Merge branch 'for-davem' of git://git.kernel.org/pub/scm/linux/kernel/git/bwh/sfc-next

This commit is contained in:
David S. Miller 2012-03-09 21:54:28 -05:00
commit d503859678
11 changed files with 222 additions and 103 deletions

View File

@ -25,6 +25,7 @@
#include "net_driver.h" #include "net_driver.h"
#include "efx.h" #include "efx.h"
#include "nic.h" #include "nic.h"
#include "selftest.h"
#include "mcdi.h" #include "mcdi.h"
#include "workarounds.h" #include "workarounds.h"
@ -163,12 +164,12 @@ static int phy_flash_cfg;
module_param(phy_flash_cfg, int, 0644); module_param(phy_flash_cfg, int, 0644);
MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
static unsigned irq_adapt_low_thresh = 10000; static unsigned irq_adapt_low_thresh = 8000;
module_param(irq_adapt_low_thresh, uint, 0644); module_param(irq_adapt_low_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_low_thresh, MODULE_PARM_DESC(irq_adapt_low_thresh,
"Threshold score for reducing IRQ moderation"); "Threshold score for reducing IRQ moderation");
static unsigned irq_adapt_high_thresh = 20000; static unsigned irq_adapt_high_thresh = 16000;
module_param(irq_adapt_high_thresh, uint, 0644); module_param(irq_adapt_high_thresh, uint, 0644);
MODULE_PARM_DESC(irq_adapt_high_thresh, MODULE_PARM_DESC(irq_adapt_high_thresh,
"Threshold score for increasing IRQ moderation"); "Threshold score for increasing IRQ moderation");
@ -1564,8 +1565,9 @@ static void efx_start_all(struct efx_nic *efx)
* since we're holding the rtnl_lock at this point. */ * since we're holding the rtnl_lock at this point. */
static void efx_flush_all(struct efx_nic *efx) static void efx_flush_all(struct efx_nic *efx)
{ {
/* Make sure the hardware monitor is stopped */ /* Make sure the hardware monitor and event self-test are stopped */
cancel_delayed_work_sync(&efx->monitor_work); cancel_delayed_work_sync(&efx->monitor_work);
efx_selftest_async_cancel(efx);
/* Stop scheduled port reconfigurations */ /* Stop scheduled port reconfigurations */
cancel_work_sync(&efx->mac_work); cancel_work_sync(&efx->mac_work);
} }
@ -1825,6 +1827,7 @@ static int efx_net_open(struct net_device *net_dev)
efx_link_status_changed(efx); efx_link_status_changed(efx);
efx_start_all(efx); efx_start_all(efx);
efx_selftest_async_start(efx);
return 0; return 0;
} }
@ -2375,6 +2378,7 @@ static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type,
#endif #endif
INIT_WORK(&efx->reset_work, efx_reset_work); INIT_WORK(&efx->reset_work, efx_reset_work);
INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
efx->pci_dev = pci_dev; efx->pci_dev = pci_dev;
efx->msg_enable = debug; efx->msg_enable = debug;
efx->state = STATE_INIT; efx->state = STATE_INIT;
@ -2493,6 +2497,57 @@ static void efx_pci_remove(struct pci_dev *pci_dev)
free_netdev(efx->net_dev); free_netdev(efx->net_dev);
}; };
/* NIC VPD information
* Called during probe to display the part number of the
* installed NIC. VPD is potentially very large but this should
* always appear within the first 512 bytes.
*/
#define SFC_VPD_LEN 512
static void efx_print_product_vpd(struct efx_nic *efx)
{
struct pci_dev *dev = efx->pci_dev;
char vpd_data[SFC_VPD_LEN];
ssize_t vpd_size;
int i, j;
/* Get the vpd data from the device */
vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
if (vpd_size <= 0) {
netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
return;
}
/* Get the Read only section */
i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
if (i < 0) {
netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
return;
}
j = pci_vpd_lrdt_size(&vpd_data[i]);
i += PCI_VPD_LRDT_TAG_SIZE;
if (i + j > vpd_size)
j = vpd_size - i;
/* Get the Part number */
i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
if (i < 0) {
netif_err(efx, drv, efx->net_dev, "Part number not found\n");
return;
}
j = pci_vpd_info_field_size(&vpd_data[i]);
i += PCI_VPD_INFO_FLD_HDR_SIZE;
if (i + j > vpd_size) {
netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
return;
}
netif_info(efx, drv, efx->net_dev,
"Part Number : %.*s\n", j, &vpd_data[i]);
}
/* Main body of NIC initialisation /* Main body of NIC initialisation
* This is called at module load (or hotplug insertion, theoretically). * This is called at module load (or hotplug insertion, theoretically).
*/ */
@ -2582,6 +2637,8 @@ static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
netif_info(efx, probe, efx->net_dev, netif_info(efx, probe, efx->net_dev,
"Solarflare NIC detected\n"); "Solarflare NIC detected\n");
efx_print_product_vpd(efx);
/* Set up basic I/O (BAR mappings etc) */ /* Set up basic I/O (BAR mappings etc) */
rc = efx_init_io(efx); rc = efx_init_io(efx);
if (rc) if (rc)

