.58 187825.45 6307502.88
|
||||
08 ---------------
|
||||
09 &mm->mmap_sem 487 [<ffffffff8053491f>] do_page_fault+0x466/0x928
|
||||
10 &mm->mmap_sem 179 [<ffffffff802a6200>] sys_mprotect+0xcd/0x21d
|
||||
11 &mm->mmap_sem 279 [<ffffffff80210a57>] sys_mmap+0x75/0xce
|
||||
12 &mm->mmap_sem 76 [<ffffffff802a490b>] sys_munmap+0x32/0x59
|
||||
13 ---------------
|
||||
14 &mm->mmap_sem 270 [<ffffffff80210a57>] sys_mmap+0x75/0xce
|
||||
15 &mm->mmap_sem 431 [<ffffffff8053491f>] do_page_fault+0x466/0x928
|
||||
16 &mm->mmap_sem 138 [<ffffffff802a490b>] sys_munmap+0x32/0x59
|
||||
17 &mm->mmap_sem 145 [<ffffffff802a6200>] sys_mprotect+0xcd/0x21d
|
||||
18
|
||||
19 ...............................................................................................................................................................................................
|
||||
20
|
||||
21 dcache_lock: 621 623 0.52 118.26 1053.02 6745 91930 0.29 316.29 118423.41
|
||||
22 -----------
|
||||
23 dcache_lock 179 [<ffffffff80378274>] _atomic_dec_and_lock+0x34/0x54
|
||||
24 dcache_lock 113 [<ffffffff802cc17b>] d_alloc+0x19a/0x1eb
|
||||
25 dcache_lock 99 [<ffffffff802ca0dc>] d_rehash+0x1b/0x44
|
||||
26 dcache_lock 104 [<ffffffff802cbca0>] d_instantiate+0x36/0x8a
|
||||
27 -----------
|
||||
28 dcache_lock 192 [<ffffffff80378274>] _atomic_dec_and_lock+0x34/0x54
|
||||
29 dcache_lock 98 [<ffffffff802ca0dc>] d_rehash+0x1b/0x44
|
||||
30 dcache_lock 72 [<ffffffff802cc17b>] d_alloc+0x19a/0x1eb
|
||||
31 dcache_lock 112 [<ffffffff802cbca0>] d_instantiate+0x36/0x8a
|
||||
|
||||
This excerpt shows the first two lock class statistics. Line 01 shows the
|
||||
output version - each time the format changes this will be updated. Line 02-04
|
||||
show the header with column descriptions. Lines 05-10 and 13-18 show the actual
|
||||
show the header with column descriptions. Lines 05-18 and 20-31 show the actual
|
||||
statistics. These statistics come in two parts; the actual stats separated by a
|
||||
short separator (line 08, 14) from the contention points.
|
||||
short separator (line 08, 13) from the contention points.
|
||||
|
||||
The first lock (05-10) is a read/write lock, and shows two lines above the
|
||||
The first lock (05-18) is a read/write lock, and shows two lines above the
|
||||
short separator. The contention points don't match the column descriptors,
|
||||
they have two: contentions and [<IP>] symbol.
|
||||
they have two: contentions and [<IP>] symbol. The second set of contention
|
||||
points are the points we're contending with.
|
||||
|
||||
The integer part of the time values is in us.
|
||||
|
||||
View the top contending locks:
|
||||
|
||||
|
@ -125,14 +125,14 @@ TRIDENT_CARD_MAGIC 0x5072696E trident_card sound/oss/trident.c
|
||||
ROUTER_MAGIC 0x524d4157 wan_device include/linux/wanrouter.h
|
||||
SCC_MAGIC 0x52696368 gs_port drivers/char/scc.h
|
||||
SAVEKMSG_MAGIC1 0x53415645 savekmsg arch/*/amiga/config.c
|
||||
GDA_MAGIC 0x58464552 gda include/asm-mips64/sn/gda.h
|
||||
GDA_MAGIC 0x58464552 gda arch/mips/include/asm/sn/gda.h
|
||||
RED_MAGIC1 0x5a2cf071 (any) mm/slab.c
|
||||
STL_PORTMAGIC 0x5a7182c9 stlport include/linux/stallion.h
|
||||
EEPROM_MAGIC_VALUE 0x5ab478d2 lanai_dev drivers/atm/lanai.c
|
||||
HDLCDRV_MAGIC 0x5ac6e778 hdlcdrv_state include/linux/hdlcdrv.h
|
||||
EPCA_MAGIC 0x5c6df104 channel include/linux/epca.h
|
||||
PCXX_MAGIC 0x5c6df104 channel drivers/char/pcxx.h
|
||||
KV_MAGIC 0x5f4b565f kernel_vars_s include/asm-mips64/sn/klkernvars.h
|
||||
KV_MAGIC 0x5f4b565f kernel_vars_s arch/mips/include/asm/sn/klkernvars.h
|
||||
I810_STATE_MAGIC 0x63657373 i810_state sound/oss/i810_audio.c
|
||||
TRIDENT_STATE_MAGIC 0x63657373 trient_state sound/oss/trident.c
|
||||
M3_CARD_MAGIC 0x646e6f50 m3_card sound/oss/maestro3.c
|
||||
@ -158,7 +158,7 @@ CCB_MAGIC 0xf2691ad2 ccb drivers/scsi/ncr53c8xx.c
|
||||
QUEUE_MAGIC_FREE 0xf7e1c9a3 queue_entry drivers/scsi/arm/queue.c
|
||||
QUEUE_MAGIC_USED 0xf7e1cc33 queue_entry drivers/scsi/arm/queue.c
|
||||
HTB_CMAGIC 0xFEFAFEF1 htb_class net/sched/sch_htb.c
|
||||
NMI_MAGIC 0x48414d4d455201 nmi_s include/asm-mips64/sn/nmi.h
|
||||
NMI_MAGIC 0x48414d4d455201 nmi_s arch/mips/include/asm/sn/nmi.h
|
||||
|
||||
Note that there are also defined special per-driver magic numbers in sound
|
||||
memory management. See include/sound/sndmagic.h for complete list of them. Many
|
||||
|
@ -51,11 +51,16 @@ to call) for the specific marker through marker_probe_register() and can be
|
||||
activated by calling marker_arm(). Marker deactivation can be done by calling
|
||||
marker_disarm() as many times as marker_arm() has been called. Removing a probe
|
||||
is done through marker_probe_unregister(); it will disarm the probe.
|
||||
marker_synchronize_unregister() must be called before the end of the module exit
|
||||
function to make sure there is no caller left using the probe. This, and the
|
||||
fact that preemption is disabled around the probe call, make sure that probe
|
||||
removal and module unload are safe. See the "Probe example" section below for a
|
||||
sample probe module.
|
||||
|
||||
marker_synchronize_unregister() must be called between probe unregistration and
|
||||
the first occurrence of
|
||||
- the end of module exit function,
|
||||
to make sure there is no caller left using the probe;
|
||||
- the free of any resource used by the probes,
|
||||
to make sure the probes wont be accessing invalid data.
|
||||
This, and the fact that preemption is disabled around the probe call, make sure
|
||||
that probe removal and module unload are safe. See the "Probe example" section
|
||||
below for a sample probe module.
|
||||
|
||||
The marker mechanism supports inserting multiple instances of the same marker.
|
||||
Markers can be put in inline functions, inlined static functions, and
|
||||
@ -70,6 +75,20 @@ a printk warning which identifies the inconsistency:
|
||||
|
||||
"Format mismatch for probe probe_name (format), marker (format)"
|
||||
|
||||
Another way to use markers is to simply define the marker without generating any
|
||||
function call to actually call into the marker. This is useful in combination
|
||||
with tracepoint probes in a scheme like this :
|
||||
|
||||
void probe_tracepoint_name(unsigned int arg1, struct task_struct *tsk);
|
||||
|
||||
DEFINE_MARKER_TP(marker_eventname, tracepoint_name, probe_tracepoint_name,
|
||||
"arg1 %u pid %d");
|
||||
|
||||
notrace void probe_tracepoint_name(unsigned int arg1, struct task_struct *tsk)
|
||||
{
|
||||
struct marker *marker = &GET_MARKER(kernel_irq_entry);
|
||||
/* write data to trace buffers ... */
|
||||
}
|
||||
|
||||
* Probe / marker example
|
||||
|
||||
|
@ -124,7 +124,7 @@ config options.
|
||||
This option can be kernel module too.
|
||||
|
||||
--------------------------------
|
||||
3 sysfs files for memory hotplug
|
||||
4 sysfs files for memory hotplug
|
||||
--------------------------------
|
||||
All sections have their device information under /sys/devices/system/memory as
|
||||
|
||||
@ -138,11 +138,12 @@ For example, assume 1GiB section size. A device for a memory starting at
|
||||
(0x100000000 / 1Gib = 4)
|
||||
This device covers address range [0x100000000 ... 0x140000000)
|
||||
|
||||
Under each section, you can see 3 files.
|
||||
Under each section, you can see 4 files.
|
||||
|
||||
/sys/devices/system/memory/memoryXXX/phys_index
|
||||
/sys/devices/system/memory/memoryXXX/phys_device
|
||||
/sys/devices/system/memory/memoryXXX/state
|
||||
/sys/devices/system/memory/memoryXXX/removable
|
||||
|
||||
'phys_index' : read-only and contains section id, same as XXX.
|
||||
'state' : read-write
|
||||
@ -150,10 +151,20 @@ Under each section, you can see 3 files.
|
||||
at write: user can specify "online", "offline" command
|
||||
'phys_device': read-only: designed to show the name of physical memory device.
|
||||
This is not well implemented now.
|
||||
'removable' : read-only: contains an integer value indicating
|
||||
whether the memory section is removable or not
|
||||
removable. A value of 1 indicates that the memory
|
||||
section is removable and a value of 0 indicates that
|
||||
it is not removable.
|
||||
|
||||
NOTE:
|
||||
These directories/files appear after physical memory hotplug phase.
|
||||
|
||||
If CONFIG_NUMA is enabled the
|
||||
/sys/devices/system/memory/memoryXXX memory section
|
||||
directories can also be accessed via symbolic links located in
|
||||
the /sys/devices/system/node/node* directories. For example:
|
||||
/sys/devices/system/node/node0/memory9 -> ../../memory/memory9
|
||||
|
||||
--------------------------------
|
||||
4. Physical memory hot-add phase
|
||||
@ -365,7 +376,6 @@ node if necessary.
|
||||
- allowing memory hot-add to ZONE_MOVABLE. maybe we need some switch like
|
||||
sysctl or new control file.
|
||||
- showing memory section and physical device relationship.
|
||||
- showing memory section and node relationship (maybe good for NUMA)
|
||||
- showing memory section is under ZONE_MOVABLE or not
|
||||
- test and make it better memory offlining.
|
||||
- support HugeTLB page migration and offlining.
|
||||
|
@ -44,7 +44,7 @@ FILES, CONFIGS AND COMPATABILITY
|
||||
|
||||
Two files are introduced:
|
||||
|
||||
a) 'include/asm-mips/mach-au1x00/au1xxx_ide.h'
|
||||
a) 'arch/mips/include/asm/mach-au1x00/au1xxx_ide.h'
|
||||
containes : struct _auide_hwif
|
||||
timing parameters for PIO mode 0/1/2/3/4
|
||||
timing parameters for MWDMA 0/1/2
|
||||
|
@ -147,7 +147,7 @@ Where the supported parameter are:
|
||||
driver. If disabled, the driver will not attempt to scan
|
||||
for and associate to a network until it has been configured with
|
||||
one or more properties for the target network, for example configuring
|
||||
the network SSID. Default is 1 (auto-associate)
|
||||
the network SSID. Default is 0 (do not auto-associate)
|
||||
|
||||
Example: % modprobe ipw2200 associate=0
|
||||
|
||||
|
@ -194,6 +194,48 @@ or, for backwards compatibility, the option value. E.g.,
|
||||
|
||||
The parameters are as follows:
|
||||
|
||||
ad_select
|
||||
|
||||
Specifies the 802.3ad aggregation selection logic to use. The
|
||||
possible values and their effects are:
|
||||
|
||||
stable or 0
|
||||
|
||||
The active aggregator is chosen by largest aggregate
|
||||
bandwidth.
|
||||
|
||||
Reselection of the active aggregator occurs only when all
|
||||
slaves of the active aggregator are down or the active
|
||||
aggregator has no slaves.
|
||||
|
||||
This is the default value.
|
||||
|
||||
bandwidth or 1
|
||||
|
||||
The active aggregator is chosen by largest aggregate
|
||||
bandwidth. Reselection occurs if:
|
||||
|
||||
- A slave is added to or removed from the bond
|
||||
|
||||
- Any slave's link state changes
|
||||
|
||||
- Any slave's 802.3ad association state changes
|
||||
|
||||
- The bond's adminstrative state changes to up
|
||||
|
||||
count or 2
|
||||
|
||||
The active aggregator is chosen by the largest number of
|
||||
ports (slaves). Reselection occurs as described under the
|
||||
"bandwidth" setting, above.
|
||||
|
||||
The bandwidth and count selection policies permit failover of
|
||||
802.3ad aggregations when partial failure of the active aggregator
|
||||
occurs. This keeps the aggregator with the highest availability
|
||||
(either in bandwidth or in number of ports) active at all times.
|
||||
|
||||
This option was added in bonding version 3.4.0.
|
||||
|
||||
arp_interval
|
||||
|
||||
Specifies the ARP link monitoring frequency in milliseconds.
|
||||
@ -551,6 +593,16 @@ num_grat_arp
|
||||
affects only the active-backup mode. This option was added for
|
||||
bonding version 3.3.0.
|
||||
|
||||
num_unsol_na
|
||||
|
||||
Specifies the number of unsolicited IPv6 Neighbor Advertisements
|
||||
to be issued after a failover event. One unsolicited NA is issued
|
||||
immediately after the failover.
|
||||
|
||||
The valid range is 0 - 255; the default value is 1. This option
|
||||
affects only the active-backup mode. This option was added for
|
||||
bonding version 3.4.0.
|
||||
|
||||
primary
|
||||
|
||||
A string (eth0, eth2, etc) specifying which slave is the
|
||||
@ -922,17 +974,19 @@ USERCTL=no
|
||||
NETMASK, NETWORK and BROADCAST) to match your network configuration.
