Merge branches 'acpi-scan' and 'acpi-processor'

Merge ACPI device enumeration updates and ACPI processor driver updates
for 6.8-rc1:

 - Add CSI-2 and DisCo for Imaging support to the ACPI device
   enumeration code (Sakari Ailus, Rafael J. Wysocki).

 - Adjust the cpufreq thermal reduction algorithm in the ACPI processor
   driver for Tegra241 (Srikar Srimath Tirumala, Arnd Bergmann).

 - Make acpi_proc_quirk_mwait_check() x86-specific (Rafael J. Wysocki).

* acpi-scan:
  ACPI: scan: Fix an error message in DisCo for Imaging support
  ACPI: property: Replicate DT-aligned u32 properties from DisCo for Imaging
  ACPI: property: Dig "rotation" property for devices with CSI2 _CRS
  ACPI: scan: Extract MIPI DisCo for Imaging data into swnodes
  device property: Add SOFTWARE_NODE() macro for defining software nodes
  ACPI: scan: Extract _CRS CSI-2 connection information into swnodes
  ACPI: scan: Extract CSI-2 connection graph from _CRS
  ACPI: property: Support using strings in reference properties

* acpi-processor:
  ACPI: arm64: export acpi_arch_thermal_cpufreq_pctg()
  ACPI: processor: reduce CPUFREQ thermal reduction pctg for Tegra241
  ACPI: processor: Provide empty stub of acpi_proc_quirk_mwait_check()
This commit is contained in:
Rafael J. Wysocki 2024-01-04 12:29:52 +01:00
commit e3f4440753
10 changed files with 1040 additions and 40 deletions

View File

@ -37,7 +37,7 @@ acpi-$(CONFIG_ACPI_SLEEP) += proc.o
# ACPI Bus and Device Drivers
#
acpi-y += bus.o glue.o
acpi-y += scan.o
acpi-y += scan.o mipi-disco-img.o
acpi-y += resource.o
acpi-y += acpi_processor.o
acpi-y += processor_core.o

View File

@ -5,3 +5,4 @@ obj-$(CONFIG_ACPI_GTDT) += gtdt.o
obj-$(CONFIG_ACPI_APMT) += apmt.o
obj-$(CONFIG_ARM_AMBA) += amba.o
obj-y += dma.o init.o
obj-y += thermal_cpufreq.o

View File

@ -0,0 +1,22 @@
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/acpi.h>
#include <linux/export.h>
#include "../internal.h"
#define SMCCC_SOC_ID_T241 0x036b0241
int acpi_arch_thermal_cpufreq_pctg(void)
{
s32 soc_id = arm_smccc_get_soc_id_version();
/*
* Check JEP106 code for NVIDIA Tegra241 chip (036b:0241) and
* reduce the CPUFREQ Thermal reduction percentage to 5%.
*/
if (soc_id == SMCCC_SOC_ID_T241)
return 5;
return 0;
}
EXPORT_SYMBOL_GPL(acpi_arch_thermal_cpufreq_pctg);

View File

@ -85,6 +85,15 @@ bool acpi_scan_is_offline(struct acpi_device *adev, bool uevent);
acpi_status acpi_sysfs_table_handler(u32 event, void *table, void *context);
void acpi_scan_table_notify(void);
#ifdef CONFIG_ARM64
int acpi_arch_thermal_cpufreq_pctg(void);
#else
static inline int acpi_arch_thermal_cpufreq_pctg(void)
{
return 0;
}
#endif
/* --------------------------------------------------------------------------
Device Node Initialization / Removal
-------------------------------------------------------------------------- */
@ -148,8 +157,11 @@ int acpi_wakeup_device_init(void);
#ifdef CONFIG_ARCH_MIGHT_HAVE_ACPI_PDC
void acpi_early_processor_control_setup(void);
void acpi_early_processor_set_pdc(void);
#ifdef CONFIG_X86
void acpi_proc_quirk_mwait_check(void);
#else
static inline void acpi_proc_quirk_mwait_check(void) {}
#endif
bool processor_physically_present(acpi_handle handle);
#else
static inline void acpi_early_processor_control_setup(void) {}
@ -276,4 +288,13 @@ void acpi_init_lpit(void);
static inline void acpi_init_lpit(void) { }
#endif
/*--------------------------------------------------------------------------
ACPI _CRS CSI-2 and MIPI DisCo for Imaging
-------------------------------------------------------------------------- */
void acpi_mipi_check_crs_csi2(acpi_handle handle);
void acpi_mipi_scan_crs_csi2(void);
void acpi_mipi_init_crs_csi2_swnodes(void);
void acpi_mipi_crs_csi2_cleanup(void);
#endif /* _ACPI_INTERNAL_H_ */

