dt-bindings: Convert Reserved Memory binding to a schema

Convert the reserved memory bindings to DT schema format. The bindings
are split into schemas for clients, common reserved memory node
properties and a specific binding for shared-dma-pool.

Cc: devicetree-spec@vger.kernel.org
Signed-off-by: Maxime Ripard <maxime@cerno.tech>
Signed-off-by: Rob Herring <robh@kernel.org>
Link: https://lore.kernel.org/r/20210901091852.479202-6-maxime@cerno.tech
This commit is contained in:
Maxime Ripard 2021-09-01 11:18:05 +02:00 committed by Rob Herring
parent 0e3e0fa766
commit bf99826f23
4 changed files with 228 additions and 171 deletions

View File

@ -0,0 +1,40 @@
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/reserved-memory/memory-region.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Reserved Memory Region Device Tree Binding
maintainers:
- devicetree-spec@vger.kernel.org
description: |
Regions in the /reserved-memory node may be referenced by other device
nodes by adding a memory-region property to the device node.
select: true
properties:
memory-region:
$ref: /schemas/types.yaml#/definitions/phandle-array
description: >
Phandle to a /reserved-memory child node assigned to the device.
memory-region-names:
$ref: /schemas/types.yaml#/definitions/string-array
description: >
A list of names, one for each corresponding entry in the
memory-region property
additionalProperties: true
examples:
- |
fb0: video@12300000 {
/* ... */
reg = <0x12300000 0x1000>;
memory-region = <&display_reserved>;
};
...

