f2fs: support zone capacity less than zone size
NVMe Zoned Namespace devices can have zone-capacity less than zone-size. Zone-capacity indicates the maximum number of sectors that are usable in a zone beginning from the first sector of the zone. This makes the sectors sectors after the zone-capacity till zone-size to be unusable. This patch set tracks zone-size and zone-capacity in zoned devices and calculate the usable blocks per segment and usable segments per section. If zone-capacity is less than zone-size mark only those segments which start before zone-capacity as free segments. All segments at and beyond zone-capacity are treated as permanently used segments. In cases where zone-capacity does not align with segment size the last segment will start before zone-capacity and end beyond the zone-capacity of the zone. For such spanning segments only sectors within the zone-capacity are used. During writes and GC manage the usable segments in a section and usable blocks per segment. Segments which are beyond zone-capacity are never allocated, and do not need to be garbage collected, only the segments which are before zone-capacity needs to garbage collected. For spanning segments based on the number of usable blocks in that segment, write to blocks only up to zone-capacity. Zone-capacity is device specific and cannot be configured by the user. Since NVMe ZNS device zones are sequentially write only, a block device with conventional zones or any normal block device is needed along with the ZNS device for the metadata operations of F2fs. A typical nvme-cli output of a zoned device shows zone start and capacity and write pointer as below: SLBA: 0x0 WP: 0x0 Cap: 0x18800 State: EMPTY Type: SEQWRITE_REQ SLBA: 0x20000 WP: 0x20000 Cap: 0x18800 State: EMPTY Type: SEQWRITE_REQ SLBA: 0x40000 WP: 0x40000 Cap: 0x18800 State: EMPTY Type: SEQWRITE_REQ Here zone size is 64MB, capacity is 49MB, WP is at zone start as the zones are in EMPTY state. For each zone, only zone start + 49MB is usable area, any lba/sector after 49MB cannot be read or written to, the drive will fail any attempts to read/write. So, the second zone starts at 64MB and is usable till 113MB (64 + 49) and the range between 113 and 128MB is again unusable. The next zone starts at 128MB, and so on. Signed-off-by: Aravind Ramesh <aravind.ramesh@wdc.com> Signed-off-by: Damien Le Moal <damien.lemoal@wdc.com> Signed-off-by: Niklas Cassel <niklas.cassel@wdc.com> Reviewed-by: Chao Yu <yuchao0@huawei.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
This commit is contained in:
parent
581cb3a26b
commit
de881df977
@ -772,3 +772,18 @@ Compress metadata layout::
|
||||
+-------------+-------------+----------+----------------------------+
|
||||
| data length | data chksum | reserved | compressed data |
|
||||
+-------------+-------------+----------+----------------------------+
|
||||
|
||||
NVMe Zoned Namespace devices
|
||||
----------------------------
|
||||
|
||||
- ZNS defines a per-zone capacity which can be equal or less than the
|
||||
zone-size. Zone-capacity is the number of usable blocks in the zone.
|
||||
F2fs checks if zone-capacity is less than zone-size, if it is, then any
|
||||
segment which starts after the zone-capacity is marked as not-free in
|
||||
the free segment bitmap at initial mount time. These segments are marked
|
||||
as permanently used so they are not allocated for writes and
|
||||
consequently are not needed to be garbage collected. In case the
|
||||
zone-capacity is not aligned to default segment size(2MB), then a segment
|
||||
can start before the zone-capacity and span across zone-capacity boundary.
|
||||
Such spanning segments are also considered as usable segments. All blocks
|
||||
past the zone-capacity are considered unusable in these segments.