View File

@ -148,7 +148,7 @@ static inline void efx_schedule_channel(struct efx_channel *channel)
static inline void efx_schedule_channel_irq(struct efx_channel *channel) static inline void efx_schedule_channel_irq(struct efx_channel *channel)
{ {
channel->last_irq_cpu = raw_smp_processor_id(); channel->event_test_cpu = raw_smp_processor_id();
efx_schedule_channel(channel); efx_schedule_channel(channel);
} }

View File

@ -709,8 +709,6 @@ static int sfe4003_init(struct efx_nic *efx)
static const struct falcon_board_type board_types[] = { static const struct falcon_board_type board_types[] = {
{ {
.id = FALCON_BOARD_SFE4001, .id = FALCON_BOARD_SFE4001,
.ref_model = "SFE4001",
.gen_type = "10GBASE-T adapter",
.init = sfe4001_init, .init = sfe4001_init,
.init_phy = efx_port_dummy_op_void, .init_phy = efx_port_dummy_op_void,
.fini = sfe4001_fini, .fini = sfe4001_fini,
@ -719,8 +717,6 @@ static const struct falcon_board_type board_types[] = {
}, },
{ {
.id = FALCON_BOARD_SFE4002, .id = FALCON_BOARD_SFE4002,
.ref_model = "SFE4002",
.gen_type = "XFP adapter",
.init = sfe4002_init, .init = sfe4002_init,
.init_phy = sfe4002_init_phy, .init_phy = sfe4002_init_phy,
.fini = efx_fini_lm87, .fini = efx_fini_lm87,
@ -729,8 +725,6 @@ static const struct falcon_board_type board_types[] = {
}, },
{ {
.id = FALCON_BOARD_SFE4003, .id = FALCON_BOARD_SFE4003,
.ref_model = "SFE4003",
.gen_type = "10GBASE-CX4 adapter",
.init = sfe4003_init, .init = sfe4003_init,
.init_phy = sfe4003_init_phy, .init_phy = sfe4003_init_phy,
.fini = efx_fini_lm87, .fini = efx_fini_lm87,
@ -739,8 +733,6 @@ static const struct falcon_board_type board_types[] = {
}, },
{ {
.id = FALCON_BOARD_SFN4112F, .id = FALCON_BOARD_SFN4112F,
.ref_model = "SFN4112F",
.gen_type = "SFP+ adapter",
.init = sfn4112f_init, .init = sfn4112f_init,
.init_phy = sfn4112f_init_phy, .init_phy = sfn4112f_init_phy,
.fini = efx_fini_lm87, .fini = efx_fini_lm87,
@ -763,11 +755,6 @@ int falcon_probe_board(struct efx_nic *efx, u16 revision_info)
board->type = &board_types[i]; board->type = &board_types[i];
if (board->type) { if (board->type) {
netif_info(efx, probe, efx->net_dev, "board is %s rev %c%d\n",
(efx->pci_dev->subsystem_vendor ==
PCI_VENDOR_ID_SOLARFLARE)
? board->type->ref_model : board->type->gen_type,
'A' + board->major, board->minor);
return 0; return 0;
} else { } else {
netif_err(efx, probe, efx->net_dev, "unknown board type %d\n", netif_err(efx, probe, efx->net_dev, "unknown board type %d\n",