View File

@ -1,171 +1 @@
*** Reserved memory regions ***
Reserved memory is specified as a node under the /reserved-memory node.
The operating system shall exclude reserved memory from normal usage
one can create child nodes describing particular reserved (excluded from
normal use) memory regions. Such memory regions are usually designed for
the special usage by various device drivers.
Parameters for each memory region can be encoded into the device tree
with the following nodes:
/reserved-memory node
---------------------
#address-cells, #size-cells (required) - standard definition
- Should use the same values as the root node
ranges (required) - standard definition
- Should be empty
/reserved-memory/ child nodes
-----------------------------
Each child of the reserved-memory node specifies one or more regions of
reserved memory. Each child node may either use a 'reg' property to
specify a specific range of reserved memory, or a 'size' property with
optional constraints to request a dynamically allocated block of memory.
Following the generic-names recommended practice, node names should
reflect the purpose of the node (ie. "framebuffer" or "dma-pool"). Unit
address (@<address>) should be appended to the name if the node is a
static allocation.
Properties:
Requires either a) or b) below.
a) static allocation
reg (required) - standard definition
b) dynamic allocation
size (required) - length based on parent's #size-cells
- Size in bytes of memory to reserve.
alignment (optional) - length based on parent's #size-cells
- Address boundary for alignment of allocation.
alloc-ranges (optional) - prop-encoded-array (address, length pairs).
- Specifies regions of memory that are
acceptable to allocate from.
If both reg and size are present, then the reg property takes precedence
and size is ignored.
Additional properties:
compatible (optional) - standard definition
- may contain the following strings:
- shared-dma-pool: This indicates a region of memory meant to be
used as a shared pool of DMA buffers for a set of devices. It can
be used by an operating system to instantiate the necessary pool
management subsystem if necessary.
- restricted-dma-pool: This indicates a region of memory meant to be
used as a pool of restricted DMA buffers for a set of devices. The
memory region would be the only region accessible to those devices.
When using this, the no-map and reusable properties must not be set,
so the operating system can create a virtual mapping that will be used
for synchronization. The main purpose for restricted DMA is to
mitigate the lack of DMA access control on systems without an IOMMU,
which could result in the DMA accessing the system memory at
unexpected times and/or unexpected addresses, possibly leading to data
leakage or corruption. The feature on its own provides a basic level
of protection against the DMA overwriting buffer contents at
unexpected times. However, to protect against general data leakage and
system memory corruption, the system needs to provide way to lock down
the memory access, e.g., MPU. Note that since coherent allocation
needs remapping, one must set up another device coherent pool by
shared-dma-pool and use dma_alloc_from_dev_coherent instead for atomic
coherent allocation.
- vendor specific string in the form <vendor>,[<device>-]<usage>
no-map (optional) - empty property
- Indicates the operating system must not create a virtual mapping
of the region as part of its standard mapping of system memory,
nor permit speculative access to it under any circumstances other
than under the control of the device driver using the region.
reusable (optional) - empty property
- The operating system can use the memory in this region with the
limitation that the device driver(s) owning the region need to be
able to reclaim it back. Typically that means that the operating
system can use that region to store volatile or cached data that
can be otherwise regenerated or migrated elsewhere.
A node must not carry both the no-map and the reusable property as these are
logically contradictory.
Linux implementation note:
- If a "linux,cma-default" property is present, then Linux will use the
region for the default pool of the contiguous memory allocator.
- If a "linux,dma-default" property is present, then Linux will use the
region for the default pool of the consistent DMA allocator.
Device node references to reserved memory
-----------------------------------------
Regions in the /reserved-memory node may be referenced by other device
nodes by adding a memory-region property to the device node.
memory-region (optional) - phandle, specifier pairs to children of /reserved-memory
memory-region-names (optional) - a list of names, one for each corresponding
entry in the memory-region property
Example
-------
This example defines 4 contiguous regions for Linux kernel:
one default of all device drivers (named linux,cma@72000000 and 64MiB in size),
one dedicated to the framebuffer device (named framebuffer@78000000, 8MiB),
one for multimedia processing (named multimedia-memory@77000000, 64MiB), and
one for restricted dma pool (named restricted_dma_reserved@0x50000000, 64MiB).
/ {
#address-cells = <1>;
#size-cells = <1>;
memory {
reg = <0x40000000 0x40000000>;
};
reserved-memory {
#address-cells = <1>;
#size-cells = <1>;
ranges;
/* global autoconfigured region for contiguous allocations */
linux,cma {
compatible = "shared-dma-pool";
reusable;
size = <0x4000000>;
alignment = <0x2000>;
linux,cma-default;
};
display_reserved: framebuffer@78000000 {
reg = <0x78000000 0x800000>;
};
multimedia_reserved: multimedia@77000000 {
compatible = "acme,multimedia-memory";
reg = <0x77000000 0x4000000>;
};
restricted_dma_reserved: restricted_dma_reserved {
compatible = "restricted-dma-pool";
reg = <0x50000000 0x4000000>;
};
};
/* ... */
fb0: video@12300000 {
memory-region = <&display_reserved>;
/* ... */
};
scaler: scaler@12500000 {
memory-region = <&multimedia_reserved>;
/* ... */
};
codec: codec@12600000 {
memory-region = <&multimedia_reserved>;
/* ... */
};
pcie_device: pcie_device@0,0 {
reg = <0x83010000 0x0 0x00000000 0x0 0x00100000
0x83010000 0x0 0x00100000 0x0 0x00100000>;
memory-region = <&restricted_dma_reserved>;
/* ... */
};
};
This file has been moved to reserved-memory.yaml.

