KEYS: encrypted: Instantiate key with user-provided decrypted data
For availability and performance reasons master keys often need to be released outside of a Key Management Service (KMS) to clients. It would be beneficial to provide a mechanism where the wrapping/unwrapping of data encryption keys (DEKs) is not dependent on a remote call at runtime yet security is not (or only minimally) compromised. Master keys could be securely stored in the Kernel and be used to wrap/unwrap keys from Userspace. The encrypted.c class supports instantiation of encrypted keys with either an already-encrypted key material, or by generating new key material based on random numbers. This patch defines a new datablob format: [<format>] <master-key name> <decrypted data length> <decrypted data> that allows to inject and encrypt user-provided decrypted data. The decrypted data must be hex-ascii encoded. Signed-off-by: Yael Tzur <yaelt@google.com> Reviewed-by: Mimi Zohar <zohar@linux.ibm.com> Reviewed-by: Sumit Garg <sumit.garg@linaro.org> Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org> Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
This commit is contained in:
parent
8c54135e2e
commit
cd3bc044af
@ -107,12 +107,13 @@ Encrypted Keys
|
|||||||
--------------
|
--------------
|
||||||
|
|
||||||
Encrypted keys do not depend on a trust source, and are faster, as they use AES
|
Encrypted keys do not depend on a trust source, and are faster, as they use AES
|
||||||
for encryption/decryption. New keys are created from kernel-generated random
|
for encryption/decryption. New keys are created either from kernel-generated
|
||||||
numbers, and are encrypted/decrypted using a specified ‘master’ key. The
|
random numbers or user-provided decrypted data, and are encrypted/decrypted
|
||||||
‘master’ key can either be a trusted-key or user-key type. The main disadvantage
|
using a specified ‘master’ key. The ‘master’ key can either be a trusted-key or
|
||||||
of encrypted keys is that if they are not rooted in a trusted key, they are only
|
user-key type. The main disadvantage of encrypted keys is that if they are not
|
||||||
as secure as the user key encrypting them. The master user key should therefore
|
rooted in a trusted key, they are only as secure as the user key encrypting
|
||||||
be loaded in as secure a way as possible, preferably early in boot.
|
them. The master user key should therefore be loaded in as secure a way as
|
||||||
|
possible, preferably early in boot.
|
||||||
|
|
||||||
|
|
||||||
Usage
|
Usage
|
||||||
@ -199,6 +200,8 @@ Usage::
|
|||||||
|
|
||||||
keyctl add encrypted name "new [format] key-type:master-key-name keylen"
|
keyctl add encrypted name "new [format] key-type:master-key-name keylen"
|
||||||
ring
|
ring
|
||||||
|
keyctl add encrypted name "new [format] key-type:master-key-name keylen
|
||||||
|
decrypted-data" ring
|
||||||
keyctl add encrypted name "load hex_blob" ring
|
keyctl add encrypted name "load hex_blob" ring
|
||||||
keyctl update keyid "update key-type:master-key-name"
|
keyctl update keyid "update key-type:master-key-name"
|
||||||
|
|
||||||
@ -303,6 +306,16 @@ Load an encrypted key "evm" from saved blob::
|
|||||||
82dbbc55be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e0
|
82dbbc55be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e0
|
||||||
24717c64 5972dcb82ab2dde83376d82b2e3c09ffc
|
24717c64 5972dcb82ab2dde83376d82b2e3c09ffc
|
||||||
|
|
||||||
|
Instantiate an encrypted key "evm" using user-provided decrypted data::
|
||||||
|
|
||||||
|
$ keyctl add encrypted evm "new default user:kmk 32 `cat evm_decrypted_data.blob`" @u
|
||||||
|
794890253
|
||||||
|
|
||||||
|
$ keyctl print 794890253
|
||||||
|
default user:kmk 32 2375725ad57798846a9bbd240de8906f006e66c03af53b1b382d
|
||||||
|
bbc55be2a44616e4959430436dc4f2a7a9659aa60bb4652aeb2120f149ed197c564e0247
|
||||||
|
17c64 5972dcb82ab2dde83376d82b2e3c09ffc
|
||||||
|
|
||||||
Other uses for trusted and encrypted keys, such as for disk and file encryption
|
Other uses for trusted and encrypted keys, such as for disk and file encryption
|
||||||
are anticipated. In particular the new format 'ecryptfs' has been defined
|
are anticipated. In particular the new format 'ecryptfs' has been defined
|
||||||
in order to use encrypted keys to mount an eCryptfs filesystem. More details
|
in order to use encrypted keys to mount an eCryptfs filesystem. More details
|
||||||
|
@ -98,10 +98,21 @@ config ENCRYPTED_KEYS
|
|||||||
select CRYPTO_RNG
|
select CRYPTO_RNG
|
||||||
help
|
help
|
||||||
This option provides support for create/encrypting/decrypting keys
|
This option provides support for create/encrypting/decrypting keys
|
||||||
in the kernel. Encrypted keys are kernel generated random numbers,
|
in the kernel. Encrypted keys are instantiated using kernel
|
||||||
which are encrypted/decrypted with a 'master' symmetric key. The
|
generated random numbers or provided decrypted data, and are
|
||||||
'master' key can be either a trusted-key or user-key type.
