KVM: x86/mmu: Split huge pages mapped by the TDP MMU on fault
Now that the TDP MMU has a mechanism to split huge pages, use it in the fault path when a huge page needs to be replaced with a mapping at a lower level. This change reduces the negative performance impact of NX HugePages. Prior to this change if a vCPU executed from a huge page and NX HugePages was enabled, the vCPU would take a fault, zap the huge page, and mapping the faulting address at 4KiB with execute permissions enabled. The rest of the memory would be left *unmapped* and have to be faulted back in by the guest upon access (read, write, or execute). If guest is backed by 1GiB, a single execute instruction can zap an entire GiB of its physical address space. For example, it can take a VM longer to execute from its memory than to populate that memory in the first place: $ ./execute_perf_test -s anonymous_hugetlb_1gb -v96 Populating memory : 2.748378795s Executing from memory : 2.899670885s With this change, such faults split the huge page instead of zapping it, which avoids the non-present faults on the rest of the huge page: $ ./execute_perf_test -s anonymous_hugetlb_1gb -v96 Populating memory : 2.729544474s Executing from memory : 0.111965688s <--- This change also reduces the performance impact of dirty logging when eager_page_split=N. eager_page_split=N (abbreviated "eps=N" below) can be desirable for read-heavy workloads, as it avoids allocating memory to split huge pages that are never written and avoids increasing the TLB miss cost on reads of those pages. | Config: ept=Y, tdp_mmu=Y, 5% writes | | Iteration 1 dirty memory time | | --------------------------------------------- | vCPU Count | eps=N (Before) | eps=N (After) | eps=Y | ------------ | -------------- | ------------- | ------------ | 2 | 0.332305091s | 0.019615027s | 0.006108211s | 4 | 0.353096020s | 0.019452131s | 0.006214670s | 8 | 0.453938562s | 0.019748246s | 0.006610997s | 16 | 0.719095024s | 0.019972171s | 0.007757889s | 32 | 1.698727124s | 0.021361615s | 0.012274432s | 64 | 2.630673582s | 0.031122014s | 0.016994683s | 96 | 3.016535213s | 0.062608739s | 0.044760838s | Eager page splitting remains beneficial for write-heavy workloads, but the gap is now reduced. | Config: ept=Y, tdp_mmu=Y, 100% writes | | Iteration 1 dirty memory time | | --------------------------------------------- | vCPU Count | eps=N (Before) | eps=N (After) | eps=Y | ------------ | -------------- | ------------- | ------------ | 2 | 0.317710329s | 0.296204596s | 0.058689782s | 4 | 0.337102375s | 0.299841017s | 0.060343076s | 8 | 0.386025681s | 0.297274460s | 0.060399702s | 16 | 0.791462524s | 0.298942578s | 0.062508699s | 32 | 1.719646014s | 0.313101996s | 0.075984855s | 64 | 2.527973150s | 0.455779206s | 0.079789363s | 96 | 2.681123208s | 0.673778787s | 0.165386739s | Further study is needed to determine if the remaining gap is acceptable for customer workloads or if eager_page_split=N still requires a-priori knowledge of the VM workload, especially when considering these costs extrapolated out to large VMs with e.g. 416 vCPUs and 12TB RAM. Signed-off-by: David Matlack <dmatlack@google.com> Reviewed-by: Mingwei Zhang <mizhang@google.com> Message-Id: <20221109185905.486172-3-dmatlack@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
parent
92292c1de2
commit
c4b33d28ea
@ -1146,6 +1146,9 @@ static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter,
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
|
||||
struct kvm_mmu_page *sp, bool shared);
|
||||
|
||||
/*
|
||||
* Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
|
||||
* page tables and SPTEs to translate the faulting guest physical address.
|
||||
@ -1171,49 +1174,42 @@ int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
|
||||
if (iter.level == fault->goal_level)
|
||||
break;
|
||||
|
||||
/*
|
||||
* If there is an SPTE mapping a large page at a higher level
|
||||
* than the target, that SPTE must be cleared and replaced
|
||||
* with a non-leaf SPTE.
