mm/slub: restrict sysfs validation to debug caches and make it safe

Rongwei Wang reports [1] that cache validation triggered by writing to
/sys/kernel/slab/<cache>/validate is racy against normal cache
operations (e.g. freeing) in a way that can cause false positive
inconsistency reports for caches with debugging enabled. The problem is
that debugging actions that mark object free or active and actual
freelist operations are not atomic, and the validation can see an
inconsistent state.

For caches that do or don't have debugging enabled, additional races
involving n->nr_slabs are possible that result in false reports of wrong
slab counts.

This patch attempts to solve these issues while not adding overhead to
normal (especially fastpath) operations for caches that do not have
debugging enabled. Such overhead would not be justified to make possible
userspace-triggered validation safe. Instead, disable the validation for
caches that don't have debugging enabled and make their sysfs validate
handler return -EINVAL.

For caches that do have debugging enabled, we can instead extend the
existing approach of not using percpu freelists to force all alloc/free
operations to the slow paths where debugging flags is checked and acted
upon. There can adjust the debug-specific paths to increase n->list_lock
coverage against concurrent validation as necessary.

The processing on free in free_debug_processing() already happens under
n->list_lock so we can extend it to actually do the freeing as well and
thus make it atomic against concurrent validation. As observed by
Hyeonggon Yoo, we do not really need to take slab_lock() anymore here
because all paths we could race with are protected by n->list_lock under
the new scheme, so drop its usage here.

The processing on alloc in alloc_debug_processing() currently doesn't
take any locks, but we have to first allocate the object from a slab on
the partial list (as debugging caches have no percpu slabs) and thus
take the n->list_lock anyway. Add a function alloc_single_from_partial()
that grabs just the allocated object instead of the whole freelist, and
does the debug processing. The n->list_lock coverage again makes it
atomic against validation and it is also ultimately more efficient than
the current grabbing of freelist immediately followed by slab
deactivation.

To prevent races on n->nr_slabs updates, make sure that for caches with
debugging enabled, inc_slabs_node() or dec_slabs_node() is called under
n->list_lock. When allocating a new slab for a debug cache, handle the
allocation by a new function alloc_single_from_new_slab() instead of the
current forced deactivation path.

Neither of these changes affect the fast paths at all. The changes in
slow paths are negligible for non-debug caches.

[1] https://lore.kernel.org/all/20220529081535.69275-1-rongwei.wang@linux.alibaba.com/

Reported-by: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
This commit is contained in:
Vlastimil Babka 2022-08-23 19:03:57 +02:00
parent a579b0560c
commit c7323a5ad0