|
||||
|
@ -1209,6 +1209,7 @@ struct f2fs_dev_info {
|
||||
#ifdef CONFIG_BLK_DEV_ZONED
|
||||
unsigned int nr_blkz; /* Total number of zones */
|
||||
unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
|
||||
block_t *zone_capacity_blocks; /* Array of zone capacity in blks */
|
||||
#endif
|
||||
};
|
||||
|
||||
@ -3378,6 +3379,10 @@ void f2fs_destroy_segment_manager_caches(void);
|
||||
int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
|
||||
enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
|
||||
enum page_type type, enum temp_type temp);
|
||||
unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
|
||||
unsigned int segno);
|
||||
unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
|
||||
unsigned int segno);
|
||||
|
||||
/*
|
||||
* checkpoint.c
|
||||
|
25
fs/f2fs/gc.c
25
fs/f2fs/gc.c
@ -266,13 +266,14 @@ static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
|
||||
unsigned char age = 0;
|
||||
unsigned char u;
|
||||
unsigned int i;
|
||||
unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi, segno);
|
||||
|
||||
for (i = 0; i < sbi->segs_per_sec; i++)
|
||||
for (i = 0; i < usable_segs_per_sec; i++)
|
||||
mtime += get_seg_entry(sbi, start + i)->mtime;
|
||||
vblocks = get_valid_blocks(sbi, segno, true);
|
||||
|
||||
mtime = div_u64(mtime, sbi->segs_per_sec);
|
||||
vblocks = div_u64(vblocks, sbi->segs_per_sec);
|
||||
mtime = div_u64(mtime, usable_segs_per_sec);
|
||||
vblocks = div_u64(vblocks, usable_segs_per_sec);
|
||||
|
||||
u = (vblocks * 100) >> sbi->log_blocks_per_seg;
|
||||
|
||||
@ -536,6 +537,7 @@ static int gc_node_segment(struct f2fs_sb_info *sbi,
|
||||
int phase = 0;
|
||||
bool fggc = (gc_type == FG_GC);
|
||||
int submitted = 0;
|
||||
unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
|
||||
|
||||
start_addr = START_BLOCK(sbi, segno);
|
||||
|
||||
@ -545,7 +547,7 @@ next_step:
|
||||
if (fggc && phase == 2)
|
||||
atomic_inc(&sbi->wb_sync_req[NODE]);
|
||||
|
||||
for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
|
||||
for (off = 0; off < usable_blks_in_seg; off++, entry++) {
|
||||
nid_t nid = le32_to_cpu(entry->nid);
|
||||
struct page *node_page;
|
||||
struct node_info ni;
|
||||
@ -1033,13 +1035,14 @@ static int gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
|
||||
int off;
|
||||
int phase = 0;
|
||||
int submitted = 0;
|
||||
unsigned int usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
|
||||
|
||||
start_addr = START_BLOCK(sbi, segno);
|
||||
|
||||
next_step:
|
||||
entry = sum;
|
||||
|
||||
for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
|
||||
for (off = 0; off < usable_blks_in_seg; off++, entry++) {
|
||||
struct page *data_page;
|
||||
struct inode *inode;
|
||||
struct node_info dni; /* dnode info for the data */
|
||||
@ -1204,6 +1207,15 @@ static int do_garbage_collect(struct f2fs_sb_info *sbi,
|
||||
if (__is_large_section(sbi))
|
||||
end_segno = rounddown(end_segno, sbi->segs_per_sec);
|
||||
|
||||
/*
|
||||
* zone-capacity can be less than zone-size in zoned devices,
|
||||
* resulting in less than expected usable segments in the zone,
|
||||
* calculate the end segno in the zone which can be garbage collected
|
||||
*/
|
||||
if (f2fs_sb_has_blkzoned(sbi))
|
||||
end_segno -= sbi->segs_per_sec -
|
||||
f2fs_usable_segs_in_sec(sbi, segno);
|
||||
|
||||
/* readahead multi ssa blocks those have contiguous address */
|
||||
if (__is_large_section(sbi))
|
||||
f2fs_ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
|
||||
@ -1356,7 +1368,8 @@ gc_more:
|
||||
goto stop;
|
||||
|
||||
seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type);
|
||||
if (gc_type == FG_GC && seg_freed == sbi->segs_per_sec)
|
||||
if (gc_type == FG_GC &&
|
||||
seg_freed == f2fs_usable_segs_in_sec(sbi, segno))
|
||||
sec_freed++;
|
||||
total_freed += seg_freed;
|
||||
|
||||
|
44
fs/f2fs/gc.h
44
fs/f2fs/gc.h
@ -44,13 +44,49 @@ struct gc_inode_list {
|
||||
/*
|
||||
* inline functions
|
||||
*/
|
||||
|
||||
/*
|
||||
* On a Zoned device zone-capacity can be less than zone-size and if
|
||||
* zone-capacity is not aligned to f2fs segment size(2MB), then the segment
|
||||
* starting just before zone-capacity has some blocks spanning across the
|
||||
* zone-capacity, these blocks are not usable.
|
||||
* Such spanning segments can be in free list so calculate the sum of usable
|
||||
* blocks in currently free segments including normal and spanning segments.