|
||||
|
||||
For later versions of initscripts, such as that found with Fedora
|
||||
7 and Red Hat Enterprise Linux version 5 (or later), it is possible, and,
|
||||
indeed, preferable, to specify the bonding options in the ifcfg-bond0
|
||||
7 (or later) and Red Hat Enterprise Linux version 5 (or later), it is possible,
|
||||
and, indeed, preferable, to specify the bonding options in the ifcfg-bond0
|
||||
file, e.g. a line of the format:
|
||||
|
||||
BONDING_OPTS="mode=active-backup arp_interval=60 arp_ip_target=+192.168.1.254"
|
||||
BONDING_OPTS="mode=active-backup arp_interval=60 arp_ip_target=192.168.1.254"
|
||||
|
||||
will configure the bond with the specified options. The options
|
||||
specified in BONDING_OPTS are identical to the bonding module parameters
|
||||
except for the arp_ip_target field. Each target should be included as a
|
||||
separate option and should be preceded by a '+' to indicate it should be
|
||||
added to the list of queried targets, e.g.,
|
||||
except for the arp_ip_target field when using versions of initscripts older
|
||||
than and 8.57 (Fedora 8) and 8.45.19 (Red Hat Enterprise Linux 5.2). When
|
||||
using older versions each target should be included as a separate option and
|
||||
should be preceded by a '+' to indicate it should be added to the list of
|
||||
queried targets, e.g.,
|
||||
|
||||
arp_ip_target=+192.168.1.1 arp_ip_target=+192.168.1.2
|
||||
|
||||
@ -940,7 +994,7 @@ added to the list of queried targets, e.g.,
|
||||
options via BONDING_OPTS, it is not necessary to edit /etc/modules.conf or
|
||||
/etc/modprobe.conf.
|
||||
|
||||
For older versions of initscripts that do not support
|
||||
For even older versions of initscripts that do not support
|
||||
BONDING_OPTS, it is necessary to edit /etc/modules.conf (or
|
||||
/etc/modprobe.conf, depending upon your distro) to load the bonding module
|
||||
with your desired options when the bond0 interface is brought up. The
|
||||
|
@ -57,6 +57,24 @@ can be set before calling bind().
|
||||
DCCP_SOCKOPT_GET_CUR_MPS is read-only and retrieves the current maximum packet
|
||||
size (application payload size) in bytes, see RFC 4340, section 14.
|
||||
|
||||
DCCP_SOCKOPT_AVAILABLE_CCIDS is also read-only and returns the list of CCIDs
|
||||
supported by the endpoint (see include/linux/dccp.h for symbolic constants).
|
||||
The caller needs to provide a sufficiently large (> 2) array of type uint8_t.
|
||||
|
||||
DCCP_SOCKOPT_CCID is write-only and sets both the TX and RX CCIDs at the same
|
||||
time, combining the operation of the next two socket options. This option is
|
||||
preferrable over the latter two, since often applications will use the same
|
||||
type of CCID for both directions; and mixed use of CCIDs is not currently well
|
||||
understood. This socket option takes as argument at least one uint8_t value, or
|
||||
an array of uint8_t values, which must match available CCIDS (see above). CCIDs
|
||||
must be registered on the socket before calling connect() or listen().
|
||||
|
||||
DCCP_SOCKOPT_TX_CCID is read/write. It returns the current CCID (if set) or sets
|
||||
the preference list for the TX CCID, using the same format as DCCP_SOCKOPT_CCID.
|
||||
Please note that the getsockopt argument type here is `int', not uint8_t.
|
||||
|
||||
DCCP_SOCKOPT_RX_CCID is analogous to DCCP_SOCKOPT_TX_CCID, but for the RX CCID.
|
||||
|
||||
DCCP_SOCKOPT_SERVER_TIMEWAIT enables the server (listening socket) to hold
|
||||
timewait state when closing the connection (RFC 4340, 8.3). The usual case is
|
||||
that the closing server sends a CloseReq, whereupon the client holds timewait
|
||||
@ -115,20 +133,12 @@ retries2
|
||||
importance for retransmitted acknowledgments and feature negotiation,
|
||||
data packets are never retransmitted. Analogue of tcp_retries2.
|
||||
|
||||
send_ndp = 1
|
||||
Whether or not to send NDP count options (sec. 7.7.2).
|
||||
|
||||
send_ackvec = 1
|
||||
Whether or not to send Ack Vector options (sec. 11.5).
|
||||
|
||||
ack_ratio = 2
|
||||
The default Ack Ratio (sec. 11.3) to use.
|
||||
|
||||
tx_ccid = 2
|
||||
Default CCID for the sender-receiver half-connection.
|
||||
Default CCID for the sender-receiver half-connection. Depending on the
|
||||
choice of CCID, the Send Ack Vector feature is enabled automatically.
|
||||
|
||||
rx_ccid = 2
|
||||
Default CCID for the receiver-sender half-connection.
|
||||
Default CCID for the receiver-sender half-connection; see tx_ccid.
|
||||
|
||||
seq_window = 100
|
||||
The initial sequence window (sec. 7.5.2).
|
||||
|
@ -13,7 +13,7 @@ Transmit path guidelines:
|
||||
static int drv_hard_start_xmit(struct sk_buff *skb,
|
||||
struct net_device *dev)
|
||||
{
|
||||
struct drv *dp = dev->priv;
|
||||
struct drv *dp = netdev_priv(dev);
|
||||
|
||||
lock_tx(dp);
|
||||
...
|
||||
|
@ -3,15 +3,15 @@ Krzysztof Halasa <khc@pm.waw.pl>
|
||||
|
||||
|
||||
Generic HDLC layer currently supports:
|
||||
1. Frame Relay (ANSI, CCITT, Cisco and no LMI).
|
||||
1. Frame Relay (ANSI, CCITT, Cisco and no LMI)
|
||||
- Normal (routed) and Ethernet-bridged (Ethernet device emulation)
|
||||
interfaces can share a single PVC.
|
||||
- ARP support (no InARP support in the kernel - there is an
|
||||
experimental InARP user-space daemon available on:
|
||||
http://www.kernel.org/pub/linux/utils/net/hdlc/).
|
||||
2. raw HDLC - either IP (IPv4) interface or Ethernet device emulation.
|
||||
3. Cisco HDLC.
|
||||
4. PPP (uses syncppp.c).
|
||||
2. raw HDLC - either IP (IPv4) interface or Ethernet device emulation
|
||||
3. Cisco HDLC
|
||||
4. PPP
|
||||
5. X.25 (uses X.25 routines).
|
||||
|
||||
Generic HDLC is a protocol driver only - it needs a low-level driver
|
||||
|
@ -27,6 +27,12 @@ min_adv_mss - INTEGER
|
||||
The advertised MSS depends on the first hop route MTU, but will
|
||||
never be lower than this setting.
|
||||
|
||||
rt_cache_rebuild_count - INTEGER
|
||||
The per net-namespace route cache emergency rebuild threshold.
|
||||
Any net-namespace having its route cache rebuilt due to
|
||||
a hash bucket chain being too long more than this many times
|
||||
will have its route caching disabled
|
||||
|
||||
IP Fragmentation:
|
||||
|
||||
ipfrag_high_thresh - INTEGER
|
||||
|
@ -50,10 +50,6 @@ associates with the AP. hostapd and wpa_supplicant are used to take
|
||||
care of WPA2-PSK authentication. In addition, hostapd is also
|
||||
processing access point side of association.
|
||||
|
||||
Please note that the current Linux kernel does not enable AP mode, so a
|
||||
simple patch is needed to enable AP mode selection:
|
||||
http://johannes.sipsolutions.net/patches/kernel/all/LATEST/006-allow-ap-vlan-modes.patch
|
||||
|
||||
|
||||
# Build mac80211_hwsim as part of kernel configuration
|
||||
|
||||
@ -65,3 +61,8 @@ hostapd hostapd.conf
|
||||
|
||||
# Run wpa_supplicant (station) for wlan1
|
||||
wpa_supplicant -Dwext -iwlan1 -c wpa_supplicant.conf
|
||||
|
||||
|
||||
More test cases are available in hostap.git:
|
||||
git://w1.fi/srv/git/hostap.git and mac80211_hwsim/tests subdirectory
|
||||
(http://w1.fi/gitweb/gitweb.cgi?p=hostap.git;a=tree;f=mac80211_hwsim/tests)
|
||||
|
@ -18,7 +18,7 @@ There are routines in net_init.c to handle the common cases of
|
||||
alloc_etherdev, alloc_netdev. These reserve extra space for driver
|
||||
private data which gets freed when the network device is freed. If
|
||||
separately allocated data is attached to the network device
|
||||
(dev->priv) then it is up to the module exit handler to free that.
|
||||
(netdev_priv(dev)) then it is up to the module exit handler to free that.
|
||||
|
||||
MTU
|
||||
===
|
||||
|
@ -131,11 +131,13 @@ are expected to do this during initialization.
|
||||
|
||||
r = zd_reg2alpha2(mac->regdomain, alpha2);
|
||||
if (!r)
|
||||
regulatory_hint(hw->wiphy, alpha2, NULL);
|
||||
regulatory_hint(hw->wiphy, alpha2);
|
||||
|
||||
Example code - drivers providing a built in regulatory domain:
|
||||
--------------------------------------------------------------
|
||||
|
||||
[NOTE: This API is not currently available, it can be added when required]
|
||||
|
||||
If you have regulatory information you can obtain from your
|
||||
driver and you *need* to use this we let you build a regulatory domain
|
||||
structure and pass it to the wireless core. To do this you should
|
||||
@ -167,7 +169,6 @@ struct ieee80211_regdomain mydriver_jp_regdom = {
|
||||
|
||||
Then in some part of your code after your wiphy has been registered:
|
||||
|
||||
int r;
|
||||
struct ieee80211_regdomain *rd;
|
||||
int size_of_regd;
|
||||
int num_rules = mydriver_jp_regdom.n_reg_rules;
|
||||
@ -178,17 +179,12 @@ Then in some part of your code after your wiphy has been registered:
|
||||
|
||||
rd = kzalloc(size_of_regd, GFP_KERNEL);
|
||||
if (!rd)
|
||||
return -ENOMEM;
|
||||
return -ENOMEM;
|
||||
|
||||
memcpy(rd, &mydriver_jp_regdom, sizeof(struct ieee80211_regdomain));
|
||||
|
||||
for (i=0; i < num_rules; i++) {
|
||||
memcpy(&rd->reg_rules[i], &mydriver_jp_regdom.reg_rules[i],
|
||||
sizeof(struct ieee80211_reg_rule));
|
||||
}
|
||||
r = regulatory_hint(hw->wiphy, NULL, rd);
|
||||
if (r) {
|
||||
kfree(rd);
|
||||
return r;
|
||||
}
|
||||
|
||||
for (i=0; i < num_rules; i++)
|
||||
memcpy(&rd->reg_rules[i],
|
||||
&mydriver_jp_regdom.reg_rules[i],
|
||||
sizeof(struct ieee80211_reg_rule));
|
||||
regulatory_struct_hint(rd);
|
||||
|
@ -540,7 +540,7 @@ A client would issue an operation by:
|
||||
MSG_MORE should be set in msghdr::msg_flags on all but the last part of
|
||||
the request. Multiple requests may be made simultaneously.
|
||||
|
||||
If a call is intended to go to a destination other then the default
|
||||
If a call is intended to go to a destination other than the default
|
||||
specified through connect(), then msghdr::msg_name should be set on the
|
||||
first request message of that call.
|
||||
|
||||
|
@ -118,7 +118,7 @@ As mentioned above, main purpose of TUN/TAP driver is tunneling.
|
||||
It is used by VTun (http://vtun.sourceforge.net).
|
||||
|
||||
Another interesting application using TUN/TAP is pipsecd
|
||||
(http://perso.enst.fr/~beyssac/pipsec/), an userspace IPSec
|
||||
(http://perso.enst.fr/~beyssac/pipsec/), a userspace IPSec
|
||||
implementation that can use complete kernel routing (unlike FreeS/WAN).
|
||||
|
||||
3. How does Virtual network device actually work ?
|
||||
|
@ -69,6 +69,11 @@ to the overall system performance.
|
||||
On x86 nmi_watchdog is disabled by default so you have to enable it with
|
||||
a boot time parameter.
|
||||
|
||||
It's possible to disable the NMI watchdog in run-time by writing "0" to
|
||||
/proc/sys/kernel/nmi_watchdog. Writing "1" to the same file will re-enable
|
||||
the NMI watchdog. Notice that you still need to use "nmi_watchdog=" parameter
|
||||
at boot time.
|
||||
|
||||
NOTE: In kernels prior to 2.4.2-ac18 the NMI-oopser is enabled unconditionally
|
||||
on x86 SMP boxes.
|
||||
|
||||
|
@ -31,7 +31,7 @@ anyways).
|
||||
|
||||
After detecting the processor type, the kernel patches out sections of code
|
||||
that shouldn't be used by writing nop's over it. Using cpufeatures requires
|
||||
just 2 macros (found in include/asm-ppc/cputable.h), as seen in head.S
|
||||
just 2 macros (found in arch/powerpc/include/asm/cputable.h), as seen in head.S
|
||||
transfer_to_handler:
|
||||
|
||||
#ifdef CONFIG_ALTIVEC
|
||||
|
@ -18,7 +18,7 @@ This is the memory-mapped registers for on board FPGA.
|
||||
|
||||
Required properities:
|
||||
- compatible : should be "fsl,fpga-pixis".
|
||||
- reg : should contain the address and the lenght of the FPPGA register
|
||||
- reg : should contain the address and the length of the FPPGA register
|
||||
set.
|
||||
|
||||
Example (MPC8610HPCD):
|
||||
@ -27,3 +27,33 @@ Example (MPC8610HPCD):
|
||||
compatible = "fsl,fpga-pixis";
|
||||
reg = <0xe8000000 32>;
|
||||
};
|
||||
|
||||
* Freescale BCSR GPIO banks
|
||||
|
||||
Some BCSR registers act as simple GPIO controllers, each such
|
||||
register can be represented by the gpio-controller node.