View File

@ -0,0 +1,725 @@
// SPDX-License-Identifier: GPL-2.0-only
/*
* MIPI DisCo for Imaging support.
*
* Copyright (C) 2023 Intel Corporation
*
* Support MIPI DisCo for Imaging by parsing ACPI _CRS CSI-2 records defined in
* Section 6.4.3.8.2.4 "Camera Serial Interface (CSI-2) Connection Resource
* Descriptor" of ACPI 6.5 and using device properties defined by the MIPI DisCo
* for Imaging specification.
*
* The implementation looks for the information in the ACPI namespace (CSI-2
* resource descriptors in _CRS) and constructs software nodes compatible with
* Documentation/firmware-guide/acpi/dsd/graph.rst to represent the CSI-2
* connection graph. The software nodes are then populated with the data
* extracted from the _CRS CSI-2 resource descriptors and the MIPI DisCo
* for Imaging device properties present in _DSD for the ACPI device objects
* with CSI-2 connections.
*/
#include <linux/acpi.h>
#include <linux/limits.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/overflow.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <media/v4l2-fwnode.h>
#include "internal.h"
static LIST_HEAD(acpi_mipi_crs_csi2_list);
static void acpi_mipi_data_tag(acpi_handle handle, void *context)
{
}
/* Connection data extracted from one _CRS CSI-2 resource descriptor. */
struct crs_csi2_connection {
struct list_head entry;
struct acpi_resource_csi2_serialbus csi2_data;
acpi_handle remote_handle;
char remote_name[];
};
/* Data extracted from _CRS CSI-2 resource descriptors for one device. */
struct crs_csi2 {
struct list_head entry;
acpi_handle handle;
struct acpi_device_software_nodes *swnodes;
struct list_head connections;
u32 port_count;
};
struct csi2_resources_walk_data {
acpi_handle handle;
struct list_head connections;
};
static acpi_status parse_csi2_resource(struct acpi_resource *res, void *context)
{
struct csi2_resources_walk_data *crwd = context;
struct acpi_resource_csi2_serialbus *csi2_res;
struct acpi_resource_source *csi2_res_src;
u16 csi2_res_src_length;
struct crs_csi2_connection *conn;
acpi_handle remote_handle;
if (res->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
return AE_OK;
csi2_res = &res->data.csi2_serial_bus;
if (csi2_res->type != ACPI_RESOURCE_SERIAL_TYPE_CSI2)
return AE_OK;
csi2_res_src = &csi2_res->resource_source;
if (ACPI_FAILURE(acpi_get_handle(NULL, csi2_res_src->string_ptr,
&remote_handle))) {
acpi_handle_debug(crwd->handle,
"unable to find resource source\n");
return AE_OK;
}
csi2_res_src_length = csi2_res_src->string_length;
if (!csi2_res_src_length) {
acpi_handle_debug(crwd->handle,
"invalid resource source string length\n");
return AE_OK;
}
conn = kmalloc(struct_size(conn, remote_name, csi2_res_src_length + 1),
GFP_KERNEL);
if (!conn)
return AE_OK;
conn->csi2_data = *csi2_res;
strscpy(conn->remote_name, csi2_res_src->string_ptr, csi2_res_src_length);
conn->csi2_data.resource_source.string_ptr = conn->remote_name;