228
mm/slub.c
View File

@ -1324,17 +1324,14 @@ static inline int alloc_consistency_checks(struct kmem_cache *s,
}
static noinline int alloc_debug_processing(struct kmem_cache *s,
struct slab *slab,
void *object, unsigned long addr)
struct slab *slab, void *object)
{
if (s->flags & SLAB_CONSISTENCY_CHECKS) {
if (!alloc_consistency_checks(s, slab, object))
goto bad;
}
/* Success perform special debug activities for allocs */
if (s->flags & SLAB_STORE_USER)
set_track(s, object, TRACK_ALLOC, addr);
/* Success. Perform special debug activities for allocs */
trace(s, slab, object, 1);
init_object(s, object, SLUB_RED_ACTIVE);
return 1;
@ -1604,16 +1601,18 @@ static inline
void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
static inline int alloc_debug_processing(struct kmem_cache *s,
struct slab *slab, void *object, unsigned long addr) { return 0; }
struct slab *slab, void *object) { return 0; }
static inline int free_debug_processing(
static inline void free_debug_processing(
struct kmem_cache *s, struct slab *slab,
void *head, void *tail, int bulk_cnt,
unsigned long addr) { return 0; }
unsigned long addr) {}
static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
static inline int check_object(struct kmem_cache *s, struct slab *slab,
void *object, u8 val) { return 1; }
static inline void set_track(struct kmem_cache *s, void *object,
enum track_item alloc, unsigned long addr) {}
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
struct slab *slab) {}
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
@ -1919,11 +1918,13 @@ static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
*/
slab = alloc_slab_page(alloc_gfp, node, oo);
if (unlikely(!slab))
goto out;
return NULL;
stat(s, ORDER_FALLBACK);
}
slab->objects = oo_objects(oo);
slab->inuse = 0;
slab->frozen = 0;
account_slab(slab, oo_order(oo), s, flags);
@ -1950,15 +1951,6 @@ static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
set_freepointer(s, p, NULL);
}
slab->inuse = slab->objects;
slab->frozen = 1;
out:
if (!slab)
return NULL;
inc_slabs_node(s, slab_nid(slab), slab->objects);
return slab;
}
@ -2045,6 +2037,75 @@ static inline void remove_partial(struct kmem_cache_node *n,
n->nr_partial--;
}
/*
* Called only for kmem_cache_debug() caches instead of acquire_slab(), with a
* slab from the n->partial list. Remove only a single object from the slab, do
* the alloc_debug_processing() checks and leave the slab on the list, or move
* it to full list if it was the last free object.
*/
static void *alloc_single_from_partial(struct kmem_cache *s,
struct kmem_cache_node *n, struct slab *slab)
{
void *object;
lockdep_assert_held(&n->list_lock);
object = slab->freelist;
slab->freelist = get_freepointer(s, object);
slab->inuse++;
if (!alloc_debug_processing(s, slab, object)) {
remove_partial(n, slab);
return NULL;
}
if (slab->inuse == slab->objects) {
remove_partial(n, slab);
add_full(s, n, slab);
}
return object;
}
/*
* Called only for kmem_cache_debug() caches to allocate from a freshly
* allocated slab. Allocate a single object instead of whole freelist
* and put the slab to the partial (or full) list.
*/
static void *alloc_single_from_new_slab(struct kmem_cache *s,
struct slab *slab)
{
int nid = slab_nid(slab);
struct kmem_cache_node *n = get_node(s, nid);
unsigned long flags;
void *object;
object = slab->freelist;
slab->freelist = get_freepointer(s, object);
slab->inuse = 1;
if (!alloc_debug_processing(s, slab, object))
/*
* It's not really expected that this would fail on a
* freshly allocated slab, but a concurrent memory
* corruption in theory could cause that.
*/
return NULL;
spin_lock_irqsave(&n->list_lock, flags);
if (slab->inuse == slab->objects)
add_full(s, n, slab);
else
add_partial(n, slab, DEACTIVATE_TO_HEAD);
inc_slabs_node(s, nid, slab->objects);
spin_unlock_irqrestore(&n->list_lock, flags);
return object;
}
/*
* Remove slab from the partial list, freeze it and
* return the pointer to the freelist.
@ -2125,6 +2186,13 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
if (!pfmemalloc_match(slab, gfpflags))
continue;
if (kmem_cache_debug(s)) {
object = alloc_single_from_partial(s, n, slab);
if (object)
break;
continue;
}
t = acquire_slab(s, n, slab, object == NULL);
if (!t)
break;
@ -2733,31 +2801,39 @@ static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
}
/* Supports checking bulk free of a constructed freelist */
static noinline int free_debug_processing(
static noinline void free_debug_processing(
struct kmem_cache *s, struct slab *slab,
void *head, void *tail, int bulk_cnt,
unsigned long addr)
{
struct kmem_cache_node *n = get_node(s, slab_nid(slab));
struct slab *slab_free = NULL;
void *object = head;
int cnt = 0;
unsigned long flags, flags2;
int ret = 0;
unsigned long flags;
bool checks_ok = false;
depot_stack_handle_t handle = 0;
if (s->flags & SLAB_STORE_USER)
handle = set_track_prepare();
spin_lock_irqsave(&n->list_lock, flags);
slab_lock(slab, &flags2);
if (s->flags & SLAB_CONSISTENCY_CHECKS) {