|
||||
|
||||
Required properities:
|
||||
- compatible : Should be "fsl,<board>-bcsr-gpio".
|
||||
- reg : Should contain the address and the length of the GPIO bank
|
||||
register.
|
||||
- #gpio-cells : Should be two. The first cell is the pin number and the
|
||||
second cell is used to specify optional paramters (currently unused).
|
||||
- gpio-controller : Marks the port as GPIO controller.
|
||||
|
||||
Example:
|
||||
|
||||
bcsr@1,0 {
|
||||
#address-cells = <1>;
|
||||
#size-cells = <1>;
|
||||
compatible = "fsl,mpc8360mds-bcsr";
|
||||
reg = <1 0 0x8000>;
|
||||
ranges = <0 1 0 0x8000>;
|
||||
|
||||
bcsr13: gpio-controller@d {
|
||||
#gpio-cells = <2>;
|
||||
compatible = "fsl,mpc8360mds-bcsr-gpio";
|
||||
reg = <0xd 1>;
|
||||
gpio-controller;
|
||||
};
|
||||
};
|
||||
|
@ -2,8 +2,8 @@
|
||||
|
||||
The MDIO is a bus to which the PHY devices are connected. For each
|
||||
device that exists on this bus, a child node should be created. See
|
||||
the definition of the PHY node below for an example of how to define
|
||||
a PHY.
|
||||
the definition of the PHY node in booting-without-of.txt for an example
|
||||
of how to define a PHY.
|
||||
|
||||
Required properties:
|
||||
- reg : Offset and length of the register set for the device
|
||||
@ -21,6 +21,14 @@ Example:
|
||||
};
|
||||
};
|
||||
|
||||
* TBI Internal MDIO bus
|
||||
|
||||
As of this writing, every tsec is associated with an internal TBI PHY.
|
||||
This PHY is accessed through the local MDIO bus. These buses are defined
|
||||
similarly to the mdio buses, except they are compatible with "fsl,gianfar-tbi".
|
||||
The TBI PHYs underneath them are similar to normal PHYs, but the reg property
|
||||
is considered instructive, rather than descriptive. The reg property should
|
||||
be chosen so it doesn't interfere with other PHYs on the bus.
|
||||
|
||||
* Gianfar-compatible ethernet nodes
|
||||
|
||||
|
@ -191,12 +191,20 @@ Userspace input handlers (uevents) or kernel input handlers (rfkill-input):
|
||||
to tell the devices registered with the rfkill class to change
|
||||
their state (i.e. translates the input layer event into real
|
||||
action).
|
||||
|
||||
* rfkill-input implements EPO by handling EV_SW SW_RFKILL_ALL 0
|
||||
(power off all transmitters) in a special way: it ignores any
|
||||
overrides and local state cache and forces all transmitters to the
|
||||
RFKILL_STATE_SOFT_BLOCKED state (including those which are already
|
||||
supposed to be BLOCKED). Note that the opposite event (power on all
|
||||
transmitters) is handled normally.
|
||||
supposed to be BLOCKED).
|
||||
* rfkill EPO will remain active until rfkill-input receives an
|
||||
EV_SW SW_RFKILL_ALL 1 event. While the EPO is active, transmitters
|
||||
are locked in the blocked state (rfkill will refuse to unblock them).
|
||||
* rfkill-input implements different policies that the user can
|
||||
select for handling EV_SW SW_RFKILL_ALL 1. It will unlock rfkill,
|
||||
and either do nothing (leave transmitters blocked, but now unlocked),
|
||||
restore the transmitters to their state before the EPO, or unblock
|
||||
them all.
|
||||
|
||||
Userspace uevent handler or kernel platform-specific drivers hooked to the
|
||||
rfkill notifier chain:
|
||||
@ -331,11 +339,9 @@ class to get a sysfs interface :-)
|
||||
correct event for your switch/button. These events are emergency power-off
|
||||
events when they are trying to turn the transmitters off. An example of an
|
||||
input device which SHOULD generate *_RFKILL_ALL events is the wireless-kill
|
||||
switch in a laptop which is NOT a hotkey, but a real switch that kills radios
|
||||
in hardware, even if the O.S. has gone to lunch. An example of an input device
|
||||
which SHOULD NOT generate *_RFKILL_ALL events by default, is any sort of hot
|
||||
key that does nothing by itself, as well as any hot key that is type-specific
|
||||
(e.g. the one for WLAN).
|
||||
switch in a laptop which is NOT a hotkey, but a real sliding/rocker switch.
|
||||
An example of an input device which SHOULD NOT generate *_RFKILL_ALL events by
|
||||
default, is any sort of hot key that is type-specific (e.g. the one for WLAN).
|
||||
|
||||
|
||||
3.1 Guidelines for wireless device drivers
|
||||
|
@ -1402,7 +1402,7 @@ Syscalls are implemented on Linux for S390 by the Supervisor call instruction (S
|
||||
possibilities of these as the instruction is made up of a 0xA opcode & the second byte being
|
||||
the syscall number. They are traced using the simple command.
|
||||
TR SVC <Optional value or range>
|
||||
the syscalls are defined in linux/include/asm-s390/unistd.h
|
||||
the syscalls are defined in linux/arch/s390/include/asm/unistd.h
|
||||
e.g. to trace all file opens just do
|
||||
TR SVC 5 ( as this is the syscall number of open )
|
||||
|
||||
|
@ -98,7 +98,7 @@ platform. Some of the interface routines are specific to Linux/390 and some
|
||||
of them can be found on other Linux platforms implementations too.
|
||||
Miscellaneous function prototypes, data declarations, and macro definitions
|
||||
can be found in the architecture specific C header file
|
||||
linux/include/asm-s390/irq.h.
|
||||
linux/arch/s390/include/asm/irq.h.
|
||||
|
||||
Overview of CDS interface concepts
|
||||
|
||||
|
@ -2,7 +2,7 @@ S390 Debug Feature
|
||||
==================
|
||||
|
||||
files: arch/s390/kernel/debug.c
|
||||
include/asm-s390/debug.h
|
||||
arch/s390/include/asm/debug.h
|
||||
|
||||
Description:
|
||||
------------
|
||||
|
@ -8,7 +8,7 @@ Context switch
|
||||
By default, the switch_to arch function is called with the runqueue
|
||||
locked. This is usually not a problem unless switch_to may need to
|
||||
take the runqueue lock. This is usually due to a wake up operation in
|
||||
the context switch. See include/asm-ia64/system.h for an example.
|
||||
the context switch. See arch/ia64/include/asm/system.h for an example.
|
||||
|
||||
To request the scheduler call switch_to with the runqueue unlocked,
|
||||
you must `#define __ARCH_WANT_UNLOCKED_CTXSW` in a header file
|
||||
@ -23,7 +23,7 @@ disabled. Interrupts may be enabled over the call if it is likely to
|
||||
introduce a significant interrupt latency by adding the line
|
||||
`#define __ARCH_WANT_INTERRUPTS_ON_CTXSW` in the same place as for
|
||||
unlocked context switches. This define also implies
|
||||
`__ARCH_WANT_UNLOCKED_CTXSW`. See include/asm-arm/system.h for an
|
||||
`__ARCH_WANT_UNLOCKED_CTXSW`. See arch/arm/include/asm/system.h for an
|
||||
example.
|
||||
|
||||
|
||||
|
@ -273,3 +273,24 @@ task groups and modify their CPU share using the "cgroups" pseudo filesystem.
|
||||
|
||||
# #Launch gmplayer (or your favourite movie player)
|
||||
# echo <movie_player_pid> > multimedia/tasks
|
||||
|
||||
8. Implementation note: user namespaces
|
||||
|
||||
User namespaces are intended to be hierarchical. But they are currently
|
||||
only partially implemented. Each of those has ramifications for CFS.
|
||||
|
||||
First, since user namespaces are hierarchical, the /sys/kernel/uids
|
||||
presentation is inadequate. Eventually we will likely want to use sysfs
|
||||
tagging to provide private views of /sys/kernel/uids within each user
|
||||
namespace.
|
||||
|
||||
Second, the hierarchical nature is intended to support completely
|
||||
unprivileged use of user namespaces. So if using user groups, then
|
||||
we want the users in a user namespace to be children of the user
|
||||
who created it.
|
||||
|
||||
That is currently unimplemented. So instead, every user in a new
|
||||
user namespace will receive 1024 shares just like any user in the
|
||||
initial user namespace. Note that at the moment creation of a new
|
||||
user namespace requires each of CAP_SYS_ADMIN, CAP_SETUID, and
|
||||
CAP_SETGID.
|
||||
|
@ -733,7 +733,7 @@ Changes from 20040920 to 20041018
|
||||
I/O completion path a little more, especially taking care of
|
||||
fast-pathing the non-error case. Also removes tons of dead
|
||||
members and defines from lpfc_scsi.h - e.g. lpfc_target is down
|
||||
to nothing more then the lpfc_nodelist pointer.
|
||||
to nothing more than the lpfc_nodelist pointer.
|
||||
* Added binary sysfs file to issue mbox commands
|
||||
* Replaced #if __BIG_ENDIAN with #if __BIG_ENDIAN_BITFIELD for
|
||||
compatibility with the user space applications.
|
||||
|
@ -19,7 +19,7 @@ Sun Sep 24 21:30 2000 Gerard Roudier (groudier@club-internet.fr)
|
||||
|
||||
Wed Jul 26 23:30 2000 Gerard Roudier (groudier@club-internet.fr)
|
||||
* version ncr53c8xx-3.4.1
|
||||
- Provide OpenFirmare path through the proc FS on PPC.
|
||||
- Provide OpenFirmware path through the proc FS on PPC.
|
||||
- Remove trailing argument #2 from a couple of #undefs.
|
||||
|
||||
Sun Jul 09 16:30 2000 Gerard Roudier (groudier@club-internet.fr)
|
||||
|
@ -81,7 +81,7 @@ Sun Sep 24 21:30 2000 Gerard Roudier (groudier@club-internet.fr)
|
||||
|
||||
Wed Jul 26 23:30 2000 Gerard Roudier (groudier@club-internet.fr)
|
||||
* version sym53c8xx-1.7.1
|
||||
- Provide OpenFirmare path through the proc FS on PPC.
|
||||
- Provide OpenFirmware path through the proc FS on PPC.
|
||||
- Download of on-chip SRAM using memcpy_toio() doesn't work
|
||||
on PPC. Restore previous method (MEMORY MOVE from SCRIPTS).
|
||||
- Remove trailing argument #2 from a couple of #undefs.
|
||||
|
85
Documentation/scsi/cxgb3i.txt
Normal file
85
Documentation/scsi/cxgb3i.txt
Normal file
@ -0,0 +1,85 @@
|
||||
Chelsio S3 iSCSI Driver for Linux
|
||||
|
||||
Introduction
|
||||
============
|
||||
|
||||
The Chelsio T3 ASIC based Adapters (S310, S320, S302, S304, Mezz cards, etc.
|
||||
series of products) supports iSCSI acceleration and iSCSI Direct Data Placement
|
||||
(DDP) where the hardware handles the expensive byte touching operations, such
|
||||
as CRC computation and verification, and direct DMA to the final host memory
|
||||
destination:
|
||||
|
||||
- iSCSI PDU digest generation and verification
|
||||
|
||||
On transmitting, Chelsio S3 h/w computes and inserts the Header and
|
||||
Data digest into the PDUs.
|
||||
On receiving, Chelsio S3 h/w computes and verifies the Header and
|
||||
Data digest of the PDUs.
|
||||
|
||||
- Direct Data Placement (DDP)
|
||||
|
||||
S3 h/w can directly place the iSCSI Data-In or Data-Out PDU's
|
||||
payload into pre-posted final destination host-memory buffers based
|
||||
on the Initiator Task Tag (ITT) in Data-In or Target Task Tag (TTT)
|
||||
in Data-Out PDUs.
|
||||
|
||||
- PDU Transmit and Recovery
|
||||
|
||||
On transmitting, S3 h/w accepts the complete PDU (header + data)
|
||||
from the host driver, computes and inserts the digests, decomposes
|
||||
the PDU into multiple TCP segments if necessary, and transmit all
|
||||
the TCP segments onto the wire. It handles TCP retransmission if
|
||||
needed.
|
||||
|
||||
On receving, S3 h/w recovers the iSCSI PDU by reassembling TCP
|
||||
segments, separating the header and data, calculating and verifying
|
||||
the digests, then forwards the header to the host. The payload data,
|
||||
if possible, will be directly placed into the pre-posted host DDP
|
||||
buffer. Otherwise, the payload data will be sent to the host too.
|
||||
|
||||
The cxgb3i driver interfaces with open-iscsi initiator and provides the iSCSI
|
||||
acceleration through Chelsio hardware wherever applicable.
|
||||
|
||||
Using the cxgb3i Driver
|
||||
=======================
|
||||
|
||||
The following steps need to be taken to accelerates the open-iscsi initiator:
|
||||
|
||||
1. Load the cxgb3i driver: "modprobe cxgb3i"
|
||||
|
||||
The cxgb3i module registers a new transport class "cxgb3i" with open-iscsi.
|
||||
|
||||
* in the case of recompiling the kernel, the cxgb3i selection is located at
|
||||
Device Drivers
|
||||
SCSI device support --->
|
||||
[*] SCSI low-level drivers --->
|
||||
<M> Chelsio S3xx iSCSI support
|
||||
|
||||
2. Create an interface file located under /etc/iscsi/ifaces/ for the new
|
||||
transport class "cxgb3i".
|
||||
|
||||
The content of the file should be in the following format:
|
||||
iface.transport_name = cxgb3i
|
||||
iface.net_ifacename = <ethX>
|
||||
iface.ipaddress = <iscsi ip address>
|
||||
|
||||
* if iface.ipaddress is specified, <iscsi ip address> needs to be either the
|
||||
same as the ethX's ip address or an address on the same subnet. Make
|
||||
sure the ip address is unique in the network.
|
||||
|
||||
3. edit /etc/iscsi/iscsid.conf
|
||||
The default setting for MaxRecvDataSegmentLength (131072) is too big,
|
||||
replace "node.conn[0].iscsi.MaxRecvDataSegmentLength" to be a value no
|
||||
bigger than 15360 (for example 8192):
|
||||
|
||||
node.conn[0].iscsi.MaxRecvDataSegmentLength = 8192
|
||||
|
||||
* The login would fail for a normal session if MaxRecvDataSegmentLength is
|
||||
too big. A error message in the format of
|
||||
"cxgb3i: ERR! MaxRecvSegmentLength <X> too big. Need to be <= <Y>."