conn->remote_handle = remote_handle;
list_add(&conn->entry, &crwd->connections);
return AE_OK;
}
static struct crs_csi2 *acpi_mipi_add_crs_csi2(acpi_handle handle,
struct list_head *list)
{
struct crs_csi2 *csi2;
csi2 = kzalloc(sizeof(*csi2), GFP_KERNEL);
if (!csi2)
return NULL;
csi2->handle = handle;
INIT_LIST_HEAD(&csi2->connections);
csi2->port_count = 1;
if (ACPI_FAILURE(acpi_attach_data(handle, acpi_mipi_data_tag, csi2))) {
kfree(csi2);
return NULL;
}
list_add(&csi2->entry, list);
return csi2;
}
static struct crs_csi2 *acpi_mipi_get_crs_csi2(acpi_handle handle)
{
struct crs_csi2 *csi2;
if (ACPI_FAILURE(acpi_get_data_full(handle, acpi_mipi_data_tag,
(void **)&csi2, NULL)))
return NULL;
return csi2;
}
static void csi_csr2_release_connections(struct list_head *list)
{
struct crs_csi2_connection *conn, *conn_tmp;
list_for_each_entry_safe(conn, conn_tmp, list, entry) {
list_del(&conn->entry);
kfree(conn);
}
}
static void acpi_mipi_del_crs_csi2(struct crs_csi2 *csi2)
{
list_del(&csi2->entry);
acpi_detach_data(csi2->handle, acpi_mipi_data_tag);
kfree(csi2->swnodes);
csi_csr2_release_connections(&csi2->connections);
kfree(csi2);
}
/**
* acpi_mipi_check_crs_csi2 - Look for CSI-2 resources in _CRS
* @handle: Device object handle to evaluate _CRS for.
*
* Find all CSI-2 resource descriptors in the given device's _CRS
* and collect them into a list.
*/
void acpi_mipi_check_crs_csi2(acpi_handle handle)
{
struct csi2_resources_walk_data crwd = {
.handle = handle,
.connections = LIST_HEAD_INIT(crwd.connections),
};
struct crs_csi2 *csi2;
/*
* Avoid allocating _CRS CSI-2 objects for devices without any CSI-2
* resource descriptions in _CRS to reduce overhead.
*/
acpi_walk_resources(handle, METHOD_NAME__CRS, parse_csi2_resource, &crwd);
if (list_empty(&crwd.connections))
return;
/*
* Create a _CRS CSI-2 entry to store the extracted connection
* information and add it to the global list.
*/
csi2 = acpi_mipi_add_crs_csi2(handle, &acpi_mipi_crs_csi2_list);
if (!csi2) {
csi_csr2_release_connections(&crwd.connections);
return; /* Nothing really can be done about this. */
}
list_replace(&crwd.connections, &csi2->connections);
}
#define NO_CSI2_PORT (UINT_MAX - 1)
static void alloc_crs_csi2_swnodes(struct crs_csi2 *csi2)
{
size_t port_count = csi2->port_count;
struct acpi_device_software_nodes *swnodes;
size_t alloc_size;
unsigned int i;
/*
* Allocate memory for ports, node pointers (number of nodes +
* 1 (guardian), nodes (root + number of ports * 2 (because for
* every port there is an endpoint)).
*/
if (check_mul_overflow(sizeof(*swnodes->ports) +
sizeof(*swnodes->nodes) * 2 +
sizeof(*swnodes->nodeptrs) * 2,
port_count, &alloc_size) ||
check_add_overflow(sizeof(*swnodes) +
sizeof(*swnodes->nodes) +
sizeof(*swnodes->nodeptrs) * 2,
alloc_size, &alloc_size)) {
acpi_handle_info(csi2->handle,