View File

@ -324,8 +324,7 @@ enum efx_rx_alloc_method {
* @eventq: Event queue buffer * @eventq: Event queue buffer
* @eventq_mask: Event queue pointer mask * @eventq_mask: Event queue pointer mask
* @eventq_read_ptr: Event queue read pointer * @eventq_read_ptr: Event queue read pointer
* @last_eventq_read_ptr: Last event queue read pointer value. * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
* @last_irq_cpu: Last CPU to handle interrupt for this channel
* @irq_count: Number of IRQs since last adaptive moderation decision * @irq_count: Number of IRQs since last adaptive moderation decision
* @irq_mod_score: IRQ moderation score * @irq_mod_score: IRQ moderation score
* @rx_alloc_level: Watermark based heuristic counter for pushing descriptors * @rx_alloc_level: Watermark based heuristic counter for pushing descriptors
@ -355,9 +354,8 @@ struct efx_channel {
struct efx_special_buffer eventq; struct efx_special_buffer eventq;
unsigned int eventq_mask; unsigned int eventq_mask;
unsigned int eventq_read_ptr; unsigned int eventq_read_ptr;
unsigned int last_eventq_read_ptr; int event_test_cpu;
int last_irq_cpu;
unsigned int irq_count; unsigned int irq_count;
unsigned int irq_mod_score; unsigned int irq_mod_score;
#ifdef CONFIG_RFS_ACCEL #ifdef CONFIG_RFS_ACCEL
@ -678,6 +676,7 @@ struct vfdi_status;
* @irq_status: Interrupt status buffer * @irq_status: Interrupt status buffer
* @irq_zero_count: Number of legacy IRQs seen with queue flags == 0 * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
* @irq_level: IRQ level/index for IRQs not triggered by an event queue * @irq_level: IRQ level/index for IRQs not triggered by an event queue
* @selftest_work: Work item for asynchronous self-test
* @mtd_list: List of MTDs attached to the NIC * @mtd_list: List of MTDs attached to the NIC
* @nic_data: Hardware dependent state * @nic_data: Hardware dependent state
* @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode, * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
@ -791,6 +790,7 @@ struct efx_nic {
struct efx_buffer irq_status; struct efx_buffer irq_status;
unsigned irq_zero_count; unsigned irq_zero_count;
unsigned irq_level; unsigned irq_level;
struct delayed_work selftest_work;
#ifdef CONFIG_SFC_MTD #ifdef CONFIG_SFC_MTD
struct list_head mtd_list; struct list_head mtd_list;

View File

@ -822,7 +822,6 @@ efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
channel, tx_ev_q_label % EFX_TXQ_TYPES); channel, tx_ev_q_label % EFX_TXQ_TYPES);
tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) & tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
tx_queue->ptr_mask); tx_queue->ptr_mask);
channel->irq_mod_score += tx_packets;
efx_xmit_done(tx_queue, tx_ev_desc_ptr); efx_xmit_done(tx_queue, tx_ev_desc_ptr);
} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) { } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
/* Rewrite the FIFO write pointer */ /* Rewrite the FIFO write pointer */
@ -1084,7 +1083,7 @@ efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
code = _EFX_CHANNEL_MAGIC_CODE(magic); code = _EFX_CHANNEL_MAGIC_CODE(magic);
if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) { if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
/* ignore */ channel->event_test_cpu = raw_smp_processor_id();
} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) { } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
/* The queue must be empty, so we won't receive any rx /* The queue must be empty, so we won't receive any rx
* events, so efx_process_channel() won't refill the * events, so efx_process_channel() won't refill the
@ -1333,8 +1332,10 @@ void efx_nic_remove_eventq(struct efx_channel *channel)
} }
void efx_nic_generate_test_event(struct efx_channel *channel) void efx_nic_event_test_start(struct efx_channel *channel)
{ {
channel->event_test_cpu = -1;
smp_wmb();
efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel)); efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
} }
@ -1383,8 +1384,10 @@ void efx_nic_disable_interrupts(struct efx_nic *efx)
* Interrupt must already have been enabled, otherwise nasty things * Interrupt must already have been enabled, otherwise nasty things
* may happen. * may happen.
*/ */
void efx_nic_generate_interrupt(struct efx_nic *efx) void efx_nic_irq_test_start(struct efx_nic *efx)
{ {
efx->last_irq_cpu = -1;
smp_wmb();
efx_nic_interrupts(efx, true, true); efx_nic_interrupts(efx, true, true);
} }