|
||||
would be logged to dmesg.
|
||||
|
||||
4. To direct open-iscsi traffic to go through cxgb3i's accelerated path,
|
||||
"-I <iface file name>" option needs to be specified with most of the
|
||||
iscsiadm command. <iface file name> is the transport interface file created
|
||||
in step 2.
|
@ -191,7 +191,7 @@ Vport States:
|
||||
This is equivalent to a driver "attach" on an adapter, which is
|
||||
independent of the adapter's link state.
|
||||
- Instantiation of the vport on the FC link via ELS traffic, etc.
|
||||
This is equivalent to a "link up" and successfull link initialization.
|
||||
This is equivalent to a "link up" and successful link initialization.
|
||||
Further information can be found in the interfaces section below for
|
||||
Vport Creation.
|
||||
|
||||
@ -320,7 +320,7 @@ Vport Creation:
|
||||
This is equivalent to a driver "attach" on an adapter, which is
|
||||
independent of the adapter's link state.
|
||||
- Instantiation of the vport on the FC link via ELS traffic, etc.
|
||||
This is equivalent to a "link up" and successfull link initialization.
|
||||
This is equivalent to a "link up" and successful link initialization.
|
||||
|
||||
The LLDD's vport_create() function will not synchronously wait for both
|
||||
parts to be fully completed before returning. It must validate that the
|
||||
|
@ -1,179 +0,0 @@
|
||||
|
||||
This file describes the configuration and behavior of KGDB for the SH
|
||||
kernel. Based on a description from Henry Bell <henry.bell@st.com>, it
|
||||
has been modified to account for quirks in the current implementation.
|
||||
|
||||
Version
|
||||
=======
|
||||
|
||||
This version of KGDB was written for 2.4.xx kernels for the SH architecture.
|
||||
Further documentation is available from the linux-sh project website.
|
||||
|
||||
|
||||
Debugging Setup: Host
|
||||
======================
|
||||
|
||||
The two machines will be connected together via a serial line - this
|
||||
should be a null modem cable i.e. with a twist.
|
||||
|
||||
On your DEVELOPMENT machine, go to your kernel source directory and
|
||||
build the kernel, enabling KGDB support in the "kernel hacking" section.
|
||||
This includes the KGDB code, and also makes the kernel be compiled with
|
||||
the "-g" option set -- necessary for debugging.
|
||||
|
||||
To install this new kernel, use the following installation procedure.
|
||||
|
||||
Decide on which tty port you want the machines to communicate, then
|
||||
cable them up back-to-back using the null modem. On the DEVELOPMENT
|
||||
machine, you may wish to create an initialization file called .gdbinit
|
||||
(in the kernel source directory or in your home directory) to execute
|
||||
commonly-used commands at startup.
|
||||
|
||||
A minimal .gdbinit might look like this:
|
||||
|
||||
file vmlinux
|
||||
set remotebaud 115200
|
||||
target remote /dev/ttyS0
|
||||
|
||||
Change the "target" definition so that it specifies the tty port that
|
||||
you intend to use. Change the "remotebaud" definition to match the
|
||||
data rate that you are going to use for the com line (115200 is the
|
||||
default).
|
||||
|
||||
Debugging Setup: Target
|
||||
========================
|
||||
|
||||
By default, the KGDB stub will communicate with the host GDB using
|
||||
ttySC1 at 115200 baud, 8 databits, no parity; these defaults can be
|
||||
changed in the kernel configuration. As the kernel starts up, KGDB will
|
||||
initialize so that breakpoints, kernel segfaults, and so forth will
|
||||
generally enter the debugger.
|
||||
|
||||
This behavior can be modified by including the "kgdb" option in the
|
||||
kernel command line; this option has the general form:
|
||||
|
||||
kgdb=<ttyspec>,<action>
|
||||
|
||||
The <ttyspec> indicates the port to use, and can optionally specify
|
||||
baud, parity and databits -- e.g. "ttySC0,9600N8" or "ttySC1,19200".
|
||||
|
||||
The <action> can be "halt" or "disabled". The "halt" action enters the
|
||||
debugger via a breakpoint as soon as kgdb is initialized; the "disabled"
|
||||
action causes kgdb to ignore kernel segfaults and such until explicitly
|
||||
entered by a breakpoint in the code or by external action (sysrq or NMI).
|
||||
|
||||
(Both <ttyspec> and <action> can appear alone, w/o the separating comma.)
|
||||
|
||||
For example, if you wish to debug early in kernel startup code, you
|
||||
might specify the halt option:
|
||||
|
||||
kgdb=halt
|
||||
|
||||
Boot the TARGET machine, which will appear to hang.
|
||||
|
||||
On your DEVELOPMENT machine, cd to the source directory and run the gdb
|
||||
program. (This is likely to be a cross GDB which runs on your host but
|
||||
is built for an SH target.) If everything is working correctly you
|
||||
should see gdb print out a few lines indicating that a breakpoint has
|
||||
been taken. It will actually show a line of code in the target kernel
|
||||
inside the gdbstub activation code.
|
||||
|
||||
NOTE: BE SURE TO TERMINATE OR SUSPEND any other host application which
|
||||
may be using the same serial port (for example, a terminal emulator you
|
||||
have been using to connect to the target boot code.) Otherwise, data
|
||||
from the target may not all get to GDB!
|
||||
|
||||
You can now use whatever gdb commands you like to set breakpoints.
|
||||
Enter "continue" to start your target machine executing again. At this
|
||||
point the target system will run at full speed until it encounters
|
||||
your breakpoint or gets a segment violation in the kernel, or whatever.
|
||||
|
||||
Serial Ports: KGDB, Console
|
||||
============================
|
||||
|
||||
This version of KGDB may not gracefully handle conflict with other
|
||||
drivers in the kernel using the same port. If KGDB is configured on the
|
||||
same port (and with the same parameters) as the kernel console, or if
|
||||
CONFIG_SH_KGDB_CONSOLE is configured, things should be fine (though in
|
||||
some cases console messages may appear twice through GDB). But if the
|
||||
KGDB port is not the kernel console and used by another serial driver
|
||||
which assumes different serial parameters (e.g. baud rate) KGDB may not
|
||||
recover.
|
||||
|
||||
Also, when KGDB is entered via sysrq-g (requires CONFIG_KGDB_SYSRQ) and
|
||||
the kgdb port uses the same port as the console, detaching GDB will not
|
||||
restore the console to working order without the port being re-opened.
|
||||
|
||||
Another serious consequence of this is that GDB currently CANNOT break
|
||||
into KGDB externally (e.g. via ^C or <BREAK>); unless a breakpoint or
|
||||
error is encountered, the only way to enter KGDB after the initial halt
|
||||
(see above) is via NMI (CONFIG_KGDB_NMI) or sysrq-g (CONFIG_KGDB_SYSRQ).
|
||||
|
||||
Code is included for the basic Hitachi Solution Engine boards to allow
|
||||
the use of ttyS0 for KGDB if desired; this is less robust, but may be
|
||||
useful in some cases. (This cannot be selected using the config file,
|
||||
but only through the kernel command line, e.g. "kgdb=ttyS0", though the
|
||||
configured defaults for baud rate etc. still apply if not overridden.)
|
||||
|
||||
If gdbstub Does Not Work
|
||||
========================
|
||||
|
||||
If it doesn't work, you will have to troubleshoot it. Do the easy
|
||||
things first like double checking your cabling and data rates. You
|
||||
might try some non-kernel based programs to see if the back-to-back
|
||||
connection works properly. Just something simple like cat /etc/hosts
|
||||
/dev/ttyS0 on one machine and cat /dev/ttyS0 on the other will tell you
|
||||
if you can send data from one machine to the other. There is no point
|
||||
in tearing out your hair in the kernel if the line doesn't work.
|
||||
|
||||
If you need to debug the GDB/KGDB communication itself, the gdb commands
|
||||
"set debug remote 1" and "set debug serial 1" may be useful, but be
|
||||
warned: they produce a lot of output.
|
||||
|
||||
Threads
|
||||
=======
|
||||
|
||||
Each process in a target machine is seen as a gdb thread. gdb thread related
|
||||
commands (info threads, thread n) can be used. CONFIG_KGDB_THREAD must
|
||||
be defined for this to work.
|
||||
|
||||
In this version, kgdb reports PID_MAX (32768) as the process ID for the
|
||||
idle process (pid 0), since GDB does not accept 0 as an ID.
|
||||
|
||||
Detaching (exiting KGDB)
|
||||
=========================
|
||||
|
||||
There are two ways to resume full-speed target execution: "continue" and
|
||||
"detach". With "continue", GDB inserts any specified breakpoints in the
|
||||
target code and resumes execution; the target is still in "gdb mode".
|
||||
If a breakpoint or other debug event (e.g. NMI) happens, the target
|
||||
halts and communicates with GDB again, which is waiting for it.
|
||||
|
||||
With "detach", GDB does *not* insert any breakpoints; target execution
|
||||
is resumed and GDB stops communicating (does not wait for the target).
|
||||
In this case, the target is no longer in "gdb mode" -- for example,
|
||||
console messages no longer get sent separately to the KGDB port, or
|
||||
encapsulated for GDB. If a debug event (e.g. NMI) occurs, the target
|
||||
will re-enter "gdb mode" and will display this fact on the console; you
|
||||
must give a new "target remote" command to gdb.
|
||||
|
||||
NOTE: TO AVOID LOSSING CONSOLE MESSAGES IN CASE THE KERNEL CONSOLE AND
|
||||
KGDB USING THE SAME PORT, THE TARGET WAITS FOR ANY INPUT CHARACTER ON
|
||||
THE KGDB PORT AFTER A DETACH COMMAND. For example, after the detach you
|
||||
could start a terminal emulator on the same host port and enter a <cr>;
|
||||
however, this program must then be terminated or suspended in order to
|
||||
use GBD again if KGDB is re-entered.
|
||||
|
||||
|
||||
Acknowledgements
|
||||
================
|
||||
|
||||
This code was mostly generated by Henry Bell <henry.bell@st.com>;
|
||||
largely from KGDB by Amit S. Kale <akale@veritas.com> - extracts from
|
||||
code by Glenn Engel, Jim Kingdon, David Grothe <dave@gcom.com>, Tigran
|
||||
Aivazian <tigran@sco.com>, William Gatliff <bgat@open-widgets.com>, Ben
|
||||
Lee, Steve Chamberlain and Benoit Miller <fulg@iname.com> are also
|
||||
included.
|
||||
|
||||
Jeremy Siegel
|
||||
<jsiegel@mvista.com>
|
@ -757,6 +757,8 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
|
||||
model - force the model name
|
||||
position_fix - Fix DMA pointer (0 = auto, 1 = use LPIB, 2 = POSBUF)
|
||||
probe_mask - Bitmask to probe codecs (default = -1, meaning all slots)
|
||||
probe_only - Only probing and no codec initialization (default=off);
|
||||
Useful to check the initial codec status for debugging
|
||||
bdl_pos_adj - Specifies the DMA IRQ timing delay in samples.
|
||||
Passing -1 will make the driver to choose the appropriate
|
||||
value based on the controller chip.
|
||||
@ -772,327 +774,23 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
|
||||
|
||||
This module supports multiple cards and autoprobe.
|
||||
|
||||
See Documentation/sound/alsa/HD-Audio.txt for more details about
|
||||
HD-audio driver.
|
||||
|
||||
Each codec may have a model table for different configurations.
|
||||
If your machine isn't listed there, the default (usually minimal)
|
||||
configuration is set up. You can pass "model=<name>" option to
|
||||
specify a certain model in such a case. There are different
|
||||
models depending on the codec chip.