"too many _CRS CSI-2 resource handles (%zu)",
port_count);
return;
}
swnodes = kmalloc(alloc_size, GFP_KERNEL);
if (!swnodes)
return;
swnodes->ports = (struct acpi_device_software_node_port *)(swnodes + 1);
swnodes->nodes = (struct software_node *)(swnodes->ports + port_count);
swnodes->nodeptrs = (const struct software_node **)(swnodes->nodes + 1 +
2 * port_count);
swnodes->num_ports = port_count;
for (i = 0; i < 2 * port_count + 1; i++)
swnodes->nodeptrs[i] = &swnodes->nodes[i];
swnodes->nodeptrs[i] = NULL;
for (i = 0; i < port_count; i++)
swnodes->ports[i].port_nr = NO_CSI2_PORT;
csi2->swnodes = swnodes;
}
#define ACPI_CRS_CSI2_PHY_TYPE_C 0
#define ACPI_CRS_CSI2_PHY_TYPE_D 1
static unsigned int next_csi2_port_index(struct acpi_device_software_nodes *swnodes,
unsigned int port_nr)
{
unsigned int i;
for (i = 0; i < swnodes->num_ports; i++) {
struct acpi_device_software_node_port *port = &swnodes->ports[i];
if (port->port_nr == port_nr)
return i;
if (port->port_nr == NO_CSI2_PORT) {
port->port_nr = port_nr;
return i;
}
}
return NO_CSI2_PORT;
}
/* Print graph port name into a buffer, return non-zero on failure. */
#define GRAPH_PORT_NAME(var, num) \
(snprintf((var), sizeof(var), SWNODE_GRAPH_PORT_NAME_FMT, (num)) >= \
sizeof(var))
static void extract_crs_csi2_conn_info(acpi_handle local_handle,
struct acpi_device_software_nodes *local_swnodes,
struct crs_csi2_connection *conn)
{
struct crs_csi2 *remote_csi2 = acpi_mipi_get_crs_csi2(conn->remote_handle);
struct acpi_device_software_nodes *remote_swnodes;
struct acpi_device_software_node_port *local_port, *remote_port;
struct software_node *local_node, *remote_node;
unsigned int local_index, remote_index;
unsigned int bus_type;
/*
* If the previous steps have failed to make room for a _CRS CSI-2
* representation for the remote end of the given connection, skip it.
*/
if (!remote_csi2)
return;
remote_swnodes = remote_csi2->swnodes;
if (!remote_swnodes)
return;
switch (conn->csi2_data.phy_type) {
case ACPI_CRS_CSI2_PHY_TYPE_C:
bus_type = V4L2_FWNODE_BUS_TYPE_CSI2_CPHY;
break;
case ACPI_CRS_CSI2_PHY_TYPE_D:
bus_type = V4L2_FWNODE_BUS_TYPE_CSI2_DPHY;
break;
default:
acpi_handle_info(local_handle, "unknown CSI-2 PHY type %u\n",
conn->csi2_data.phy_type);
return;
}
local_index = next_csi2_port_index(local_swnodes,
conn->csi2_data.local_port_instance);
if (WARN_ON_ONCE(local_index >= local_swnodes->num_ports))
return;
remote_index = next_csi2_port_index(remote_swnodes,
conn->csi2_data.resource_source.index);
if (WARN_ON_ONCE(remote_index >= remote_swnodes->num_ports))
return;
local_port = &local_swnodes->ports[local_index];
local_node = &local_swnodes->nodes[ACPI_DEVICE_SWNODE_EP(local_index)];
local_port->crs_csi2_local = true;
remote_port = &remote_swnodes->ports[remote_index];
remote_node = &remote_swnodes->nodes[ACPI_DEVICE_SWNODE_EP(remote_index)];
local_port->remote_ep[0] = SOFTWARE_NODE_REFERENCE(remote_node);