View File

@ -35,10 +35,6 @@ static inline int efx_nic_rev(struct efx_nic *efx)
extern u32 efx_nic_fpga_ver(struct efx_nic *efx); extern u32 efx_nic_fpga_ver(struct efx_nic *efx);
static inline bool efx_nic_has_mc(struct efx_nic *efx)
{
return efx_nic_rev(efx) >= EFX_REV_SIENA_A0;
}
/* NIC has two interlinked PCI functions for the same port. */ /* NIC has two interlinked PCI functions for the same port. */
static inline bool efx_nic_is_dual_func(struct efx_nic *efx) static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
{ {
@ -73,8 +69,6 @@ enum {
/** /**
* struct falcon_board_type - board operations and type information * struct falcon_board_type - board operations and type information
* @id: Board type id, as found in NVRAM * @id: Board type id, as found in NVRAM
* @ref_model: Model number of Solarflare reference design
* @gen_type: Generic board type description
* @init: Allocate resources and initialise peripheral hardware * @init: Allocate resources and initialise peripheral hardware
* @init_phy: Do board-specific PHY initialisation * @init_phy: Do board-specific PHY initialisation
* @fini: Shut down hardware and free resources * @fini: Shut down hardware and free resources
@ -83,8 +77,6 @@ enum {
*/ */
struct falcon_board_type { struct falcon_board_type {
u8 id; u8 id;
const char *ref_model;
const char *gen_type;
int (*init) (struct efx_nic *nic); int (*init) (struct efx_nic *nic);
void (*init_phy) (struct efx_nic *efx); void (*init_phy) (struct efx_nic *efx);
void (*fini) (struct efx_nic *nic); void (*fini) (struct efx_nic *nic);
@ -305,14 +297,23 @@ extern void falcon_update_stats_xmac(struct efx_nic *efx);
/* Interrupts and test events */ /* Interrupts and test events */
extern int efx_nic_init_interrupt(struct efx_nic *efx); extern int efx_nic_init_interrupt(struct efx_nic *efx);
extern void efx_nic_enable_interrupts(struct efx_nic *efx); extern void efx_nic_enable_interrupts(struct efx_nic *efx);
extern void efx_nic_generate_test_event(struct efx_channel *channel); extern void efx_nic_event_test_start(struct efx_channel *channel);
extern void efx_nic_generate_interrupt(struct efx_nic *efx); extern void efx_nic_irq_test_start(struct efx_nic *efx);
extern void efx_nic_disable_interrupts(struct efx_nic *efx); extern void efx_nic_disable_interrupts(struct efx_nic *efx);
extern void efx_nic_fini_interrupt(struct efx_nic *efx); extern void efx_nic_fini_interrupt(struct efx_nic *efx);
extern irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx); extern irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx);
extern irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id); extern irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id);
extern void falcon_irq_ack_a1(struct efx_nic *efx); extern void falcon_irq_ack_a1(struct efx_nic *efx);
static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
{
return ACCESS_ONCE(channel->event_test_cpu);
}
static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
{
return ACCESS_ONCE(efx->last_irq_cpu);
}
/* Global Resources */ /* Global Resources */
extern int efx_nic_flush_queues(struct efx_nic *efx); extern int efx_nic_flush_queues(struct efx_nic *efx);
extern void falcon_start_nic_stats(struct efx_nic *efx); extern void falcon_start_nic_stats(struct efx_nic *efx);

View File

@ -449,10 +449,8 @@ static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
efx_rx_queue_channel(rx_queue)->n_rx_overlength++; efx_rx_queue_channel(rx_queue)->n_rx_overlength++;
} }
/* Pass a received packet up through the generic GRO stack /* Pass a received packet up through GRO. GRO can handle pages
* * regardless of checksum state and skbs with a good checksum.
* Handles driverlink veto, and passes the fragment up via
* the appropriate GRO method
*/ */
static void efx_rx_packet_gro(struct efx_channel *channel, static void efx_rx_packet_gro(struct efx_channel *channel,
struct efx_rx_buffer *rx_buf, struct efx_rx_buffer *rx_buf,
@ -461,7 +459,6 @@ static void efx_rx_packet_gro(struct efx_channel *channel,
struct napi_struct *napi = &channel->napi_str; struct napi_struct *napi = &channel->napi_str;
gro_result_t gro_result; gro_result_t gro_result;
/* Pass the skb/page into the GRO engine */
if (rx_buf->flags & EFX_RX_BUF_PAGE) { if (rx_buf->flags & EFX_RX_BUF_PAGE) {
struct efx_nic *efx = channel->efx; struct efx_nic *efx = channel->efx;
struct page *page = rx_buf->u.page; struct page *page = rx_buf->u.page;