|
||||
|
||||
Model name Description
|
||||
---------- -----------
|
||||
ALC880
|
||||
3stack 3-jack in back and a headphone out
|
||||
3stack-digout 3-jack in back, a HP out and a SPDIF out
|
||||
5stack 5-jack in back, 2-jack in front
|
||||
5stack-digout 5-jack in back, 2-jack in front, a SPDIF out
|
||||
6stack 6-jack in back, 2-jack in front
|
||||
6stack-digout 6-jack with a SPDIF out
|
||||
w810 3-jack
|
||||
z71v 3-jack (HP shared SPDIF)
|
||||
asus 3-jack (ASUS Mobo)
|
||||
asus-w1v ASUS W1V
|
||||
asus-dig ASUS with SPDIF out
|
||||
asus-dig2 ASUS with SPDIF out (using GPIO2)
|
||||
uniwill 3-jack
|
||||
fujitsu Fujitsu Laptops (Pi1536)
|
||||
F1734 2-jack
|
||||
lg LG laptop (m1 express dual)
|
||||
lg-lw LG LW20/LW25 laptop
|
||||
tcl TCL S700
|
||||
clevo Clevo laptops (m520G, m665n)
|
||||
medion Medion Rim 2150
|
||||
test for testing/debugging purpose, almost all controls can be
|
||||
adjusted. Appearing only when compiled with
|
||||
$CONFIG_SND_DEBUG=y
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
ALC260
|
||||
hp HP machines
|
||||
hp-3013 HP machines (3013-variant)
|
||||
hp-dc7600 HP DC7600
|
||||
fujitsu Fujitsu S7020
|
||||
acer Acer TravelMate
|
||||
will Will laptops (PB V7900)
|
||||
replacer Replacer 672V
|
||||
basic fixed pin assignment (old default model)
|
||||
test for testing/debugging purpose, almost all controls can
|
||||
adjusted. Appearing only when compiled with
|
||||
$CONFIG_SND_DEBUG=y
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
ALC262
|
||||
fujitsu Fujitsu Laptop
|
||||
hp-bpc HP xw4400/6400/8400/9400 laptops
|
||||
hp-bpc-d7000 HP BPC D7000
|
||||
hp-tc-t5735 HP Thin Client T5735
|
||||
hp-rp5700 HP RP5700
|
||||
benq Benq ED8
|
||||
benq-t31 Benq T31
|
||||
hippo Hippo (ATI) with jack detection, Sony UX-90s
|
||||
hippo_1 Hippo (Benq) with jack detection
|
||||
sony-assamd Sony ASSAMD
|
||||
toshiba-s06 Toshiba S06
|
||||
toshiba-rx1 Toshiba RX1
|
||||
ultra Samsung Q1 Ultra Vista model
|
||||
lenovo-3000 Lenovo 3000 y410
|
||||
nec NEC Versa S9100
|
||||
basic fixed pin assignment w/o SPDIF
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
ALC267/268
|
||||
quanta-il1 Quanta IL1 mini-notebook
|
||||
3stack 3-stack model
|
||||
toshiba Toshiba A205
|
||||
acer Acer laptops
|
||||
acer-aspire Acer Aspire One
|
||||
dell Dell OEM laptops (Vostro 1200)
|
||||
zepto Zepto laptops
|
||||
test for testing/debugging purpose, almost all controls can
|
||||
adjusted. Appearing only when compiled with
|
||||
$CONFIG_SND_DEBUG=y
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
ALC269
|
||||
basic Basic preset
|
||||
quanta Quanta FL1
|
||||
eeepc-p703 ASUS Eeepc P703 P900A
|
||||
eeepc-p901 ASUS Eeepc P901 S101
|
||||
|
||||
ALC662/663
|
||||
3stack-dig 3-stack (2-channel) with SPDIF
|
||||
3stack-6ch 3-stack (6-channel)
|
||||
3stack-6ch-dig 3-stack (6-channel) with SPDIF
|
||||
6stack-dig 6-stack with SPDIF
|
||||
lenovo-101e Lenovo laptop
|
||||
eeepc-p701 ASUS Eeepc P701
|
||||
eeepc-ep20 ASUS Eeepc EP20
|
||||
ecs ECS/Foxconn mobo
|
||||
m51va ASUS M51VA
|
||||
g71v ASUS G71V
|
||||
h13 ASUS H13
|
||||
g50v ASUS G50V
|
||||
asus-mode1 ASUS
|
||||
asus-mode2 ASUS
|
||||
asus-mode3 ASUS
|
||||
asus-mode4 ASUS
|
||||
asus-mode5 ASUS
|
||||
asus-mode6 ASUS
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
ALC882/885
|
||||
3stack-dig 3-jack with SPDIF I/O
|
||||
6stack-dig 6-jack digital with SPDIF I/O
|
||||
arima Arima W820Di1
|
||||
targa Targa T8, MSI-1049 T8
|
||||
asus-a7j ASUS A7J
|
||||
asus-a7m ASUS A7M
|
||||
macpro MacPro support
|
||||
mbp3 Macbook Pro rev3
|
||||
imac24 iMac 24'' with jack detection
|
||||
w2jc ASUS W2JC
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
ALC883/888
|
||||
3stack-dig 3-jack with SPDIF I/O
|
||||
6stack-dig 6-jack digital with SPDIF I/O
|
||||
3stack-6ch 3-jack 6-channel
|
||||
3stack-6ch-dig 3-jack 6-channel with SPDIF I/O
|
||||
6stack-dig-demo 6-jack digital for Intel demo board
|
||||
acer Acer laptops (Travelmate 3012WTMi, Aspire 5600, etc)
|
||||
acer-aspire Acer Aspire 9810
|
||||
medion Medion Laptops
|
||||
medion-md2 Medion MD2
|
||||
targa-dig Targa/MSI
|
||||
targa-2ch-dig Targs/MSI with 2-channel
|
||||
laptop-eapd 3-jack with SPDIF I/O and EAPD (Clevo M540JE, M550JE)
|
||||
lenovo-101e Lenovo 101E
|
||||
lenovo-nb0763 Lenovo NB0763
|
||||
lenovo-ms7195-dig Lenovo MS7195
|
||||
lenovo-sky Lenovo Sky
|
||||
haier-w66 Haier W66
|
||||
3stack-hp HP machines with 3stack (Lucknow, Samba boards)
|
||||
6stack-dell Dell machines with 6stack (Inspiron 530)
|
||||
mitac Mitac 8252D
|
||||
clevo-m720 Clevo M720 laptop series
|
||||
fujitsu-pi2515 Fujitsu AMILO Pi2515
|
||||
3stack-6ch-intel Intel DG33* boards
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
ALC861/660
|
||||
3stack 3-jack
|
||||
3stack-dig 3-jack with SPDIF I/O
|
||||
6stack-dig 6-jack with SPDIF I/O
|
||||
3stack-660 3-jack (for ALC660)
|
||||
uniwill-m31 Uniwill M31 laptop
|
||||
toshiba Toshiba laptop support
|
||||
asus Asus laptop support
|
||||
asus-laptop ASUS F2/F3 laptops
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
ALC861VD/660VD
|
||||
3stack 3-jack
|
||||
3stack-dig 3-jack with SPDIF OUT
|
||||
6stack-dig 6-jack with SPDIF OUT
|
||||
3stack-660 3-jack (for ALC660VD)
|
||||
3stack-660-digout 3-jack with SPDIF OUT (for ALC660VD)
|
||||
lenovo Lenovo 3000 C200
|
||||
dallas Dallas laptops
|
||||
hp HP TX1000
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
CMI9880
|
||||
minimal 3-jack in back
|
||||
min_fp 3-jack in back, 2-jack in front
|
||||
full 6-jack in back, 2-jack in front
|
||||
full_dig 6-jack in back, 2-jack in front, SPDIF I/O
|
||||
allout 5-jack in back, 2-jack in front, SPDIF out
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
AD1882 / AD1882A
|
||||
3stack 3-stack mode (default)
|
||||
6stack 6-stack mode
|
||||
|
||||
AD1884A / AD1883 / AD1984A / AD1984B
|
||||
desktop 3-stack desktop (default)
|
||||
laptop laptop with HP jack sensing
|
||||
mobile mobile devices with HP jack sensing
|
||||
thinkpad Lenovo Thinkpad X300
|
||||
|
||||
AD1884
|
||||
N/A
|
||||
|
||||
AD1981
|
||||
basic 3-jack (default)
|
||||
hp HP nx6320
|
||||
thinkpad Lenovo Thinkpad T60/X60/Z60
|
||||
toshiba Toshiba U205
|
||||
|
||||
AD1983
|
||||
N/A
|
||||
|
||||
AD1984
|
||||
basic default configuration
|
||||
thinkpad Lenovo Thinkpad T61/X61
|
||||
dell Dell T3400
|
||||
|
||||
AD1986A
|
||||
6stack 6-jack, separate surrounds (default)
|
||||
3stack 3-stack, shared surrounds
|
||||
laptop 2-channel only (FSC V2060, Samsung M50)
|
||||
laptop-eapd 2-channel with EAPD (Samsung R65, ASUS A6J)
|
||||
laptop-automute 2-channel with EAPD and HP-automute (Lenovo N100)
|
||||
ultra 2-channel with EAPD (Samsung Ultra tablet PC)
|
||||
|
||||
AD1988/AD1988B/AD1989A/AD1989B
|
||||
6stack 6-jack
|
||||
6stack-dig ditto with SPDIF
|
||||
3stack 3-jack
|
||||
3stack-dig ditto with SPDIF
|
||||
laptop 3-jack with hp-jack automute
|
||||
laptop-dig ditto with SPDIF
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
Conexant 5045
|
||||
laptop-hpsense Laptop with HP sense (old model laptop)
|
||||
laptop-micsense Laptop with Mic sense (old model fujitsu)
|
||||
laptop-hpmicsense Laptop with HP and Mic senses
|
||||
benq Benq R55E
|
||||
test for testing/debugging purpose, almost all controls
|
||||
can be adjusted. Appearing only when compiled with
|
||||
$CONFIG_SND_DEBUG=y
|
||||
|
||||
Conexant 5047
|
||||
laptop Basic Laptop config
|
||||
laptop-hp Laptop config for some HP models (subdevice 30A5)
|
||||
laptop-eapd Laptop config with EAPD support
|
||||
test for testing/debugging purpose, almost all controls
|
||||
can be adjusted. Appearing only when compiled with
|
||||
$CONFIG_SND_DEBUG=y
|
||||
|
||||
Conexant 5051
|
||||
laptop Basic Laptop config (default)
|
||||
hp HP Spartan laptop
|
||||
|
||||
STAC9200
|
||||
ref Reference board
|
||||
dell-d21 Dell (unknown)
|
||||
dell-d22 Dell (unknown)
|
||||
dell-d23 Dell (unknown)
|
||||
dell-m21 Dell Inspiron 630m, Dell Inspiron 640m
|
||||
dell-m22 Dell Latitude D620, Dell Latitude D820
|
||||
dell-m23 Dell XPS M1710, Dell Precision M90
|
||||
dell-m24 Dell Latitude 120L
|
||||
dell-m25 Dell Inspiron E1505n
|
||||
dell-m26 Dell Inspiron 1501
|
||||
dell-m27 Dell Inspiron E1705/9400
|
||||
gateway Gateway laptops with EAPD control
|
||||
panasonic Panasonic CF-74
|
||||
|
||||
STAC9205/9254
|
||||
ref Reference board
|
||||
dell-m42 Dell (unknown)
|
||||
dell-m43 Dell Precision
|
||||
dell-m44 Dell Inspiron
|
||||
|
||||
STAC9220/9221
|
||||
ref Reference board
|
||||
3stack D945 3stack
|
||||
5stack D945 5stack + SPDIF
|
||||
intel-mac-v1 Intel Mac Type 1
|
||||
intel-mac-v2 Intel Mac Type 2
|
||||
intel-mac-v3 Intel Mac Type 3
|
||||
intel-mac-v4 Intel Mac Type 4
|
||||
intel-mac-v5 Intel Mac Type 5
|
||||
intel-mac-auto Intel Mac (detect type according to subsystem id)
|
||||
macmini Intel Mac Mini (equivalent with type 3)
|
||||
macbook Intel Mac Book (eq. type 5)
|
||||
macbook-pro-v1 Intel Mac Book Pro 1st generation (eq. type 3)
|
||||
macbook-pro Intel Mac Book Pro 2nd generation (eq. type 3)
|
||||
imac-intel Intel iMac (eq. type 2)
|
||||
imac-intel-20 Intel iMac (newer version) (eq. type 3)
|
||||
dell-d81 Dell (unknown)
|
||||
dell-d82 Dell (unknown)
|
||||
dell-m81 Dell (unknown)
|
||||
dell-m82 Dell XPS M1210
|
||||
|
||||
STAC9202/9250/9251
|
||||
ref Reference board, base config
|
||||
m2-2 Some Gateway MX series laptops
|
||||
m6 Some Gateway NX series laptops
|
||||
pa6 Gateway NX860 series
|
||||
|
||||
STAC9227/9228/9229/927x
|
||||
ref Reference board
|
||||
ref-no-jd Reference board without HP/Mic jack detection
|
||||
3stack D965 3stack
|
||||
5stack D965 5stack + SPDIF
|
||||
dell-3stack Dell Dimension E520
|
||||
dell-bios Fixes with Dell BIOS setup
|
||||
|
||||
STAC92HD71B*
|
||||
ref Reference board
|
||||
dell-m4-1 Dell desktops
|
||||
dell-m4-2 Dell desktops
|
||||
dell-m4-3 Dell desktops
|
||||
|
||||
STAC92HD73*
|
||||
ref Reference board
|
||||
no-jd BIOS setup but without jack-detection
|
||||
dell-m6-amic Dell desktops/laptops with analog mics
|
||||
dell-m6-dmic Dell desktops/laptops with digital mics
|
||||
dell-m6 Dell desktops/laptops with both type of mics
|
||||
|
||||
STAC9872
|
||||
vaio Setup for VAIO FE550G/SZ110
|
||||
vaio-ar Setup for VAIO AR
|
||||
models depending on the codec chip. The list of available models
|
||||
is found in HD-Audio-Models.txt
|
||||
|
||||
The model name "genric" is treated as a special case. When this
|
||||
model is given, the driver uses the generic codec parser without
|
||||
"codec-patch". It's sometimes good for testing and debugging.
|
||||
|
||||
If the default configuration doesn't work and one of the above
|
||||
matches with your device, report it together with the PCI
|
||||
subsystem ID (output of "lspci -nv") to ALSA BTS or alsa-devel
|
||||
matches with your device, report it together with alsa-info.sh
|
||||
output (with --no-upload option) to kernel bugzilla or alsa-devel
|
||||
ML (see the section "Links and Addresses").
|
||||
|
||||
power_save and power_save_controller options are for power-saving
|
||||
@ -1652,7 +1350,8 @@ Prior to version 0.9.0rc4 options had a 'snd_' prefix. This was removed.