|
||||
*/
|
||||
/* Step down into the lower level page table if it exists. */
|
||||
if (is_shadow_present_pte(iter.old_spte) &&
|
||||
is_large_pte(iter.old_spte)) {
|
||||
if (tdp_mmu_zap_spte_atomic(vcpu->kvm, &iter))
|
||||
break;
|
||||
!is_large_pte(iter.old_spte))
|
||||
continue;
|
||||
|
||||
/*
|
||||
* The iter must explicitly re-read the spte here
|
||||
* because the new value informs the !present
|
||||
* path below.
|
||||
*/
|
||||
iter.old_spte = kvm_tdp_mmu_read_spte(iter.sptep);
|
||||
/*
|
||||
* If SPTE has been frozen by another thread, just give up and
|
||||
* retry, avoiding unnecessary page table allocation and free.
|
||||
*/
|
||||
if (is_removed_spte(iter.old_spte))
|
||||
break;
|
||||
|
||||
/*
|
||||
* The SPTE is either non-present or points to a huge page that
|
||||
* needs to be split.
|
||||
*/
|
||||
sp = tdp_mmu_alloc_sp(vcpu);
|
||||
tdp_mmu_init_child_sp(sp, &iter);
|
||||
|
||||
sp->nx_huge_page_disallowed = fault->huge_page_disallowed;
|
||||
|
||||
if (is_shadow_present_pte(iter.old_spte))
|
||||
ret = tdp_mmu_split_huge_page(kvm, &iter, sp, true);
|
||||
else
|
||||
ret = tdp_mmu_link_sp(kvm, &iter, sp, true);
|
||||
|
||||
if (ret) {
|
||||
tdp_mmu_free_sp(sp);
|
||||
break;
|
||||
}
|
||||
|
||||
if (!is_shadow_present_pte(iter.old_spte)) {
|
||||
/*
|
||||
* If SPTE has been frozen by another thread, just
|
||||
* give up and retry, avoiding unnecessary page table
|
||||
* allocation and free.
|
||||
*/
|
||||
if (is_removed_spte(iter.old_spte))
|
||||
break;
|
||||
|
||||
sp = tdp_mmu_alloc_sp(vcpu);
|
||||
tdp_mmu_init_child_sp(sp, &iter);
|
||||
|
||||
sp->nx_huge_page_disallowed = fault->huge_page_disallowed;
|
||||
|
||||
if (tdp_mmu_link_sp(kvm, &iter, sp, true)) {
|
||||
tdp_mmu_free_sp(sp);
|
||||
break;
|
||||
}
|
||||
|
||||
if (fault->huge_page_disallowed &&
|
||||
fault->req_level >= iter.level) {
|
||||
spin_lock(&kvm->arch.tdp_mmu_pages_lock);
|
||||
track_possible_nx_huge_page(kvm, sp);
|
||||
spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
|
||||
}
|
||||
if (fault->huge_page_disallowed &&
|
||||
fault->req_level >= iter.level) {
|
||||
spin_lock(&kvm->arch.tdp_mmu_pages_lock);
|
||||
track_possible_nx_huge_page(kvm, sp);
|
||||
spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1477,6 +1473,7 @@ static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(struct kvm *kvm,
|
||||
return sp;
|
||||
}
|
||||
|
||||
/* Note, the caller is responsible for initializing @sp. */
|
||||
static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
|
||||
struct kvm_mmu_page *sp, bool shared)
|
||||
{
|
||||
@ -1484,8 +1481,6 @@ static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
|
||||
const int level = iter->level;
|
||||
int ret, i;
|
||||
|
||||
tdp_mmu_init_child_sp(sp, iter);
|
||||
|
||||
/*
|
||||
* No need for atomics when writing to sp->spt since the page table has
|
||||
* not been linked in yet and thus is not reachable from any other CPU.
|
||||
@ -1561,6 +1556,8 @@ retry:
|
||||
continue;
|
||||
}
|
||||
|
||||
tdp_mmu_init_child_sp(sp, &iter);
|
||||
|
||||
if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared))
|
||||
goto retry;
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user