|
||||
*/
|
||||
static inline block_t free_segs_blk_count_zoned(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
block_t free_seg_blks = 0;
|
||||
struct free_segmap_info *free_i = FREE_I(sbi);
|
||||
int j;
|
||||
|
||||
spin_lock(&free_i->segmap_lock);
|
||||
for (j = 0; j < MAIN_SEGS(sbi); j++)
|
||||
if (!test_bit(j, free_i->free_segmap))
|
||||
free_seg_blks += f2fs_usable_blks_in_seg(sbi, j);
|
||||
spin_unlock(&free_i->segmap_lock);
|
||||
|
||||
return free_seg_blks;
|
||||
}
|
||||
|
||||
static inline block_t free_segs_blk_count(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
if (f2fs_sb_has_blkzoned(sbi))
|
||||
return free_segs_blk_count_zoned(sbi);
|
||||
|
||||
return free_segments(sbi) << sbi->log_blocks_per_seg;
|
||||
}
|
||||
|
||||
static inline block_t free_user_blocks(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
if (free_segments(sbi) < overprovision_segments(sbi))
|
||||
block_t free_blks, ovp_blks;
|
||||
|
||||
free_blks = free_segs_blk_count(sbi);
|
||||
ovp_blks = overprovision_segments(sbi) << sbi->log_blocks_per_seg;
|
||||
|
||||
if (free_blks < ovp_blks)
|
||||
return 0;
|
||||
else
|
||||
return (free_segments(sbi) - overprovision_segments(sbi))
|
||||
<< sbi->log_blocks_per_seg;
|
||||
|
||||
return free_blks - ovp_blks;
|
||||
}
|
||||
|
||||
static inline block_t limit_invalid_user_blocks(struct f2fs_sb_info *sbi)
|
||||
|
@ -859,20 +859,22 @@ static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
|
||||
{
|
||||
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
||||
unsigned short valid_blocks, ckpt_valid_blocks;
|
||||
unsigned int usable_blocks;
|
||||
|
||||
if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
|
||||
return;
|
||||
|
||||
usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
|
||||
mutex_lock(&dirty_i->seglist_lock);
|
||||
|
||||
valid_blocks = get_valid_blocks(sbi, segno, false);
|
||||
ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
|
||||
|
||||
if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
|
||||
ckpt_valid_blocks == sbi->blocks_per_seg)) {
|
||||
ckpt_valid_blocks == usable_blocks)) {
|
||||
__locate_dirty_segment(sbi, segno, PRE);
|
||||
__remove_dirty_segment(sbi, segno, DIRTY);
|
||||
} else if (valid_blocks < sbi->blocks_per_seg) {
|
||||
} else if (valid_blocks < usable_blocks) {
|
||||
__locate_dirty_segment(sbi, segno, DIRTY);
|
||||
} else {
|
||||
/* Recovery routine with SSR needs this */
|
||||
@ -915,9 +917,11 @@ block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
|
||||
for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
|
||||
se = get_seg_entry(sbi, segno);
|
||||
if (IS_NODESEG(se->type))
|
||||
holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
|
||||
holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
|
||||
se->valid_blocks;
|
||||
else
|
||||
holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
|
||||
holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
|
||||
se->valid_blocks;
|
||||
}
|
||||
mutex_unlock(&dirty_i->seglist_lock);
|
||||
|
||||
@ -2167,7 +2171,7 @@ static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
|
||||
offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
|
||||
|
||||
f2fs_bug_on(sbi, (new_vblocks < 0 ||
|
||||
(new_vblocks > sbi->blocks_per_seg)));
|
||||
(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
|
||||
|
||||
se->valid_blocks = new_vblocks;
|
||||
se->mtime = get_mtime(sbi, false);
|
||||
@ -2933,9 +2937,9 @@ out:
|
||||
static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
|
||||
{
|
||||
struct curseg_info *curseg = CURSEG_I(sbi, type);
|
||||
if (curseg->next_blkoff < sbi->blocks_per_seg)
|
||||
return true;
|
||||
return false;
|
||||
|
||||
return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
|
||||
curseg->segno);
|
||||
}
|
||||
|
||||
int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
|
||||
@ -4294,9 +4298,12 @@ static void init_free_segmap(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
unsigned int start;
|
||||
int type;
|
||||
struct seg_entry *sentry;