|
||||
* AuzenTech X-Meridian
|
||||
* Bgears b-Enspirer
|
||||
* Club3D Theatron DTS
|
||||
* HT-Omega Claro
|
||||
* HT-Omega Claro (plus)
|
||||
* HT-Omega Claro halo (XT)
|
||||
* Razer Barracuda AC-1
|
||||
* Sondigo Inferno
|
||||
|
||||
@ -2409,8 +2108,11 @@ Links and Addresses
|
||||
ALSA project homepage
|
||||
http://www.alsa-project.org
|
||||
|
||||
ALSA Bug Tracking System
|
||||
https://bugtrack.alsa-project.org/bugs/
|
||||
Kernel Bugzilla
|
||||
http://bugzilla.kernel.org/
|
||||
|
||||
ALSA Developers ML
|
||||
mailto:alsa-devel@alsa-project.org
|
||||
|
||||
alsa-info.sh script
|
||||
http://www.alsa-project.org/alsa-info.sh
|
||||
|
348
Documentation/sound/alsa/HD-Audio-Models.txt
Normal file
348
Documentation/sound/alsa/HD-Audio-Models.txt
Normal file
@ -0,0 +1,348 @@
|
||||
Model name Description
|
||||
---------- -----------
|
||||
ALC880
|
||||
======
|
||||
3stack 3-jack in back and a headphone out
|
||||
3stack-digout 3-jack in back, a HP out and a SPDIF out
|
||||
5stack 5-jack in back, 2-jack in front
|
||||
5stack-digout 5-jack in back, 2-jack in front, a SPDIF out
|
||||
6stack 6-jack in back, 2-jack in front
|
||||
6stack-digout 6-jack with a SPDIF out
|
||||
w810 3-jack
|
||||
z71v 3-jack (HP shared SPDIF)
|
||||
asus 3-jack (ASUS Mobo)
|
||||
asus-w1v ASUS W1V
|
||||
asus-dig ASUS with SPDIF out
|
||||
asus-dig2 ASUS with SPDIF out (using GPIO2)
|
||||
uniwill 3-jack
|
||||
fujitsu Fujitsu Laptops (Pi1536)
|
||||
F1734 2-jack
|
||||
lg LG laptop (m1 express dual)
|
||||
lg-lw LG LW20/LW25 laptop
|
||||
tcl TCL S700
|
||||
clevo Clevo laptops (m520G, m665n)
|
||||
medion Medion Rim 2150
|
||||
test for testing/debugging purpose, almost all controls can be
|
||||
adjusted. Appearing only when compiled with
|
||||
$CONFIG_SND_DEBUG=y
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
ALC260
|
||||
======
|
||||
hp HP machines
|
||||
hp-3013 HP machines (3013-variant)
|
||||
hp-dc7600 HP DC7600
|
||||
fujitsu Fujitsu S7020
|
||||
acer Acer TravelMate
|
||||
will Will laptops (PB V7900)
|
||||
replacer Replacer 672V
|
||||
basic fixed pin assignment (old default model)
|
||||
test for testing/debugging purpose, almost all controls can
|
||||
adjusted. Appearing only when compiled with
|
||||
$CONFIG_SND_DEBUG=y
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
ALC262
|
||||
======
|
||||
fujitsu Fujitsu Laptop
|
||||
hp-bpc HP xw4400/6400/8400/9400 laptops
|
||||
hp-bpc-d7000 HP BPC D7000
|
||||
hp-tc-t5735 HP Thin Client T5735
|
||||
hp-rp5700 HP RP5700
|
||||
benq Benq ED8
|
||||
benq-t31 Benq T31
|
||||
hippo Hippo (ATI) with jack detection, Sony UX-90s
|
||||
hippo_1 Hippo (Benq) with jack detection
|
||||
sony-assamd Sony ASSAMD
|
||||
toshiba-s06 Toshiba S06
|
||||
toshiba-rx1 Toshiba RX1
|
||||
ultra Samsung Q1 Ultra Vista model
|
||||
lenovo-3000 Lenovo 3000 y410
|
||||
nec NEC Versa S9100
|
||||
basic fixed pin assignment w/o SPDIF
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
ALC267/268
|
||||
==========
|
||||
quanta-il1 Quanta IL1 mini-notebook
|
||||
3stack 3-stack model
|
||||
toshiba Toshiba A205
|
||||
acer Acer laptops
|
||||
acer-dmic Acer laptops with digital-mic
|
||||
acer-aspire Acer Aspire One
|
||||
dell Dell OEM laptops (Vostro 1200)
|
||||
zepto Zepto laptops
|
||||
test for testing/debugging purpose, almost all controls can
|
||||
adjusted. Appearing only when compiled with
|
||||
$CONFIG_SND_DEBUG=y
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
ALC269
|
||||
======
|
||||
basic Basic preset
|
||||
quanta Quanta FL1
|
||||
eeepc-p703 ASUS Eeepc P703 P900A
|
||||
eeepc-p901 ASUS Eeepc P901 S101
|
||||
fujitsu FSC Amilo
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
ALC662/663
|
||||
==========
|
||||
3stack-dig 3-stack (2-channel) with SPDIF
|
||||
3stack-6ch 3-stack (6-channel)
|
||||
3stack-6ch-dig 3-stack (6-channel) with SPDIF
|
||||
6stack-dig 6-stack with SPDIF
|
||||
lenovo-101e Lenovo laptop
|
||||
eeepc-p701 ASUS Eeepc P701
|
||||
eeepc-ep20 ASUS Eeepc EP20
|
||||
ecs ECS/Foxconn mobo
|
||||
m51va ASUS M51VA
|
||||
g71v ASUS G71V
|
||||
h13 ASUS H13
|
||||
g50v ASUS G50V
|
||||
asus-mode1 ASUS
|
||||
asus-mode2 ASUS
|
||||
asus-mode3 ASUS
|
||||
asus-mode4 ASUS
|
||||
asus-mode5 ASUS
|
||||
asus-mode6 ASUS
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
ALC882/885
|
||||
==========
|
||||
3stack-dig 3-jack with SPDIF I/O
|
||||
6stack-dig 6-jack digital with SPDIF I/O
|
||||
arima Arima W820Di1
|
||||
targa Targa T8, MSI-1049 T8
|
||||
asus-a7j ASUS A7J
|
||||
asus-a7m ASUS A7M
|
||||
macpro MacPro support
|
||||
mbp3 Macbook Pro rev3
|
||||
imac24 iMac 24'' with jack detection
|
||||
w2jc ASUS W2JC
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
ALC883/888
|
||||
==========
|
||||
3stack-dig 3-jack with SPDIF I/O
|
||||
6stack-dig 6-jack digital with SPDIF I/O
|
||||
3stack-6ch 3-jack 6-channel
|
||||
3stack-6ch-dig 3-jack 6-channel with SPDIF I/O
|
||||
6stack-dig-demo 6-jack digital for Intel demo board
|
||||
acer Acer laptops (Travelmate 3012WTMi, Aspire 5600, etc)
|
||||
acer-aspire Acer Aspire 9810
|
||||
acer-aspire-4930g Acer Aspire 4930G
|
||||
medion Medion Laptops
|
||||
medion-md2 Medion MD2
|
||||
targa-dig Targa/MSI
|
||||
targa-2ch-dig Targs/MSI with 2-channel
|
||||
laptop-eapd 3-jack with SPDIF I/O and EAPD (Clevo M540JE, M550JE)
|
||||
lenovo-101e Lenovo 101E
|
||||
lenovo-nb0763 Lenovo NB0763
|
||||
lenovo-ms7195-dig Lenovo MS7195
|
||||
lenovo-sky Lenovo Sky
|
||||
haier-w66 Haier W66
|
||||
3stack-hp HP machines with 3stack (Lucknow, Samba boards)
|
||||
6stack-dell Dell machines with 6stack (Inspiron 530)
|
||||
mitac Mitac 8252D
|
||||
clevo-m720 Clevo M720 laptop series
|
||||
fujitsu-pi2515 Fujitsu AMILO Pi2515
|
||||
fujitsu-xa3530 Fujitsu AMILO XA3530
|
||||
3stack-6ch-intel Intel DG33* boards
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
ALC861/660
|
||||
==========
|
||||
3stack 3-jack
|
||||
3stack-dig 3-jack with SPDIF I/O
|
||||
6stack-dig 6-jack with SPDIF I/O
|
||||
3stack-660 3-jack (for ALC660)
|
||||
uniwill-m31 Uniwill M31 laptop
|
||||
toshiba Toshiba laptop support
|
||||
asus Asus laptop support
|
||||
asus-laptop ASUS F2/F3 laptops
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
ALC861VD/660VD
|
||||
==============
|
||||
3stack 3-jack
|
||||
3stack-dig 3-jack with SPDIF OUT
|
||||
6stack-dig 6-jack with SPDIF OUT
|
||||
3stack-660 3-jack (for ALC660VD)
|
||||
3stack-660-digout 3-jack with SPDIF OUT (for ALC660VD)
|
||||
lenovo Lenovo 3000 C200
|
||||
dallas Dallas laptops
|
||||
hp HP TX1000
|
||||
asus-v1s ASUS V1Sn
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
CMI9880
|
||||
=======
|
||||
minimal 3-jack in back
|
||||
min_fp 3-jack in back, 2-jack in front
|
||||
full 6-jack in back, 2-jack in front
|
||||
full_dig 6-jack in back, 2-jack in front, SPDIF I/O
|
||||
allout 5-jack in back, 2-jack in front, SPDIF out
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
AD1882 / AD1882A
|
||||
================
|
||||
3stack 3-stack mode (default)
|
||||
6stack 6-stack mode
|
||||
|
||||
AD1884A / AD1883 / AD1984A / AD1984B
|
||||
====================================
|
||||
desktop 3-stack desktop (default)
|
||||
laptop laptop with HP jack sensing
|
||||
mobile mobile devices with HP jack sensing
|
||||
thinkpad Lenovo Thinkpad X300
|
||||
|
||||
AD1884
|
||||
======
|
||||
N/A
|
||||
|
||||
AD1981
|
||||
======
|
||||
basic 3-jack (default)
|
||||
hp HP nx6320
|
||||
thinkpad Lenovo Thinkpad T60/X60/Z60
|
||||
toshiba Toshiba U205
|
||||
|
||||
AD1983
|
||||
======
|
||||
N/A
|
||||
|
||||
AD1984
|
||||
======
|
||||
basic default configuration
|
||||
thinkpad Lenovo Thinkpad T61/X61
|
||||
dell Dell T3400
|
||||
|
||||
AD1986A
|
||||
=======
|
||||
6stack 6-jack, separate surrounds (default)
|
||||
3stack 3-stack, shared surrounds
|
||||
laptop 2-channel only (FSC V2060, Samsung M50)
|
||||
laptop-eapd 2-channel with EAPD (ASUS A6J)
|
||||
laptop-automute 2-channel with EAPD and HP-automute (Lenovo N100)
|
||||
ultra 2-channel with EAPD (Samsung Ultra tablet PC)
|
||||
samsung 2-channel with EAPD (Samsung R65)
|
||||
|
||||
AD1988/AD1988B/AD1989A/AD1989B
|
||||
==============================
|
||||
6stack 6-jack
|
||||
6stack-dig ditto with SPDIF
|
||||
3stack 3-jack
|
||||
3stack-dig ditto with SPDIF
|
||||
laptop 3-jack with hp-jack automute
|
||||
laptop-dig ditto with SPDIF
|
||||
auto auto-config reading BIOS (default)
|
||||
|
||||
Conexant 5045
|
||||
=============
|
||||
laptop-hpsense Laptop with HP sense (old model laptop)
|
||||
laptop-micsense Laptop with Mic sense (old model fujitsu)
|
||||
laptop-hpmicsense Laptop with HP and Mic senses
|
||||
benq Benq R55E
|
||||
test for testing/debugging purpose, almost all controls
|
||||
can be adjusted. Appearing only when compiled with
|
||||
$CONFIG_SND_DEBUG=y
|
||||
|
||||
Conexant 5047
|
||||
=============
|
||||
laptop Basic Laptop config
|
||||
laptop-hp Laptop config for some HP models (subdevice 30A5)
|
||||
laptop-eapd Laptop config with EAPD support
|
||||
test for testing/debugging purpose, almost all controls
|
||||
can be adjusted. Appearing only when compiled with
|
||||
$CONFIG_SND_DEBUG=y
|
||||
|
||||
Conexant 5051
|
||||
=============
|
||||
laptop Basic Laptop config (default)
|
||||
hp HP Spartan laptop
|
||||
|
||||
STAC9200
|
||||
========
|
||||
ref Reference board
|
||||
dell-d21 Dell (unknown)
|
||||
dell-d22 Dell (unknown)
|
||||
dell-d23 Dell (unknown)
|
||||
dell-m21 Dell Inspiron 630m, Dell Inspiron 640m
|
||||
dell-m22 Dell Latitude D620, Dell Latitude D820
|
||||
dell-m23 Dell XPS M1710, Dell Precision M90
|
||||
dell-m24 Dell Latitude 120L
|
||||
dell-m25 Dell Inspiron E1505n
|
||||
dell-m26 Dell Inspiron 1501
|
||||
dell-m27 Dell Inspiron E1705/9400
|
||||
gateway Gateway laptops with EAPD control
|
||||
panasonic Panasonic CF-74
|
||||
|
||||
STAC9205/9254
|
||||
=============
|
||||
ref Reference board
|
||||
dell-m42 Dell (unknown)
|
||||
dell-m43 Dell Precision
|
||||
dell-m44 Dell Inspiron
|
||||
|
||||
STAC9220/9221
|
||||
=============
|
||||
ref Reference board
|
||||
3stack D945 3stack
|
||||
5stack D945 5stack + SPDIF
|
||||
intel-mac-v1 Intel Mac Type 1
|
||||
intel-mac-v2 Intel Mac Type 2
|
||||
intel-mac-v3 Intel Mac Type 3
|
||||
intel-mac-v4 Intel Mac Type 4
|
||||
intel-mac-v5 Intel Mac Type 5
|
||||
intel-mac-auto Intel Mac (detect type according to subsystem id)
|
||||
macmini Intel Mac Mini (equivalent with type 3)
|
||||
macbook Intel Mac Book (eq. type 5)
|
||||
macbook-pro-v1 Intel Mac Book Pro 1st generation (eq. type 3)
|
||||
macbook-pro Intel Mac Book Pro 2nd generation (eq. type 3)
|
||||
imac-intel Intel iMac (eq. type 2)
|
||||
imac-intel-20 Intel iMac (newer version) (eq. type 3)
|
||||
dell-d81 Dell (unknown)
|
||||
dell-d82 Dell (unknown)
|
||||
dell-m81 Dell (unknown)
|
||||
dell-m82 Dell XPS M1210
|
||||
|
||||
STAC9202/9250/9251
|
||||
==================
|
||||
ref Reference board, base config
|
||||
m2-2 Some Gateway MX series laptops
|
||||
m6 Some Gateway NX series laptops
|
||||
pa6 Gateway NX860 series
|
||||
|
||||
STAC9227/9228/9229/927x
|
||||
=======================
|
||||
ref Reference board
|
||||
ref-no-jd Reference board without HP/Mic jack detection
|
||||
3stack D965 3stack
|
||||
5stack D965 5stack + SPDIF
|
||||
dell-3stack Dell Dimension E520
|
||||
dell-bios Fixes with Dell BIOS setup
|
||||
|
||||
STAC92HD71B*
|
||||
============
|
||||
ref Reference board
|
||||
dell-m4-1 Dell desktops
|
||||
dell-m4-2 Dell desktops
|
||||
dell-m4-3 Dell desktops
|
||||
|
||||
STAC92HD73*
|
||||
===========
|
||||
ref Reference board
|
||||
no-jd BIOS setup but without jack-detection
|
||||
dell-m6-amic Dell desktops/laptops with analog mics
|
||||
dell-m6-dmic Dell desktops/laptops with digital mics
|
||||
dell-m6 Dell desktops/laptops with both type of mics
|
||||
|
||||
STAC92HD83*
|
||||
===========
|
||||
ref Reference board
|
||||
|
||||
STAC9872
|
||||
========
|
||||
vaio Setup for VAIO FE550G/SZ110
|
||||
vaio-ar Setup for VAIO AR
|
577
Documentation/sound/alsa/HD-Audio.txt
Normal file
577
Documentation/sound/alsa/HD-Audio.txt
Normal file
@ -0,0 +1,577 @@
|
||||
MORE NOTES ON HD-AUDIO DRIVER
|
||||
=============================
|
||||
Takashi Iwai <tiwai@suse.de>
|
||||
|
||||
|
||||
GENERAL
|
||||
-------
|
||||
|
||||
HD-audio is the new standard on-board audio component on modern PCs
|
||||
after AC97. Although Linux has been supporting HD-audio since long
|
||||
time ago, there are often problems with new machines. A part of the
|
||||
problem is broken BIOS, and the rest is the driver implementation.