if (!check_slab(s, slab))
goto out;
}
if (slab->inuse < bulk_cnt) {
slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
slab->inuse, bulk_cnt);
goto out;
}
next_object:
cnt++;
if (++cnt > bulk_cnt)
goto out_cnt;
if (s->flags & SLAB_CONSISTENCY_CHECKS) {
if (!free_consistency_checks(s, slab, object, addr))
@ -2775,18 +2851,57 @@ next_object:
object = get_freepointer(s, object);
goto next_object;
}
ret = 1;
checks_ok = true;
out:
out_cnt:
if (cnt != bulk_cnt)
slab_err(s, slab, "Bulk freelist count(%d) invalid(%d)\n",
slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
bulk_cnt, cnt);
slab_unlock(slab, &flags2);
out:
if (checks_ok) {
void *prior = slab->freelist;
/* Perform the actual freeing while we still hold the locks */
slab->inuse -= cnt;
set_freepointer(s, tail, prior);
slab->freelist = head;
/* Do we need to remove the slab from full or partial list? */
if (!prior) {
remove_full(s, n, slab);
} else if (slab->inuse == 0 &&
n->nr_partial >= s->min_partial) {
remove_partial(n, slab);
stat(s, FREE_REMOVE_PARTIAL);
}
/* Do we need to discard the slab or add to partial list? */
if (slab->inuse == 0 && n->nr_partial >= s->min_partial) {
slab_free = slab;
} else if (!prior) {
add_partial(n, slab, DEACTIVATE_TO_TAIL);
stat(s, FREE_ADD_PARTIAL);
}
}
if (slab_free) {
/*
* Update the counters while still holding n->list_lock to
* prevent spurious validation warnings
*/
dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
}
spin_unlock_irqrestore(&n->list_lock, flags);
if (!ret)
if (!checks_ok)
slab_fix(s, "Object at 0x%p not freed", object);
return ret;
if (slab_free) {
stat(s, FREE_SLAB);
free_slab(s, slab_free);
}
}
#endif /* CONFIG_SLUB_DEBUG */
@ -3036,36 +3151,52 @@ new_objects:
return NULL;
}
stat(s, ALLOC_SLAB);
if (kmem_cache_debug(s)) {
freelist = alloc_single_from_new_slab(s, slab);
if (unlikely(!freelist))
goto new_objects;
if (s->flags & SLAB_STORE_USER)
set_track(s, freelist, TRACK_ALLOC, addr);
return freelist;
}
/*
* No other reference to the slab yet so we can
* muck around with it freely without cmpxchg
*/
freelist = slab->freelist;
slab->freelist = NULL;
slab->inuse = slab->objects;
slab->frozen = 1;
stat(s, ALLOC_SLAB);
inc_slabs_node(s, slab_nid(slab), slab->objects);
check_new_slab:
if (kmem_cache_debug(s)) {
if (!alloc_debug_processing(s, slab, freelist, addr)) {
/* Slab failed checks. Next slab needed */
goto new_slab;
} else {
/*
* For debug case, we don't load freelist so that all
* allocations go through alloc_debug_processing()
* For debug caches here we had to go through
* alloc_single_from_partial() so just store the tracking info
* and return the object
*/
goto return_single;
}
if (s->flags & SLAB_STORE_USER)
set_track(s, freelist, TRACK_ALLOC, addr);
return freelist;
}
if (unlikely(!pfmemalloc_match(slab, gfpflags)))
if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
/*
* For !pfmemalloc_match() case we don't load freelist so that
* we don't make further mismatched allocations easier.
*/
goto return_single;
deactivate_slab(s, slab, get_freepointer(s, freelist));
return freelist;
}
retry_load_slab:
@ -3089,11 +3220,6 @@ retry_load_slab:
c->slab = slab;
goto load_freelist;
return_single:
deactivate_slab(s, slab, get_freepointer(s, freelist));
return freelist;
}
/*
@ -3341,9 +3467,10 @@ static void __slab_free(struct kmem_cache *s, struct slab *slab,
if (kfence_free(head))
return;
if (kmem_cache_debug(s) &&
!free_debug_processing(s, slab, head, tail, cnt, addr))
if (kmem_cache_debug(s)) {
free_debug_processing(s, slab, head, tail, cnt, addr);
return;
}
do {
if (unlikely(n)) {
@ -3936,6 +4063,7 @@ static void early_kmem_cache_node_alloc(int node)
slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
BUG_ON(!slab);
inc_slabs_node(kmem_cache_node, slab_nid(slab), slab->objects);
if (slab_nid(slab) != node) {
pr_err("SLUB: Unable to allocate memory from node %d\n", node);
pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
@ -3950,7 +4078,6 @@ static void early_kmem_cache_node_alloc(int node)
n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
slab->freelist = get_freepointer(kmem_cache_node, n);
slab->inuse = 1;
slab->frozen = 0;
kmem_cache_node->node[node] = n;
init_kmem_cache_node(n);
inc_slabs_node(kmem_cache_node, node, slab->objects);
@ -4611,6 +4738,7 @@ static int __kmem_cache_do_shrink(struct kmem_cache *s)
if (free == slab->objects) {
list_move(&slab->slab_list, &discard);
n->nr_partial--;
dec_slabs_node(s, node, slab->objects);
} else if (free <= SHRINK_PROMOTE_MAX)
list_move(&slab->slab_list, promote + free - 1);
}
@ -4626,7 +4754,7 @@ static int __kmem_cache_do_shrink(struct kmem_cache *s)
/* Release empty slabs */
list_for_each_entry_safe(slab, t, &discard, slab_list)
discard_slab(s, slab);
free_slab(s, slab);
if (slabs_node(s, node))
ret = 1;
@ -5601,7 +5729,7 @@ static ssize_t validate_store(struct kmem_cache *s,
{
int ret = -EINVAL;
if (buf[0] == '1') {
if (buf[0] == '1' && kmem_cache_debug(s)) {
ret = validate_slab_cache(s);
if (ret >= 0)
ret = length;