kvm/x86: Export MDS_NO=0 to guests when TSX is enabled

Export the IA32_ARCH_CAPABILITIES MSR bit MDS_NO=0 to guests on TSX
Async Abort(TAA) affected hosts that have TSX enabled and updated
microcode. This is required so that the guests don't complain,

  "Vulnerable: Clear CPU buffers attempted, no microcode"

when the host has the updated microcode to clear CPU buffers.

Microcode update also adds support for MSR_IA32_TSX_CTRL which is
enumerated by the ARCH_CAP_TSX_CTRL bit in IA32_ARCH_CAPABILITIES MSR.
Guests can't do this check themselves when the ARCH_CAP_TSX_CTRL bit is
not exported to the guests.

In this case export MDS_NO=0 to the guests. When guests have
CPUID.MD_CLEAR=1, they deploy MDS mitigation which also mitigates TAA.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
This commit is contained in:
Pawan Gupta 2019-10-23 12:23:33 +02:00 committed by Thomas Gleixner
parent 6608b45ac5
commit e1d38b63ac

View File

@ -1298,6 +1298,25 @@ static u64 kvm_get_arch_capabilities(void)
if (!boot_cpu_has_bug(X86_BUG_MDS))
data |= ARCH_CAP_MDS_NO;
/*
* On TAA affected systems, export MDS_NO=0 when:
* - TSX is enabled on the host, i.e. X86_FEATURE_RTM=1.
* - Updated microcode is present. This is detected by
* the presence of ARCH_CAP_TSX_CTRL_MSR and ensures
* that VERW clears CPU buffers.
*
* When MDS_NO=0 is exported, guests deploy clear CPU buffer
* mitigation and don't complain:
*
* "Vulnerable: Clear CPU buffers attempted, no microcode"
*
* If TSX is disabled on the system, guests are also mitigated against
* TAA and clear CPU buffer mitigation is not required for guests.
*/
if (boot_cpu_has_bug(X86_BUG_TAA) && boot_cpu_has(X86_FEATURE_RTM) &&
(data & ARCH_CAP_TSX_CTRL_MSR))
data &= ~ARCH_CAP_MDS_NO;
return data;
}