|
||||
This document explains the brief trouble-shooting and debugging
|
||||
methods for the HD-audio hardware.
|
||||
|
||||
The HD-audio component consists of two parts: the controller chip and
|
||||
the codec chips on the HD-audio bus. Linux provides a single driver
|
||||
for all controllers, snd-hda-intel. Although the driver name contains
|
||||
a word of a well-known harware vendor, it's not specific to it but for
|
||||
all controller chips by other companies. Since the HD-audio
|
||||
controllers are supposed to be compatible, the single snd-hda-driver
|
||||
should work in most cases. But, not surprisingly, there are known
|
||||
bugs and issues specific to each controller type. The snd-hda-intel
|
||||
driver has a bunch of workarounds for these as described below.
|
||||
|
||||
A controller may have multiple codecs. Usually you have one audio
|
||||
codec and optionally one modem codec. In theory, there might be
|
||||
multiple audio codecs, e.g. for analog and digital outputs, and the
|
||||
driver might not work properly because of conflict of mixer elements.
|
||||
This should be fixed in future if such hardware really exists.
|
||||
|
||||
The snd-hda-intel driver has several different codec parsers depending
|
||||
on the codec. It has a generic parser as a fallback, but this
|
||||
functionality is fairly limited until now. Instead of the generic
|
||||
parser, usually the codec-specific parser (coded in patch_*.c) is used
|
||||
for the codec-specific implementations. The details about the
|
||||
codec-specific problems are explained in the later sections.
|
||||
|
||||
If you are interested in the deep debugging of HD-audio, read the
|
||||
HD-audio specification at first. The specification is found on
|
||||
Intel's web page, for example:
|
||||
|
||||
- http://www.intel.com/standards/hdaudio/
|
||||
|
||||
|
||||
HD-AUDIO CONTROLLER
|
||||
-------------------
|
||||
|
||||
DMA-Position Problem
|
||||
~~~~~~~~~~~~~~~~~~~~
|
||||
The most common problem of the controller is the inaccurate DMA
|
||||
pointer reporting. The DMA pointer for playback and capture can be
|
||||
read in two ways, either via a LPIB register or via a position-buffer
|
||||
map. As default the driver tries to read from the io-mapped
|
||||
position-buffer, and falls back to LPIB if the position-buffer appears
|
||||
dead. However, this detection isn't perfect on some devices. In such
|
||||
a case, you can change the default method via `position_fix` option.
|
||||
|
||||
`position_fix=1` means to use LPIB method explicitly.
|
||||
`position_fix=2` means to use the position-buffer. 0 is the default
|
||||
value, the automatic check and fallback to LPIB as described in the
|
||||
above. If you get a problem of repeated sounds, this option might
|
||||
help.
|
||||
|
||||
In addition to that, every controller is known to be broken regarding
|
||||
the wake-up timing. It wakes up a few samples before actually
|
||||
processing the data on the buffer. This caused a lot of problems, for
|
||||
example, with ALSA dmix or JACK. Since 2.6.27 kernel, the driver puts
|
||||
an artificial delay to the wake up timing. This delay is controlled
|
||||
via `bdl_pos_adj` option.
|
||||
|
||||
When `bdl_pos_adj` is a negative value (as default), it's assigned to
|
||||
an appropriate value depending on the controller chip. For Intel
|
||||
chips, it'd be 1 while it'd be 32 for others. Usually this works.
|
||||
Only in case it doesn't work and you get warning messages, you should
|
||||
change this parameter to other values.
|
||||
|
||||
|
||||
Codec-Probing Problem
|
||||
~~~~~~~~~~~~~~~~~~~~~
|
||||
A less often but a more severe problem is the codec probing. When
|
||||
BIOS reports the available codec slots wrongly, the driver gets
|
||||
confused and tries to access the non-existing codec slot. This often
|
||||
results in the total screw-up, and destructs the further communication
|
||||
with the codec chips. The symptom appears usually as error messages
|
||||
like:
|
||||
------------------------------------------------------------------------
|
||||
hda_intel: azx_get_response timeout, switching to polling mode:
|
||||
last cmd=0x12345678
|
||||
hda_intel: azx_get_response timeout, switching to single_cmd mode:
|
||||
last cmd=0x12345678
|
||||
------------------------------------------------------------------------
|
||||
|
||||
The first line is a warning, and this is usually relatively harmless.
|
||||
It means that the codec response isn't notified via an IRQ. The
|
||||
driver uses explicit polling method to read the response. It gives
|
||||
very slight CPU overhead, but you'd unlikely notice it.
|
||||
|
||||
The second line is, however, a fatal error. If this happens, usually
|
||||
it means that something is really wrong. Most likely you are
|
||||
accessing a non-existing codec slot.
|
||||
|
||||
Thus, if the second error message appears, try to narrow the probed
|
||||
codec slots via `probe_mask` option. It's a bitmask, and each bit
|
||||
corresponds to the codec slot. For example, to probe only the first
|
||||
slot, pass `probe_mask=1`. For the first and the third slots, pass
|
||||
`probe_mask=5` (where 5 = 1 | 4), and so on.
|
||||
|
||||
Since 2.6.29 kernel, the driver has a more robust probing method, so
|
||||
this error might happen rarely, though.
|
||||
|
||||
|
||||
Interrupt Handling
|
||||
~~~~~~~~~~~~~~~~~~
|
||||
In rare but some cases, the interrupt isn't properly handled as
|
||||
default. You would notice this by the DMA transfer error reported by
|
||||
ALSA PCM core, for example. Using MSI might help in such a case.
|
||||
Pass `enable_msi=1` option for enabling MSI.
|
||||
|
||||
|
||||
HD-AUDIO CODEC
|
||||
--------------
|
||||
|
||||
Model Option
|
||||
~~~~~~~~~~~~
|
||||
The most common problem regarding the HD-audio driver is the
|
||||
unsupported codec features or the mismatched device configuration.
|
||||
Most of codec-specific code has several preset models, either to
|
||||
override the BIOS setup or to provide more comprehensive features.
|
||||
|
||||
The driver checks PCI SSID and looks through the static configuration
|
||||
table until any matching entry is found. If you have a new machine,
|
||||
you may see a message like below:
|
||||
------------------------------------------------------------------------
|
||||
hda_codec: Unknown model for ALC880, trying auto-probe from BIOS...
|
||||
------------------------------------------------------------------------
|
||||
Even if you see such a message, DON'T PANIC. Take a deep breath and
|
||||
keep your towel. First of all, it's an informational message, no
|
||||
warning, no error. This means that the PCI SSID of your device isn't
|
||||
listed in the known preset model (white-)list. But, this doesn't mean
|
||||
that the driver is broken. Many codec-drivers provide the automatic
|
||||
configuration mechanism based on the BIOS setup.
|
||||
|
||||
The HD-audio codec has usually "pin" widgets, and BIOS sets the default
|
||||
configuration of each pin, which indicates the location, the
|
||||
connection type, the jack color, etc. The HD-audio driver can guess
|
||||
the right connection judging from these default configuration values.
|
||||
However -- some codec-support codes, such as patch_analog.c, don't
|
||||
support the automatic probing (yet as of 2.6.28). And, BIOS is often,
|
||||
yes, pretty often broken. It sets up wrong values and screws up the
|
||||
driver.
|
||||
|
||||
The preset model is provided basically to overcome such a situation.
|
||||
When the matching preset model is found in the white-list, the driver
|
||||
assumes the static configuration of that preset and builds the mixer
|
||||
elements and PCM streams based on the static information. Thus, if
|
||||
you have a newer machine with a slightly different PCI SSID from the
|
||||
existing one, you may have a good chance to re-use the same model.
|
||||
You can pass the `model` option to specify the preset model instead of
|
||||
PCI SSID look-up.
|
||||
|
||||
What `model` option values are available depends on the codec chip.
|
||||
Check your codec chip from the codec proc file (see "Codec Proc-File"
|
||||
section below). It will show the vendor/product name of your codec
|
||||
chip. Then, see Documentation/sound/alsa/HD-Audio-Modelstxt file,
|
||||
the section of HD-audio driver. You can find a list of codecs
|
||||
and `model` options belonging to each codec. For example, for Realtek
|
||||
ALC262 codec chip, pass `model=ultra` for devices that are compatible
|
||||
with Samsung Q1 Ultra.
|
||||
|
||||
Thus, the first thing you can do for any brand-new, unsupported and
|
||||
non-working HD-audio hardware is to check HD-audio codec and several
|
||||
different `model` option values. If you have a luck, some of them
|
||||
might suit with your device well.
|
||||
|
||||
Some codecs such as ALC880 have a special model option `model=test`.
|
||||
This configures the driver to provide as many mixer controls as
|
||||
possible for every single pin feature except for the unsolicited
|
||||
events (and maybe some other specials). Adjust each mixer element and
|
||||
try the I/O in the way of trial-and-error until figuring out the whole
|
||||
I/O pin mappings.
|
||||
|
||||
Note that `model=generic` has a special meaning. It means to use the
|
||||
generic parser regardless of the codec. Usually the codec-specific
|
||||
parser is much better than the generic parser (as now). Thus this
|
||||
option is more about the debugging purpose.
|
||||
|
||||
|
||||
Speaker and Headphone Output
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
One of the most frequent (and obvious) bugs with HD-audio is the
|
||||
silent output from either or both of a built-in speaker and a
|
||||
headphone jack. In general, you should try a headphone output at
|
||||
first. A speaker output often requires more additional controls like
|
||||
the external amplifier bits. Thus a headphone output has a slightly
|
||||
better chance.
|
||||
|
||||
Before making a bug report, double-check whether the mixer is set up
|
||||
correctly. The recent version of snd-hda-intel driver provides mostly
|
||||
"Master" volume control as well as "Front" volume (where Front
|
||||
indicates the front-channels). In addition, there can be individual
|
||||
"Headphone" and "Speaker" controls.
|
||||
|
||||
Ditto for the speaker output. There can be "External Amplifier"
|
||||
switch on some codecs. Turn on this if present.
|
||||
|
||||
Another related problem is the automatic mute of speaker output by
|
||||
headphone plugging. This feature is implemented in most cases, but
|
||||
not on every preset model or codec-support code.
|
||||
|
||||
In anyway, try a different model option if you have such a problem.
|
||||
Some other models may match better and give you more matching
|
||||
functionality. If none of the available models works, send a bug
|
||||
report. See the bug report section for details.
|
||||
|
||||
If you are masochistic enough to debug the driver problem, note the
|
||||
following:
|
||||
|
||||
- The speaker (and the headphone, too) output often requires the
|
||||
external amplifier. This can be set usually via EAPD verb or a
|
||||
certain GPIO. If the codec pin supports EAPD, you have a better
|
||||
chance via SET_EAPD_BTL verb (0x70c). On others, GPIO pin (mostly
|
||||
it's either GPIO0 or GPIO1) may turn on/off EAPD.
|
||||
- Some Realtek codecs require special vendor-specific coefficients to
|
||||
turn on the amplifier. See patch_realtek.c.
|
||||
- IDT codecs may have extra power-enable/disable controls on each
|
||||
analog pin. See patch_sigmatel.c.
|
||||
- Very rare but some devices don't accept the pin-detection verb until
|
||||
triggered. Issuing GET_PIN_SENSE verb (0xf09) may result in the
|
||||
codec-communication stall. Some examples are found in
|
||||
patch_realtek.c.
|
||||
|
||||
|
||||
Capture Problems
|
||||
~~~~~~~~~~~~~~~~
|
||||
The capture problems are often because of missing setups of mixers.
|
||||
Thus, before submitting a bug report, make sure that you set up the
|
||||
mixer correctly. For example, both "Capture Volume" and "Capture
|
||||
Switch" have to be set properly in addition to the right "Capture
|
||||
Source" or "Input Source" selection. Some devices have "Mic Boost"
|
||||
volume or switch.
|
||||
|
||||
When the PCM device is opened via "default" PCM (without pulse-audio
|
||||
plugin), you'll likely have "Digital Capture Volume" control as well.
|
||||
This is provided for the extra gain/attenuation of the signal in
|
||||
software, especially for the inputs without the hardware volume
|
||||
control such as digital microphones. Unless really needed, this
|
||||
should be set to exactly 50%, corresponding to 0dB -- neither extra
|
||||
gain nor attenuation. When you use "hw" PCM, i.e., a raw access PCM,
|
||||
this control will have no influence, though.
|
||||
|
||||
It's known that some codecs / devices have fairly bad analog circuits,
|
||||
and the recorded sound contains a certain DC-offset. This is no bug
|
||||
of the driver.
|
||||
|
||||
Most of modern laptops have no analog CD-input connection. Thus, the
|
||||
recording from CD input won't work in many cases although the driver
|
||||
provides it as the capture source. Use CDDA instead.
|
||||
|
||||
The automatic switching of the built-in and external mic per plugging
|
||||
is implemented on some codec models but not on every model. Partly
|
||||
because of my laziness but mostly lack of testers. Feel free to
|
||||
submit the improvement patch to the author.