|
encrypted/decrypted with a 'master' symmetric key. The 'master'
|
||||||
Userspace only ever sees/stores encrypted blobs.
|
key can be either a trusted-key or user-key type. Only encrypted
|
||||||
|
blobs are ever output to Userspace.
|
||||||
|
|
||||||
|
If you are unsure as to whether this is required, answer N.
|
||||||
|
|
||||||
|
config USER_DECRYPTED_DATA
|
||||||
|
bool "Allow encrypted keys with user decrypted data"
|
||||||
|
depends on ENCRYPTED_KEYS
|
||||||
|
help
|
||||||
|
This option provides support for instantiating encrypted keys using
|
||||||
|
user-provided decrypted data. The decrypted data must be hex-ascii
|
||||||
|
encoded.
|
||||||
|
|
||||||
If you are unsure as to whether this is required, answer N.
|
If you are unsure as to whether this is required, answer N.
|
||||||
|
|
||||||
|
@ -78,6 +78,11 @@ static const match_table_t key_tokens = {
|
|||||||
{Opt_err, NULL}
|
{Opt_err, NULL}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
static bool user_decrypted_data = IS_ENABLED(CONFIG_USER_DECRYPTED_DATA);
|
||||||
|
module_param(user_decrypted_data, bool, 0);
|
||||||
|
MODULE_PARM_DESC(user_decrypted_data,
|
||||||
|
"Allow instantiation of encrypted keys using provided decrypted data");
|
||||||
|
|
||||||
static int aes_get_sizes(void)
|
static int aes_get_sizes(void)
|
||||||
{
|
{
|
||||||
struct crypto_skcipher *tfm;
|
struct crypto_skcipher *tfm;
|
||||||
@ -158,7 +163,7 @@ static int valid_master_desc(const char *new_desc, const char *orig_desc)
|
|||||||
* datablob_parse - parse the keyctl data
|
* datablob_parse - parse the keyctl data
|
||||||
*
|
*
|
||||||
* datablob format:
|
* datablob format:
|
||||||
* new [<format>] <master-key name> <decrypted data length>
|
* new [<format>] <master-key name> <decrypted data length> [<decrypted data>]
|
||||||
* load [<format>] <master-key name> <decrypted data length>
|
* load [<format>] <master-key name> <decrypted data length>
|
||||||
* <encrypted iv + data>
|
* <encrypted iv + data>
|
||||||
* update <new-master-key name>
|
* update <new-master-key name>
|
||||||
@ -170,7 +175,7 @@ static int valid_master_desc(const char *new_desc, const char *orig_desc)
|
|||||||
*/
|
*/
|
||||||
static int datablob_parse(char *datablob, const char **format,
|
static int datablob_parse(char *datablob, const char **format,
|
||||||
char **master_desc, char **decrypted_datalen,
|
char **master_desc, char **decrypted_datalen,
|
||||||
char **hex_encoded_iv)
|
char **hex_encoded_iv, char **decrypted_data)
|
||||||
{
|
{
|
||||||
substring_t args[MAX_OPT_ARGS];
|
substring_t args[MAX_OPT_ARGS];
|
||||||
int ret = -EINVAL;
|
int ret = -EINVAL;
|
||||||
@ -231,6 +236,7 @@ static int datablob_parse(char *datablob, const char **format,
|
|||||||
"when called from .update method\n", keyword);
|
"when called from .update method\n", keyword);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
*decrypted_data = strsep(&datablob, " \t");
|
||||||
ret = 0;
|
ret = 0;
|
||||||
break;
|
break;
|
||||||
case Opt_load:
|
case Opt_load:
|
||||||
@ -595,7 +601,8 @@ out:
|
|||||||
static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
|
static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
|
||||||
const char *format,
|
const char *format,
|
||||||
const char *master_desc,
|
const char *master_desc,
|
||||||
const char *datalen)
|
const char *datalen,
|
||||||
|
const char *decrypted_data)
|
||||||
{
|
{
|
||||||
struct encrypted_key_payload *epayload = NULL;
|
struct encrypted_key_payload *epayload = NULL;
|
||||||
unsigned short datablob_len;
|
unsigned short datablob_len;
|
||||||
@ -604,6 +611,7 @@ static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
|
|||||||
unsigned int encrypted_datalen;
|
unsigned int encrypted_datalen;
|
||||||
unsigned int format_len;
|
unsigned int format_len;
|
||||||
long dlen;
|
long dlen;
|
||||||
|
int i;
|
||||||
int ret;
|
int ret;