|
||||
|
||||
for (start = 0; start < MAIN_SEGS(sbi); start++) {
|
||||
struct seg_entry *sentry = get_seg_entry(sbi, start);
|
||||
if (f2fs_usable_blks_in_seg(sbi, start) == 0)
|
||||
continue;
|
||||
sentry = get_seg_entry(sbi, start);
|
||||
if (!sentry->valid_blocks)
|
||||
__set_free(sbi, start);
|
||||
else
|
||||
@ -4316,7 +4323,7 @@ static void init_dirty_segmap(struct f2fs_sb_info *sbi)
|
||||
struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
|
||||
struct free_segmap_info *free_i = FREE_I(sbi);
|
||||
unsigned int segno = 0, offset = 0, secno;
|
||||
block_t valid_blocks;
|
||||
block_t valid_blocks, usable_blks_in_seg;
|
||||
block_t blks_per_sec = BLKS_PER_SEC(sbi);
|
||||
|
||||
while (1) {
|
||||
@ -4326,9 +4333,10 @@ static void init_dirty_segmap(struct f2fs_sb_info *sbi)
|
||||
break;
|
||||
offset = segno + 1;
|
||||
valid_blocks = get_valid_blocks(sbi, segno, false);
|
||||
if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
|
||||
usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
|
||||
if (valid_blocks == usable_blks_in_seg || !valid_blocks)
|
||||
continue;
|
||||
if (valid_blocks > sbi->blocks_per_seg) {
|
||||
if (valid_blocks > usable_blks_in_seg) {
|
||||
f2fs_bug_on(sbi, 1);
|
||||
continue;
|
||||
}
|
||||
@ -4678,6 +4686,101 @@ int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
|
||||
unsigned int dev_idx)
|
||||
{
|
||||
if (!bdev_is_zoned(FDEV(dev_idx).bdev))
|
||||
return true;
|
||||
return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
|
||||
}
|
||||
|
||||
/* Return the zone index in the given device */
|
||||
static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
|
||||
int dev_idx)
|
||||
{
|
||||
block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
|
||||
|
||||
return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
|
||||
sbi->log_blocks_per_blkz;
|
||||
}
|
||||
|
||||
/*
|
||||
* Return the usable segments in a section based on the zone's
|
||||
* corresponding zone capacity. Zone is equal to a section.
|
||||
*/
|
||||
static inline unsigned int f2fs_usable_zone_segs_in_sec(
|
||||
struct f2fs_sb_info *sbi, unsigned int segno)
|
||||
{
|
||||
unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
|
||||
|
||||
dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
|
||||
zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
|
||||
|
||||
/* Conventional zone's capacity is always equal to zone size */
|
||||
if (is_conv_zone(sbi, zone_idx, dev_idx))
|
||||
return sbi->segs_per_sec;
|
||||
|
||||
/*
|
||||
* If the zone_capacity_blocks array is NULL, then zone capacity
|
||||
* is equal to the zone size for all zones
|
||||
*/
|
||||
if (!FDEV(dev_idx).zone_capacity_blocks)
|
||||
return sbi->segs_per_sec;
|
||||
|
||||
/* Get the segment count beyond zone capacity block */
|
||||
unusable_segs_in_sec = (sbi->blocks_per_blkz -
|
||||
FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
|
||||
sbi->log_blocks_per_seg;
|
||||
return sbi->segs_per_sec - unusable_segs_in_sec;
|
||||
}
|
||||
|
||||
/*
|
||||
* Return the number of usable blocks in a segment. The number of blocks
|
||||
* returned is always equal to the number of blocks in a segment for
|
||||
* segments fully contained within a sequential zone capacity or a
|
||||
* conventional zone. For segments partially contained in a sequential
|
||||
* zone capacity, the number of usable blocks up to the zone capacity
|
||||
* is returned. 0 is returned in all other cases.
|
||||
*/
|
||||
static inline unsigned int f2fs_usable_zone_blks_in_seg(
|
||||
struct f2fs_sb_info *sbi, unsigned int segno)
|
||||
{
|
||||
block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
|
||||
unsigned int zone_idx, dev_idx, secno;
|
||||
|
||||
secno = GET_SEC_FROM_SEG(sbi, segno);
|
||||
seg_start = START_BLOCK(sbi, segno);
|
||||
dev_idx = f2fs_target_device_index(sbi, seg_start);
|
||||
zone_idx = get_zone_idx(sbi, secno, dev_idx);
|
||||
|
||||
/*
|
||||
* Conventional zone's capacity is always equal to zone size,
|
||||
* so, blocks per segment is unchanged.