|
||||
|
||||
|
||||
Direct Debugging
|
||||
~~~~~~~~~~~~~~~~
|
||||
If no model option gives you a better result, and you are a tough guy
|
||||
to fight against evil, try debugging via hitting the raw HD-audio
|
||||
codec verbs to the device. Some tools are available: hda-emu and
|
||||
hda-analyzer. The detailed description is found in the sections
|
||||
below. You'd need to enable hwdep for using these tools. See "Kernel
|
||||
Configuration" section.
|
||||
|
||||
|
||||
OTHER ISSUES
|
||||
------------
|
||||
|
||||
Kernel Configuration
|
||||
~~~~~~~~~~~~~~~~~~~~
|
||||
In general, I recommend you to enable the sound debug option,
|
||||
`CONFIG_SND_DEBUG=y`, no matter whether you are debugging or not.
|
||||
This enables snd_printd() macro and others, and you'll get additional
|
||||
kernel messages at probing.
|
||||
|
||||
In addition, you can enable `CONFIG_SND_DEBUG_VERBOSE=y`. But this
|
||||
will give you far more messages. Thus turn this on only when you are
|
||||
sure to want it.
|
||||
|
||||
Don't forget to turn on the appropriate `CONFIG_SND_HDA_CODEC_*`
|
||||
options. Note that each of them corresponds to the codec chip, not
|
||||
the controller chip. Thus, even if lspci shows the Nvidia controller,
|
||||
you may need to choose the option for other vendors. If you are
|
||||
unsure, just select all yes.
|
||||
|
||||
`CONFIG_SND_HDA_HWDEP` is a useful option for debugging the driver.
|
||||
When this is enabled, the driver creates hardware-dependent devices
|
||||
(one per each codec), and you have a raw access to the device via
|
||||
these device files. For example, `hwC0D2` will be created for the
|
||||
codec slot #2 of the first card (#0). For debug-tools such as
|
||||
hda-verb and hda-analyzer, the hwdep device has to be enabled.
|
||||
Thus, it'd be better to turn this on always.
|
||||
|
||||
`CONFIG_SND_HDA_RECONFIG` is a new option, and this depends on the
|
||||
hwdep option above. When enabled, you'll have some sysfs files under
|
||||
the corresponding hwdep directory. See "HD-audio reconfiguration"
|
||||
section below.
|
||||
|
||||
`CONFIG_SND_HDA_POWER_SAVE` option enables the power-saving feature.
|
||||
See "Power-saving" section below.
|
||||
|
||||
|
||||
Codec Proc-File
|
||||
~~~~~~~~~~~~~~~
|
||||
The codec proc-file is a treasure-chest for debugging HD-audio.
|
||||
It shows most of useful information of each codec widget.
|
||||
|
||||
The proc file is located in /proc/asound/card*/codec#*, one file per
|
||||
each codec slot. You can know the codec vendor, product id and
|
||||
names, the type of each widget, capabilities and so on.
|
||||
This file, however, doesn't show the jack sensing state, so far. This
|
||||
is because the jack-sensing might be depending on the trigger state.
|
||||
|
||||
This file will be picked up by the debug tools, and also it can be fed
|
||||
to the emulator as the primary codec information. See the debug tools
|
||||
section below.
|
||||
|
||||
This proc file can be also used to check whether the generic parser is
|
||||
used. When the generic parser is used, the vendor/product ID name
|
||||
will appear as "Realtek ID 0262", instead of "Realtek ALC262".
|
||||
|
||||
|
||||
HD-Audio Reconfiguration
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
This is an experimental feature to allow you re-configure the HD-audio
|
||||
codec dynamically without reloading the driver. The following sysfs
|
||||
files are available under each codec-hwdep device directory (e.g.
|
||||
/sys/class/sound/hwC0D0):
|
||||
|
||||
vendor_id::
|
||||
Shows the 32bit codec vendor-id hex number. You can change the
|
||||
vendor-id value by writing to this file.
|
||||
subsystem_id::
|
||||
Shows the 32bit codec subsystem-id hex number. You can change the
|
||||
subsystem-id value by writing to this file.
|
||||
revision_id::
|
||||
Shows the 32bit codec revision-id hex number. You can change the
|
||||
revision-id value by writing to this file.
|
||||
afg::
|
||||
Shows the AFG ID. This is read-only.
|
||||
mfg::
|
||||
Shows the MFG ID. This is read-only.
|
||||
name::
|
||||
Shows the codec name string. Can be changed by writing to this
|
||||
file.
|
||||
modelname::
|
||||
Shows the currently set `model` option. Can be changed by writing
|
||||
to this file.
|
||||
init_verbs::
|
||||
The extra verbs to execute at initialization. You can add a verb by
|
||||
writing to this file. Pass tree numbers, nid, verb and parameter.
|
||||
hints::
|
||||
Shows hint strings for codec parsers for any use. Right now it's
|
||||
not used.
|
||||
reconfig::
|
||||
Triggers the codec re-configuration. When any value is written to
|
||||
this file, the driver re-initialize and parses the codec tree
|
||||
again. All the changes done by the sysfs entries above are taken
|
||||
into account.
|
||||
clear::
|
||||
Resets the codec, removes the mixer elements and PCM stuff of the
|
||||
specified codec, and clear all init verbs and hints.
|
||||
|
||||
|
||||
Power-Saving
|
||||
~~~~~~~~~~~~
|
||||
The power-saving is a kind of auto-suspend of the device. When the
|
||||
device is inactive for a certain time, the device is automatically
|
||||
turned off to save the power. The time to go down is specified via
|
||||
`power_save` module option, and this option can be changed dynamically
|
||||
via sysfs.
|
||||
|
||||
The power-saving won't work when the analog loopback is enabled on
|
||||
some codecs. Make sure that you mute all unneeded signal routes when
|
||||
you want the power-saving.
|
||||
|
||||
The power-saving feature might cause audible click noises at each
|
||||
power-down/up depending on the device. Some of them might be
|
||||
solvable, but some are hard, I'm afraid. Some distros such as
|
||||
openSUSE enables the power-saving feature automatically when the power
|
||||
cable is unplugged. Thus, if you hear noises, suspect first the
|
||||
power-saving. See /sys/module/snd_hda_intel/parameters/power_save to
|
||||
check the current value. If it's non-zero, the feature is turned on.
|
||||
|
||||
|
||||
Development Tree
|
||||
~~~~~~~~~~~~~~~~
|
||||
The latest development codes for HD-audio are found on sound git tree:
|
||||
|
||||
- git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6.git
|
||||
|
||||
The master branch or for-next branches can be used as the main
|
||||
development branches in general while the HD-audio specific patches
|
||||
are committed in topic/hda branch.
|
||||
|
||||
If you are using the latest Linus tree, it'd be better to pull the
|
||||
above GIT tree onto it. If you are using the older kernels, an easy
|
||||
way to try the latest ALSA code is to build from the snapshot
|
||||
tarball. There are daily tarballs and the latest snapshot tarball.
|
||||
All can be built just like normal alsa-driver release packages, that
|
||||
is, installed via the usual spells: configure, make and make
|
||||
install(-modules). See INSTALL in the package. The snapshot tarballs
|
||||
are found at:
|
||||
|
||||
- ftp://ftp.kernel.org/pub/linux/kernel/people/tiwai/snapshot/
|
||||
|
||||
|
||||
Sending a Bug Report
|
||||
~~~~~~~~~~~~~~~~~~~~
|
||||
If any model or module options don't work for your device, it's time
|
||||
to send a bug report to the developers. Give the following in your
|
||||
bug report:
|
||||
|
||||
- Hardware vendor, product and model names
|
||||
- Kernel version (and ALSA-driver version if you built externally)
|
||||
- `alsa-info.sh` output; run with `--no-upload` option. See the
|
||||
section below about alsa-info
|
||||
|
||||
If it's a regression, at best, send alsa-info outputs of both working
|
||||
and non-working kernels. This is really helpful because we can
|
||||
compare the codec registers directly.
|
||||
|
||||
Send a bug report either the followings:
|
||||
|
||||
kernel-bugzilla::
|
||||
http://bugme.linux-foundation.org/
|
||||
alsa-devel ML::
|
||||
alsa-devel@alsa-project.org
|
||||
|
||||
|
||||
DEBUG TOOLS
|
||||
-----------
|
||||
|
||||
This section describes some tools available for debugging HD-audio
|
||||
problems.
|
||||
|
||||
alsa-info
|
||||
~~~~~~~~~
|
||||
The script `alsa-info.sh` is a very useful tool to gather the audio
|
||||
device information. You can fetch the latest version from:
|
||||
|
||||
- http://www.alsa-project.org/alsa-info.sh
|
||||
|
||||
Run this script as root, and it will gather the important information
|
||||
such as the module lists, module parameters, proc file contents
|
||||
including the codec proc files, mixer outputs and the control
|
||||
elements. As default, it will store the information onto a web server
|
||||
on alsa-project.org. But, if you send a bug report, it'd be better to
|
||||
run with `--no-upload` option, and attach the generated file.
|
||||
|
||||
There are some other useful options. See `--help` option output for
|
||||
details.
|
||||
|
||||
|
||||
hda-verb
|
||||
~~~~~~~~
|
||||
hda-verb is a tiny program that allows you to access the HD-audio
|
||||
codec directly. You can execute a raw HD-audio codec verb with this.
|
||||
This program accesses the hwdep device, thus you need to enable the
|
||||
kernel config `CONFIG_SND_HDA_HWDEP=y` beforehand.
|
||||
|
||||
The hda-verb program takes four arguments: the hwdep device file, the
|
||||
widget NID, the verb and the parameter. When you access to the codec
|
||||
on the slot 2 of the card 0, pass /dev/snd/hwC0D2 to the first
|
||||
argument, typically. (However, the real path name depends on the
|
||||
system.)
|
||||
|
||||
The second parameter is the widget number-id to access. The third
|
||||
parameter can be either a hex/digit number or a string corresponding
|
||||
to a verb. Similarly, the last parameter is the value to write, or
|
||||
can be a string for the parameter type.
|
||||
|
||||
------------------------------------------------------------------------
|
||||
% hda-verb /dev/snd/hwC0D0 0x12 0x701 2
|
||||
nid = 0x12, verb = 0x701, param = 0x2
|
||||
value = 0x0
|
||||
|
||||
% hda-verb /dev/snd/hwC0D0 0x0 PARAMETERS VENDOR_ID
|
||||
nid = 0x0, verb = 0xf00, param = 0x0
|
||||
value = 0x10ec0262
|
||||
|
||||
% hda-verb /dev/snd/hwC0D0 2 set_a 0xb080
|
||||
nid = 0x2, verb = 0x300, param = 0xb080
|
||||
value = 0x0
|
||||
------------------------------------------------------------------------
|
||||
|
||||
Although you can issue any verbs with this program, the driver state
|
||||
won't be always updated. For example, the volume values are usually
|
||||
cached in the driver, and thus changing the widget amp value directly
|
||||
via hda-verb won't change the mixer value.
|
||||
|
||||
The hda-verb program is found in the ftp directory:
|
||||
|
||||
- ftp://ftp.kernel.org/pub/linux/kernel/people/tiwai/misc/
|
||||
|
||||
Also a git repository is available:
|
||||
|
||||
- git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/hda-verb.git
|
||||
|
||||
See README file in the tarball for more details about hda-verb
|
||||
program.
|
||||
|
||||
|
||||
hda-analyzer
|
||||
~~~~~~~~~~~~
|
||||
hda-analyzer provides a graphical interface to access the raw HD-audio
|
||||
control, based on pyGTK2 binding. It's a more powerful version of
|
||||
hda-verb. The program gives you an easy-to-use GUI stuff for showing
|
||||
the widget information and adjusting the amp values, as well as the
|
||||
proc-compatible output.
|
||||
|
||||
The hda-analyzer is a part of alsa.git repository in
|
||||
alsa-project.org:
|
||||
|
||||
- http://git.alsa-project.org/?p=alsa.git;a=tree;f=hda-analyzer
|
||||
|
||||
|
||||
Codecgraph
|
||||
~~~~~~~~~~
|
||||
Codecgraph is a utility program to generate a graph and visualizes the
|
||||
codec-node connection of a codec chip. It's especially useful when
|
||||
you analyze or debug a codec without a proper datasheet. The program
|
||||
parses the given codec proc file and converts to SVG via graphiz
|
||||
program.
|
||||
|
||||
The tarball and GIT trees are found in the web page at:
|
||||
|
||||
- http://helllabs.org/codecgraph/
|
||||
|
||||
|
||||
hda-emu
|
||||
~~~~~~~
|
||||
hda-emu is an HD-audio emulator. The main purpose of this program is
|
||||
to debug an HD-audio codec without the real hardware. Thus, it
|
||||
doesn't emulate the behavior with the real audio I/O, but it just
|
||||
dumps the codec register changes and the ALSA-driver internal changes
|
||||
at probing and operating the HD-audio driver.
|
||||
|
||||
The program requires a codec proc-file to simulate. Get a proc file
|
||||
for the target codec beforehand, or pick up an example codec from the
|
||||
codec proc collections in the tarball. Then, run the program with the
|
||||
proc file, and the hda-emu program will start parsing the codec file
|
||||
and simulates the HD-audio driver:
|
||||
|
||||
------------------------------------------------------------------------
|
||||
% hda-emu codecs/stac9200-dell-d820-laptop
|
||||
# Parsing..
|
||||
hda_codec: Unknown model for STAC9200, using BIOS defaults
|
||||
hda_codec: pin nid 08 bios pin config 40c003fa
|
||||
....
|
||||
------------------------------------------------------------------------
|
||||
|
||||
The program gives you only a very dumb command-line interface. You
|
||||
can get a proc-file dump at the current state, get a list of control
|
||||
(mixer) elements, set/get the control element value, simulate the PCM
|
||||
operation, the jack plugging simulation, etc.
|
||||
|
||||
The package is found in:
|
||||
|
||||
- ftp://ftp.kernel.org/pub/linux/kernel/people/tiwai/misc/
|
||||
|
||||
A git repository is available:
|
||||
|
||||
- git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/hda-emu.git
|
||||
|
||||
See README file in the tarball for more details about hda-emu
|
||||
program.
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
x
Reference in New Issue
Block a user