remote_port->remote_ep[0] = SOFTWARE_NODE_REFERENCE(local_node);
local_port->ep_props[ACPI_DEVICE_SWNODE_EP_REMOTE_EP] =
PROPERTY_ENTRY_REF_ARRAY("remote-endpoint",
local_port->remote_ep);
local_port->ep_props[ACPI_DEVICE_SWNODE_EP_BUS_TYPE] =
PROPERTY_ENTRY_U32("bus-type", bus_type);
local_port->ep_props[ACPI_DEVICE_SWNODE_EP_REG] =
PROPERTY_ENTRY_U32("reg", 0);
local_port->port_props[ACPI_DEVICE_SWNODE_PORT_REG] =
PROPERTY_ENTRY_U32("reg", conn->csi2_data.local_port_instance);
if (GRAPH_PORT_NAME(local_port->port_name,
conn->csi2_data.local_port_instance))
acpi_handle_info(local_handle, "local port %u name too long",
conn->csi2_data.local_port_instance);
remote_port->ep_props[ACPI_DEVICE_SWNODE_EP_REMOTE_EP] =
PROPERTY_ENTRY_REF_ARRAY("remote-endpoint",
remote_port->remote_ep);
remote_port->ep_props[ACPI_DEVICE_SWNODE_EP_BUS_TYPE] =
PROPERTY_ENTRY_U32("bus-type", bus_type);
remote_port->ep_props[ACPI_DEVICE_SWNODE_EP_REG] =
PROPERTY_ENTRY_U32("reg", 0);
remote_port->port_props[ACPI_DEVICE_SWNODE_PORT_REG] =
PROPERTY_ENTRY_U32("reg", conn->csi2_data.resource_source.index);
if (GRAPH_PORT_NAME(remote_port->port_name,
conn->csi2_data.resource_source.index))
acpi_handle_info(local_handle, "remote port %u name too long",
conn->csi2_data.resource_source.index);
}
static void prepare_crs_csi2_swnodes(struct crs_csi2 *csi2)
{
struct acpi_device_software_nodes *local_swnodes = csi2->swnodes;
acpi_handle local_handle = csi2->handle;
struct crs_csi2_connection *conn;
/* Bail out if the allocation of swnodes has failed. */
if (!local_swnodes)
return;
list_for_each_entry(conn, &csi2->connections, entry)
extract_crs_csi2_conn_info(local_handle, local_swnodes, conn);
}
/**
* acpi_mipi_scan_crs_csi2 - Create ACPI _CRS CSI-2 software nodes
*
* Note that this function must be called before any struct acpi_device objects
* are bound to any ACPI drivers or scan handlers, so it cannot assume the
* existence of struct acpi_device objects for every device present in the ACPI
* namespace.
*
* acpi_scan_lock in scan.c must be held when calling this function.
*/
void acpi_mipi_scan_crs_csi2(void)
{
struct crs_csi2 *csi2;
LIST_HEAD(aux_list);
/* Count references to each ACPI handle in the CSI-2 connection graph. */
list_for_each_entry(csi2, &acpi_mipi_crs_csi2_list, entry) {
struct crs_csi2_connection *conn;
list_for_each_entry(conn, &csi2->connections, entry) {
struct crs_csi2 *remote_csi2;
csi2->port_count++;
remote_csi2 = acpi_mipi_get_crs_csi2(conn->remote_handle);
if (remote_csi2) {
remote_csi2->port_count++;
continue;
}
/*
* The remote endpoint has no _CRS CSI-2 list entry yet,
* so create one for it and add it to the list.
*/
acpi_mipi_add_crs_csi2(conn->remote_handle, &aux_list);
}
}
list_splice(&aux_list, &acpi_mipi_crs_csi2_list);
/*
* Allocate software nodes for representing the CSI-2 information.
*