View File

@ -0,0 +1,100 @@
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/reserved-memory/reserved-memory.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: /reserved-memory Child Node Common Device Tree Bindings
maintainers:
- devicetree-spec@vger.kernel.org
description: >
Reserved memory is specified as a node under the /reserved-memory node. The
operating system shall exclude reserved memory from normal usage one can
create child nodes describing particular reserved (excluded from normal use)
memory regions. Such memory regions are usually designed for the special
usage by various device drivers.
Each child of the reserved-memory node specifies one or more regions
of reserved memory. Each child node may either use a 'reg' property to
specify a specific range of reserved memory, or a 'size' property with
optional constraints to request a dynamically allocated block of
memory.
Following the generic-names recommended practice, node names should
reflect the purpose of the node (ie. "framebuffer" or "dma-pool").
Unit address (@<address>) should be appended to the name if the node
is a static allocation.
properties:
reg: true
size:
$ref: /schemas/types.yaml#/definitions/uint32-array
minItems: 1
maxItems: 2
description: >
Length based on parent's \#size-cells. Size in bytes of memory to
reserve.
alignment:
$ref: /schemas/types.yaml#/definitions/uint32-array
minItems: 1
maxItems: 2
description: >
Length based on parent's \#size-cells. Address boundary for
alignment of allocation.
alloc-ranges:
$ref: /schemas/types.yaml#/definitions/uint32-array
description: >
Address and Length pairs. Specifies regions of memory that are
acceptable to allocate from.
no-map:
type: boolean
description: >
Indicates the operating system must not create a virtual mapping
of the region as part of its standard mapping of system memory,
nor permit speculative access to it under any circumstances other
than under the control of the device driver using the region.
reusable:
type: boolean
description: >
The operating system can use the memory in this region with the
limitation that the device driver(s) owning the region need to be
able to reclaim it back. Typically that means that the operating
system can use that region to store volatile or cached data that
can be otherwise regenerated or migrated elsewhere.
allOf:
- if:
required:
- no-map
then:
not:
required:
- reusable
- if:
required:
- reusable
then:
not:
required:
- no-map
oneOf:
- required:
- reg
- required:
- size
additionalProperties: true
...

View File

@ -0,0 +1,87 @@
# SPDX-License-Identifier: (GPL-2.0 OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/reserved-memory/shared-dma-pool.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: /reserved-memory DMA pool node bindings
maintainers:
- devicetree-spec@vger.kernel.org
allOf:
- $ref: "reserved-memory.yaml"
properties:
compatible:
oneOf:
- const: shared-dma-pool
description: >
This indicates a region of memory meant to be used as a shared
pool of DMA buffers for a set of devices. It can be used by an
operating system to instantiate the necessary pool management
subsystem if necessary.
- const: restricted-dma-pool
description: >
This indicates a region of memory meant to be used as a pool
of restricted DMA buffers for a set of devices. The memory
region would be the only region accessible to those devices.
When using this, the no-map and reusable properties must not
be set, so the operating system can create a virtual mapping
that will be used for synchronization. The main purpose for
restricted DMA is to mitigate the lack of DMA access control
on systems without an IOMMU, which could result in the DMA
accessing the system memory at unexpected times and/or
unexpected addresses, possibly leading to data leakage or
corruption. The feature on its own provides a basic level of
protection against the DMA overwriting buffer contents at
unexpected times. However, to protect against general data
leakage and system memory corruption, the system needs to
provide way to lock down the memory access, e.g., MPU. Note
that since coherent allocation needs remapping, one must set
up another device coherent pool by shared-dma-pool and use
dma_alloc_from_dev_coherent instead for atomic coherent
allocation.
linux,cma-default:
type: boolean
description: >
If this property is present, then Linux will use the region for
the default pool of the contiguous memory allocator.
linux,dma-default:
type: boolean
description: >
If this property is present, then Linux will use the region for
the default pool of the consistent DMA allocator.
unevaluatedProperties: false
examples:
- |
reserved-memory {
#address-cells = <1>;
#size-cells = <1>;
ranges;
/* global autoconfigured region for contiguous allocations */
linux,cma {
compatible = "shared-dma-pool";
reusable;
size = <0x4000000>;
alignment = <0x2000>;
linux,cma-default;
};
display_reserved: framebuffer@78000000 {
reg = <0x78000000 0x800000>;
};
restricted_dma_reserved: restricted-dma-pool@50000000 {
compatible = "restricted-dma-pool";
reg = <0x50000000 0x4000000>;
};
};
...