|
||||||
|
|
||||||
ret = kstrtol(datalen, 10, &dlen);
|
ret = kstrtol(datalen, 10, &dlen);
|
||||||
@ -613,6 +621,24 @@ static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
|
|||||||
format_len = (!format) ? strlen(key_format_default) : strlen(format);
|
format_len = (!format) ? strlen(key_format_default) : strlen(format);
|
||||||
decrypted_datalen = dlen;
|
decrypted_datalen = dlen;
|
||||||
payload_datalen = decrypted_datalen;
|
payload_datalen = decrypted_datalen;
|
||||||
|
|
||||||
|
if (decrypted_data) {
|
||||||
|
if (!user_decrypted_data) {
|
||||||
|
pr_err("encrypted key: instantiation of keys using provided decrypted data is disabled since CONFIG_USER_DECRYPTED_DATA is set to false\n");
|
||||||
|
return ERR_PTR(-EINVAL);
|
||||||
|
}
|
||||||
|
if (strlen(decrypted_data) != decrypted_datalen) {
|
||||||
|
pr_err("encrypted key: decrypted data provided does not match decrypted data length provided\n");
|
||||||
|
return ERR_PTR(-EINVAL);
|
||||||
|
}
|
||||||
|
for (i = 0; i < strlen(decrypted_data); i++) {
|
||||||
|
if (!isxdigit(decrypted_data[i])) {
|
||||||
|
pr_err("encrypted key: decrypted data provided must contain only hexadecimal characters\n");
|
||||||
|
return ERR_PTR(-EINVAL);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
if (format) {
|
if (format) {
|
||||||
if (!strcmp(format, key_format_ecryptfs)) {
|
if (!strcmp(format, key_format_ecryptfs)) {
|
||||||
if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
|
if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
|
||||||
@ -740,13 +766,14 @@ static void __ekey_init(struct encrypted_key_payload *epayload,
|
|||||||
/*
|
/*
|
||||||
* encrypted_init - initialize an encrypted key
|
* encrypted_init - initialize an encrypted key
|
||||||
*
|
*
|
||||||
* For a new key, use a random number for both the iv and data
|
* For a new key, use either a random number or user-provided decrypted data in
|
||||||
* itself. For an old key, decrypt the hex encoded data.
|
* case it is provided. A random number is used for the iv in both cases. For
|
||||||
|
* an old key, decrypt the hex encoded data.
|
||||||
*/
|
*/
|
||||||
static int encrypted_init(struct encrypted_key_payload *epayload,
|
static int encrypted_init(struct encrypted_key_payload *epayload,
|
||||||
const char *key_desc, const char *format,
|
const char *key_desc, const char *format,
|
||||||
const char *master_desc, const char *datalen,
|
const char *master_desc, const char *datalen,
|
||||||
const char *hex_encoded_iv)
|
const char *hex_encoded_iv, const char *decrypted_data)
|
||||||
{
|
{
|
||||||
int ret = 0;
|
int ret = 0;
|
||||||
|
|
||||||
@ -760,21 +787,26 @@ static int encrypted_init(struct encrypted_key_payload *epayload,
|
|||||||
}
|
}
|
||||||
|
|
||||||
__ekey_init(epayload, format, master_desc, datalen);
|
__ekey_init(epayload, format, master_desc, datalen);
|
||||||
if (!hex_encoded_iv) {
|
if (hex_encoded_iv) {
|
||||||
get_random_bytes(epayload->iv, ivsize);
|
|
||||||
|
|
||||||
get_random_bytes(epayload->decrypted_data,
|
|
||||||
epayload->decrypted_datalen);
|
|
||||||
} else
|
|
||||||
ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
|
ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
|
||||||
|
} else if (decrypted_data) {
|
||||||
|
get_random_bytes(epayload->iv, ivsize);
|
||||||
|
memcpy(epayload->decrypted_data, decrypted_data,
|
||||||
|
epayload->decrypted_datalen);
|
||||||
|
} else {
|
||||||
|
get_random_bytes(epayload->iv, ivsize);
|
||||||
|
get_random_bytes(epayload->decrypted_data, epayload->decrypted_datalen);
|
||||||
|
}
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* encrypted_instantiate - instantiate an encrypted key
|
* encrypted_instantiate - instantiate an encrypted key
|
||||||
*
|
*
|
||||||
* Decrypt an existing encrypted datablob or create a new encrypted key
|
* Instantiates the key:
|
||||||
* based on a kernel random number.