View File

@ -25,6 +25,16 @@
#include "selftest.h" #include "selftest.h"
#include "workarounds.h" #include "workarounds.h"
/* IRQ latency can be enormous because:
* - All IRQs may be disabled on a CPU for a *long* time by e.g. a
* slow serial console or an old IDE driver doing error recovery
* - The PREEMPT_RT patches mostly deal with this, but also allow a
* tasklet or normal task to be given higher priority than our IRQ
* threads
* Try to avoid blaming the hardware for this.
*/
#define IRQ_TIMEOUT HZ
/* /*
* Loopback test packet structure * Loopback test packet structure
* *
@ -77,6 +87,9 @@ struct efx_loopback_state {
struct efx_loopback_payload payload; struct efx_loopback_payload payload;
}; };
/* How long to wait for all the packets to arrive (in ms) */
#define LOOPBACK_TIMEOUT_MS 1000
/************************************************************************** /**************************************************************************
* *
* MII, NVRAM and register tests * MII, NVRAM and register tests
@ -130,23 +143,25 @@ static int efx_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
static int efx_test_interrupts(struct efx_nic *efx, static int efx_test_interrupts(struct efx_nic *efx,
struct efx_self_tests *tests) struct efx_self_tests *tests)
{ {
unsigned long timeout, wait;
int cpu; int cpu;
netif_dbg(efx, drv, efx->net_dev, "testing interrupts\n"); netif_dbg(efx, drv, efx->net_dev, "testing interrupts\n");
tests->interrupt = -1; tests->interrupt = -1;
/* Reset interrupt flag */ efx_nic_irq_test_start(efx);
efx->last_irq_cpu = -1; timeout = jiffies + IRQ_TIMEOUT;
smp_wmb(); wait = 1;
efx_nic_generate_interrupt(efx);
/* Wait for arrival of test interrupt. */ /* Wait for arrival of test interrupt. */
netif_dbg(efx, drv, efx->net_dev, "waiting for test interrupt\n"); netif_dbg(efx, drv, efx->net_dev, "waiting for test interrupt\n");
schedule_timeout_uninterruptible(HZ / 10); do {
cpu = ACCESS_ONCE(efx->last_irq_cpu); schedule_timeout_uninterruptible(wait);
cpu = efx_nic_irq_test_irq_cpu(efx);
if (cpu >= 0) if (cpu >= 0)
goto success; goto success;
wait *= 2;
} while (time_before(jiffies, timeout));
netif_err(efx, drv, efx->net_dev, "timed out waiting for interrupt\n"); netif_err(efx, drv, efx->net_dev, "timed out waiting for interrupt\n");
return -ETIMEDOUT; return -ETIMEDOUT;
@ -159,35 +174,55 @@ static int efx_test_interrupts(struct efx_nic *efx,
} }
/* Test generation and receipt of interrupting events */ /* Test generation and receipt of interrupting events */
static int efx_test_eventq_irq(struct efx_channel *channel, static int efx_test_eventq_irq(struct efx_nic *efx,
struct efx_self_tests *tests) struct efx_self_tests *tests)
{ {
struct efx_nic *efx = channel->efx; struct efx_channel *channel;
unsigned int read_ptr; unsigned int read_ptr[EFX_MAX_CHANNELS];
bool napi_ran, dma_seen, int_seen; unsigned long napi_ran = 0, dma_pend = 0, int_pend = 0;
unsigned long timeout, wait;
read_ptr = channel->eventq_read_ptr; BUILD_BUG_ON(EFX_MAX_CHANNELS > BITS_PER_LONG);
channel->last_irq_cpu = -1;
smp_wmb();
efx_nic_generate_test_event(channel); efx_for_each_channel(channel, efx) {
read_ptr[channel->channel] = channel->eventq_read_ptr;
set_bit(channel->channel, &dma_pend);
set_bit(channel->channel, &int_pend);
efx_nic_event_test_start(channel);
}
/* Wait for arrival of interrupt. NAPI processing may or may timeout = jiffies + IRQ_TIMEOUT;
wait = 1;
/* Wait for arrival of interrupts. NAPI processing may or may
* not complete in time, but we can cope in any case. * not complete in time, but we can cope in any case.
*/ */
msleep(10); do {
schedule_timeout_uninterruptible(wait);
efx_for_each_channel(channel, efx) {
napi_disable(&channel->napi_str); napi_disable(&channel->napi_str);
if (channel->eventq_read_ptr != read_ptr) { if (channel->eventq_read_ptr !=
napi_ran = true; read_ptr[channel->channel]) {
dma_seen = true; set_bit(channel->channel, &napi_ran);
int_seen = true; clear_bit(channel->channel, &dma_pend);
clear_bit(channel->channel, &int_pend);
} else { } else {
napi_ran = false; if (efx_nic_event_present(channel))
dma_seen = efx_nic_event_present(channel); clear_bit(channel->channel, &dma_pend);
int_seen = ACCESS_ONCE(channel->last_irq_cpu) >= 0; if (efx_nic_event_test_irq_cpu(channel) >= 0)
clear_bit(channel->channel, &int_pend);
} }
napi_enable(&channel->napi_str); napi_enable(&channel->napi_str);
