diff --git a/arch/x86/kvm/vmx/nested.c b/arch/x86/kvm/vmx/nested.c index 7eebfdf7204f..2777cea05cc0 100644 --- a/arch/x86/kvm/vmx/nested.c +++ b/arch/x86/kvm/vmx/nested.c @@ -4851,18 +4851,20 @@ static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu) struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs; /* - * We should allocate a shadow vmcs for vmcs01 only when L1 - * executes VMXON and free it when L1 executes VMXOFF. - * As it is invalid to execute VMXON twice, we shouldn't reach - * here when vmcs01 already have an allocated shadow vmcs. + * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it + * when L1 executes VMXOFF or the vCPU is forced out of nested + * operation. VMXON faults if the CPU is already post-VMXON, so it + * should be impossible to already have an allocated shadow VMCS. KVM + * doesn't support virtualization of VMCS shadowing, so vmcs01 should + * always be the loaded VMCS. */ - WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs); + if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs)) + return loaded_vmcs->shadow_vmcs; + + loaded_vmcs->shadow_vmcs = alloc_vmcs(true); + if (loaded_vmcs->shadow_vmcs) + vmcs_clear(loaded_vmcs->shadow_vmcs); - if (!loaded_vmcs->shadow_vmcs) { - loaded_vmcs->shadow_vmcs = alloc_vmcs(true); - if (loaded_vmcs->shadow_vmcs) - vmcs_clear(loaded_vmcs->shadow_vmcs); - } return loaded_vmcs->shadow_vmcs; }