|
||||
*/
|
||||
if (is_conv_zone(sbi, zone_idx, dev_idx))
|
||||
return sbi->blocks_per_seg;
|
||||
|
||||
if (!FDEV(dev_idx).zone_capacity_blocks)
|
||||
return sbi->blocks_per_seg;
|
||||
|
||||
sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
|
||||
sec_cap_blkaddr = sec_start_blkaddr +
|
||||
FDEV(dev_idx).zone_capacity_blocks[zone_idx];
|
||||
|
||||
/*
|
||||
* If segment starts before zone capacity and spans beyond
|
||||
* zone capacity, then usable blocks are from seg start to
|
||||
* zone capacity. If the segment starts after the zone capacity,
|
||||
* then there are no usable blocks.
|
||||
*/
|
||||
if (seg_start >= sec_cap_blkaddr)
|
||||
return 0;
|
||||
if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
|
||||
return sec_cap_blkaddr - seg_start;
|
||||
|
||||
return sbi->blocks_per_seg;
|
||||
}
|
||||
#else
|
||||
int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
@ -4688,7 +4791,36 @@ int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
|
||||
unsigned int segno)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
|
||||
unsigned int segno)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
|
||||
unsigned int segno)
|
||||
{
|
||||
if (f2fs_sb_has_blkzoned(sbi))
|
||||
return f2fs_usable_zone_blks_in_seg(sbi, segno);
|
||||
|
||||
return sbi->blocks_per_seg;
|
||||
}
|
||||
|
||||
unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
|
||||
unsigned int segno)
|
||||
{
|
||||
if (f2fs_sb_has_blkzoned(sbi))
|
||||
return f2fs_usable_zone_segs_in_sec(sbi, segno);
|
||||
|
||||
return sbi->segs_per_sec;
|
||||
}
|
||||
|
||||
/*
|
||||
* Update min, max modified time for cost-benefit GC algorithm
|
||||
|
@ -411,6 +411,7 @@ static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
|
||||
unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
|
||||
unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
|
||||
unsigned int next;
|
||||
unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
|
||||
|
||||
spin_lock(&free_i->segmap_lock);
|
||||
clear_bit(segno, free_i->free_segmap);
|
||||
@ -418,7 +419,7 @@ static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
|
||||
|
||||
next = find_next_bit(free_i->free_segmap,
|
||||
start_segno + sbi->segs_per_sec, start_segno);
|
||||
if (next >= start_segno + sbi->segs_per_sec) {
|
||||
if (next >= start_segno + usable_segs) {
|
||||
clear_bit(secno, free_i->free_secmap);
|
||||
free_i->free_sections++;
|
||||
}
|
||||
@ -444,6 +445,7 @@ static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
|
||||
unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
|
||||
unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
|
||||
unsigned int next;
|
||||
unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
|
||||
|
||||
spin_lock(&free_i->segmap_lock);
|
||||
if (test_and_clear_bit(segno, free_i->free_segmap)) {
|
||||
@ -453,7 +455,7 @@ static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
|
||||
goto skip_free;
|
||||
next = find_next_bit(free_i->free_segmap,
|
||||
start_segno + sbi->segs_per_sec, start_segno);
|
||||
if (next >= start_segno + sbi->segs_per_sec) {
|
||||
if (next >= start_segno + usable_segs) {
|
||||
if (test_and_clear_bit(secno, free_i->free_secmap))
|
||||
free_i->free_sections++;
|
||||
}
|
||||
@ -546,8 +548,8 @@ static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
|
||||
/* check current node segment */
|
||||
for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
|
||||
segno = CURSEG_I(sbi, i)->segno;
|
||||
left_blocks = sbi->blocks_per_seg -
|
||||
get_seg_entry(sbi, segno)->ckpt_valid_blocks;
|
||||
left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
|
||||
get_seg_entry(sbi, segno)->ckpt_valid_blocks;
|
||||
|
||||
if (node_blocks > left_blocks)
|
||||
return false;
|
||||
@ -555,7 +557,7 @@ static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
|
||||
|
||||
/* check current data segment */
|
||||
segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
|
||||
left_blocks = sbi->blocks_per_seg -
|
||||
left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
|
||||
get_seg_entry(sbi, segno)->ckpt_valid_blocks;
|
||||
if (dent_blocks > left_blocks)
|
||||
return false;