efx_nic_eventq_read_ack(channel); efx_nic_eventq_read_ack(channel);
}
wait *= 2;
} while ((dma_pend || int_pend) && time_before(jiffies, timeout));
efx_for_each_channel(channel, efx) {
bool dma_seen = !test_bit(channel->channel, &dma_pend);
bool int_seen = !test_bit(channel->channel, &int_pend);
tests->eventq_dma[channel->channel] = dma_seen ? 1 : -1; tests->eventq_dma[channel->channel] = dma_seen ? 1 : -1;
tests->eventq_int[channel->channel] = int_seen ? 1 : -1; tests->eventq_int[channel->channel] = int_seen ? 1 : -1;
@ -195,10 +230,13 @@ static int efx_test_eventq_irq(struct efx_channel *channel,
if (dma_seen && int_seen) { if (dma_seen && int_seen) {
netif_dbg(efx, drv, efx->net_dev, netif_dbg(efx, drv, efx->net_dev,
"channel %d event queue passed (with%s NAPI)\n", "channel %d event queue passed (with%s NAPI)\n",
channel->channel, napi_ran ? "" : "out"); channel->channel,
return 0; test_bit(channel->channel, &napi_ran) ?
"" : "out");
} else { } else {
/* Report failure and whether either interrupt or DMA worked */ /* Report failure and whether either interrupt or DMA
* worked
*/
netif_err(efx, drv, efx->net_dev, netif_err(efx, drv, efx->net_dev,
"channel %d timed out waiting for event queue\n", "channel %d timed out waiting for event queue\n",
channel->channel); channel->channel);
@ -212,8 +250,10 @@ static int efx_test_eventq_irq(struct efx_channel *channel,
"channel %d event was generated, but " "channel %d event was generated, but "
"failed to trigger an interrupt\n", "failed to trigger an interrupt\n",
channel->channel); channel->channel);
return -ETIMEDOUT;
} }
}
return (dma_pend || int_pend) ? -ETIMEDOUT : 0;
} }
static int efx_test_phy(struct efx_nic *efx, struct efx_self_tests *tests, static int efx_test_phy(struct efx_nic *efx, struct efx_self_tests *tests,
@ -516,10 +556,10 @@ efx_test_loopback(struct efx_tx_queue *tx_queue,
begin_rc = efx_begin_loopback(tx_queue); begin_rc = efx_begin_loopback(tx_queue);
/* This will normally complete very quickly, but be /* This will normally complete very quickly, but be
* prepared to wait up to 100 ms. */ * prepared to wait much longer. */
msleep(1); msleep(1);
if (!efx_poll_loopback(efx)) { if (!efx_poll_loopback(efx)) {
msleep(100); msleep(LOOPBACK_TIMEOUT_MS);
efx_poll_loopback(efx); efx_poll_loopback(efx);
} }
@ -660,9 +700,10 @@ int efx_selftest(struct efx_nic *efx, struct efx_self_tests *tests,
enum efx_loopback_mode loopback_mode = efx->loopback_mode; enum efx_loopback_mode loopback_mode = efx->loopback_mode;
int phy_mode = efx->phy_mode; int phy_mode = efx->phy_mode;
enum reset_type reset_method = RESET_TYPE_INVISIBLE; enum reset_type reset_method = RESET_TYPE_INVISIBLE;
struct efx_channel *channel;
int rc_test = 0, rc_reset = 0, rc; int rc_test = 0, rc_reset = 0, rc;
efx_selftest_async_cancel(efx);
/* Online (i.e. non-disruptive) testing /* Online (i.e. non-disruptive) testing
* This checks interrupt generation, event delivery and PHY presence. */ * This checks interrupt generation, event delivery and PHY presence. */
@ -678,11 +719,9 @@ int efx_selftest(struct efx_nic *efx, struct efx_self_tests *tests,
if (rc && !rc_test) if (rc && !rc_test)
rc_test = rc; rc_test = rc;
efx_for_each_channel(channel, efx) { rc = efx_test_eventq_irq(efx, tests);
rc = efx_test_eventq_irq(channel, tests);
if (rc && !rc_test) if (rc && !rc_test)
rc_test = rc; rc_test = rc;
}
if (rc_test) if (rc_test)
return rc_test; return rc_test;
@ -757,3 +796,36 @@ int efx_selftest(struct efx_nic *efx, struct efx_self_tests *tests,
return rc_test; return rc_test;
} }
void efx_selftest_async_start(struct efx_nic *efx)
{
struct efx_channel *channel;
efx_for_each_channel(channel, efx)
efx_nic_event_test_start(channel);
schedule_delayed_work(&efx->selftest_work, IRQ_TIMEOUT);
}
void efx_selftest_async_cancel(struct efx_nic *efx)
{
cancel_delayed_work_sync(&efx->selftest_work);
}
void efx_selftest_async_work(struct work_struct *data)
{
struct efx_nic *efx = container_of(data, struct efx_nic,
selftest_work.work);
struct efx_channel *channel;
int cpu;
efx_for_each_channel(channel, efx) {
cpu = efx_nic_event_test_irq_cpu(channel);
if (cpu < 0)
netif_err(efx, ifup, efx->net_dev,
"channel %d failed to trigger an interrupt\n",
channel->channel);
else
netif_dbg(efx, ifup, efx->net_dev,
"channel %d triggered interrupt on CPU %d\n",
channel->channel, cpu);
}
}