|
* - by decrypting an existing encrypted datablob, or
|
||||||
|
* - by creating a new encrypted key based on a kernel random number, or
|
||||||
|
* - using provided decrypted data.
|
||||||
*
|
*
|
||||||
* On success, return 0. Otherwise return errno.
|
* On success, return 0. Otherwise return errno.
|
||||||
*/
|
*/
|
||||||
@ -787,6 +819,7 @@ static int encrypted_instantiate(struct key *key,
|
|||||||
char *master_desc = NULL;
|
char *master_desc = NULL;
|
||||||
char *decrypted_datalen = NULL;
|
char *decrypted_datalen = NULL;
|
||||||
char *hex_encoded_iv = NULL;
|
char *hex_encoded_iv = NULL;
|
||||||
|
char *decrypted_data = NULL;
|
||||||
size_t datalen = prep->datalen;
|
size_t datalen = prep->datalen;
|
||||||
int ret;
|
int ret;
|
||||||
|
|
||||||
@ -799,18 +832,18 @@ static int encrypted_instantiate(struct key *key,
|
|||||||
datablob[datalen] = 0;
|
datablob[datalen] = 0;
|
||||||
memcpy(datablob, prep->data, datalen);
|
memcpy(datablob, prep->data, datalen);
|
||||||
ret = datablob_parse(datablob, &format, &master_desc,
|
ret = datablob_parse(datablob, &format, &master_desc,
|
||||||
&decrypted_datalen, &hex_encoded_iv);
|
&decrypted_datalen, &hex_encoded_iv, &decrypted_data);
|
||||||
if (ret < 0)
|
if (ret < 0)
|
||||||
goto out;
|
goto out;
|
||||||
|
|
||||||
epayload = encrypted_key_alloc(key, format, master_desc,
|
epayload = encrypted_key_alloc(key, format, master_desc,
|
||||||
decrypted_datalen);
|
decrypted_datalen, decrypted_data);
|
||||||
if (IS_ERR(epayload)) {
|
if (IS_ERR(epayload)) {
|
||||||
ret = PTR_ERR(epayload);
|
ret = PTR_ERR(epayload);
|
||||||
goto out;
|
goto out;
|
||||||
}
|
}
|
||||||
ret = encrypted_init(epayload, key->description, format, master_desc,
|
ret = encrypted_init(epayload, key->description, format, master_desc,
|
||||||
decrypted_datalen, hex_encoded_iv);
|
decrypted_datalen, hex_encoded_iv, decrypted_data);
|
||||||
if (ret < 0) {
|
if (ret < 0) {
|
||||||
kfree_sensitive(epayload);
|
kfree_sensitive(epayload);
|
||||||
goto out;
|
goto out;
|
||||||
@ -860,7 +893,7 @@ static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
|
|||||||
|
|
||||||
buf[datalen] = 0;
|
buf[datalen] = 0;
|
||||||
memcpy(buf, prep->data, datalen);
|
memcpy(buf, prep->data, datalen);
|
||||||
ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
|
ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL, NULL);
|
||||||
if (ret < 0)
|
if (ret < 0)
|
||||||
goto out;
|
goto out;
|
||||||
|
|
||||||
@ -869,7 +902,7 @@ static int encrypted_update(struct key *key, struct key_preparsed_payload *prep)
|
|||||||
goto out;
|
goto out;
|
||||||
|
|
||||||
new_epayload = encrypted_key_alloc(key, epayload->format,
|
new_epayload = encrypted_key_alloc(key, epayload->format,
|
||||||
new_master_desc, epayload->datalen);
|
new_master_desc, epayload->datalen, NULL);
|
||||||
if (IS_ERR(new_epayload)) {
|
if (IS_ERR(new_epayload)) {
|
||||||
ret = PTR_ERR(new_epayload);
|
ret = PTR_ERR(new_epayload);
|
||||||
goto out;
|
goto out;
|
||||||
|
Loading…
x
Reference in New Issue
Block a user