|
||||
@ -677,21 +679,22 @@ static inline int check_block_count(struct f2fs_sb_info *sbi,
|
||||
bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
|
||||
int valid_blocks = 0;
|
||||
int cur_pos = 0, next_pos;
|
||||
unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
|
||||
|
||||
/* check bitmap with valid block count */
|
||||
do {
|
||||
if (is_valid) {
|
||||
next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
|
||||
sbi->blocks_per_seg,
|
||||
usable_blks_per_seg,
|
||||
cur_pos);
|
||||
valid_blocks += next_pos - cur_pos;
|
||||
} else
|
||||
next_pos = find_next_bit_le(&raw_sit->valid_map,
|
||||
sbi->blocks_per_seg,
|
||||
usable_blks_per_seg,
|
||||
cur_pos);
|
||||
cur_pos = next_pos;
|
||||
is_valid = !is_valid;
|
||||
} while (cur_pos < sbi->blocks_per_seg);
|
||||
} while (cur_pos < usable_blks_per_seg);
|
||||
|
||||
if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
|
||||
f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
|
||||
@ -700,8 +703,13 @@ static inline int check_block_count(struct f2fs_sb_info *sbi,
|
||||
return -EFSCORRUPTED;
|
||||
}
|
||||
|
||||
if (usable_blks_per_seg < sbi->blocks_per_seg)
|
||||
f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
|
||||
sbi->blocks_per_seg,
|
||||
usable_blks_per_seg) != sbi->blocks_per_seg);
|
||||
|
||||
/* check segment usage, and check boundary of a given segment number */
|
||||
if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
|
||||
if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
|
||||
|| segno > TOTAL_SEGS(sbi) - 1)) {
|
||||
f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
|
||||
GET_SIT_VBLOCKS(raw_sit), segno);
|
||||
|
@ -1184,6 +1184,7 @@ static void destroy_device_list(struct f2fs_sb_info *sbi)
|
||||
blkdev_put(FDEV(i).bdev, FMODE_EXCL);
|
||||
#ifdef CONFIG_BLK_DEV_ZONED
|
||||
kvfree(FDEV(i).blkz_seq);
|
||||
kfree(FDEV(i).zone_capacity_blocks);
|
||||
#endif
|
||||
}
|
||||
kvfree(sbi->devs);
|
||||
@ -3088,13 +3089,26 @@ static int init_percpu_info(struct f2fs_sb_info *sbi)
|
||||
}
|
||||
|
||||
#ifdef CONFIG_BLK_DEV_ZONED
|
||||
static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
|
||||
void *data)
|
||||
{
|
||||
struct f2fs_dev_info *dev = data;
|
||||
|
||||
if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL)
|
||||
set_bit(idx, dev->blkz_seq);
|
||||
struct f2fs_report_zones_args {
|
||||
struct f2fs_dev_info *dev;
|
||||
bool zone_cap_mismatch;
|
||||
};
|
||||
|
||||
static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
|
||||
void *data)
|
||||
{
|
||||
struct f2fs_report_zones_args *rz_args = data;
|
||||
|
||||
if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
|
||||
return 0;
|
||||
|
||||
set_bit(idx, rz_args->dev->blkz_seq);
|
||||
rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >>
|
||||
F2FS_LOG_SECTORS_PER_BLOCK;
|
||||
if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch)
|
||||
rz_args->zone_cap_mismatch = true;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -3102,6 +3116,7 @@ static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
|
||||
{
|
||||
struct block_device *bdev = FDEV(devi).bdev;
|
||||
sector_t nr_sectors = bdev->bd_part->nr_sects;
|
||||
struct f2fs_report_zones_args rep_zone_arg;
|
||||
int ret;
|
||||
|
||||
if (!f2fs_sb_has_blkzoned(sbi))
|
||||
@ -3127,12 +3142,26 @@ static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
|
||||
if (!FDEV(devi).blkz_seq)
|
||||
return -ENOMEM;
|
||||
|
||||
/* Get block zones type */
|
||||
/* Get block zones type and zone-capacity */
|
||||
FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi,
|
||||
FDEV(devi).nr_blkz * sizeof(block_t),
|
||||
GFP_KERNEL);
|
||||
if (!FDEV(devi).zone_capacity_blocks)
|
||||
return -ENOMEM;
|
||||
|
||||
rep_zone_arg.dev = &FDEV(devi);
|
||||
rep_zone_arg.zone_cap_mismatch = false;
|
||||
|
||||
ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
|
||||
&FDEV(devi));
|
||||
&rep_zone_arg);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
if (!rep_zone_arg.zone_cap_mismatch) {
|
||||
kfree(FDEV(devi).zone_capacity_blocks);
|
||||
FDEV(devi).zone_capacity_blocks = NULL;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user