View File

@ -48,5 +48,8 @@ extern void efx_loopback_rx_packet(struct efx_nic *efx,
extern int efx_selftest(struct efx_nic *efx, extern int efx_selftest(struct efx_nic *efx,
struct efx_self_tests *tests, struct efx_self_tests *tests,
unsigned flags); unsigned flags);
extern void efx_selftest_async_start(struct efx_nic *efx);
extern void efx_selftest_async_cancel(struct efx_nic *efx);
extern void efx_selftest_async_work(struct work_struct *data);
#endif /* EFX_SELFTEST_H */ #endif /* EFX_SELFTEST_H */

View File

@ -409,7 +409,6 @@ static void siena_remove_nic(struct efx_nic *efx)
siena_reset_hw(efx, RESET_TYPE_ALL); siena_reset_hw(efx, RESET_TYPE_ALL);
/* Relinquish the device back to the BMC */ /* Relinquish the device back to the BMC */
if (efx_nic_has_mc(efx))
efx_mcdi_drv_attach(efx, false, NULL); efx_mcdi_drv_attach(efx, false, NULL);
/* Tear down the private nic state */ /* Tear down the private nic state */

View File

@ -514,7 +514,7 @@ static bool map_vi_index(struct efx_nic *efx, unsigned abs_index,
if (abs_index < EFX_VI_BASE) if (abs_index < EFX_VI_BASE)
return true; return true;
vf_i = (abs_index - EFX_VI_BASE) * efx_vf_size(efx); vf_i = (abs_index - EFX_VI_BASE) / efx_vf_size(efx);
if (vf_i >= efx->vf_init_count) if (vf_i >= efx->vf_init_count)
return true; return true;