* This needs to be done for all of the list entries in one go, because
* they may point to each other without restrictions and the next step
* relies on the availability of swnodes memory for each list entry.
*/
list_for_each_entry(csi2, &acpi_mipi_crs_csi2_list, entry)
alloc_crs_csi2_swnodes(csi2);
/*
* Set up software node properties using data from _CRS CSI-2 resource
* descriptors.
*/
list_for_each_entry(csi2, &acpi_mipi_crs_csi2_list, entry)
prepare_crs_csi2_swnodes(csi2);
}
/*
* Get the index of the next property in the property array, with a given
* maximum value.
*/
#define NEXT_PROPERTY(index, max) \
(WARN_ON((index) > ACPI_DEVICE_SWNODE_##max) ? \
ACPI_DEVICE_SWNODE_##max : (index)++)
static void init_csi2_port_local(struct acpi_device *adev,
struct acpi_device_software_node_port *port,
struct fwnode_handle *port_fwnode,
unsigned int index)
{
acpi_handle handle = acpi_device_handle(adev);
unsigned int num_link_freqs;
int ret;
ret = fwnode_property_count_u64(port_fwnode, "mipi-img-link-frequencies");
if (ret <= 0)
return;
num_link_freqs = ret;
if (num_link_freqs > ACPI_DEVICE_CSI2_DATA_LANES) {
acpi_handle_info(handle, "Too many link frequencies: %u\n",
num_link_freqs);
num_link_freqs = ACPI_DEVICE_CSI2_DATA_LANES;
}
ret = fwnode_property_read_u64_array(port_fwnode,
"mipi-img-link-frequencies",
port->link_frequencies,
num_link_freqs);
if (ret) {
acpi_handle_info(handle, "Unable to get link frequencies (%d)\n",
ret);
return;
}
port->ep_props[NEXT_PROPERTY(index, EP_LINK_FREQUENCIES)] =
PROPERTY_ENTRY_U64_ARRAY_LEN("link-frequencies",
port->link_frequencies,
num_link_freqs);
}
static void init_csi2_port(struct acpi_device *adev,
struct acpi_device_software_nodes *swnodes,
struct acpi_device_software_node_port *port,
struct fwnode_handle *port_fwnode,
unsigned int port_index)
{
unsigned int ep_prop_index = ACPI_DEVICE_SWNODE_EP_CLOCK_LANES;
acpi_handle handle = acpi_device_handle(adev);
u8 val[ACPI_DEVICE_CSI2_DATA_LANES];
int num_lanes = 0;
int ret;
if (GRAPH_PORT_NAME(port->port_name, port->port_nr))
return;
swnodes->nodes[ACPI_DEVICE_SWNODE_PORT(port_index)] =
SOFTWARE_NODE(port->port_name, port->port_props,
&swnodes->nodes[ACPI_DEVICE_SWNODE_ROOT]);
ret = fwnode_property_read_u8(port_fwnode, "mipi-img-clock-lane", val);
if (!ret)
port->ep_props[NEXT_PROPERTY(ep_prop_index, EP_CLOCK_LANES)] =
PROPERTY_ENTRY_U32("clock-lanes", val[0]);
ret = fwnode_property_count_u8(port_fwnode, "mipi-img-data-lanes");
if (ret > 0) {
num_lanes = ret;
if (num_lanes > ACPI_DEVICE_CSI2_DATA_LANES) {
acpi_handle_info(handle, "Too many data lanes: %u\n",
num_lanes);
num_lanes = ACPI_DEVICE_CSI2_DATA_LANES;
}
ret = fwnode_property_read_u8_array(port_fwnode,
"mipi-img-data-lanes",
val, num_lanes);
if (!ret) {
unsigned int i;
for (i = 0; i < num_lanes; i++)
port->data_lanes[i] = val[i];
port->ep_props[NEXT_PROPERTY(ep_prop_index, EP_DATA_LANES)] =
PROPERTY_ENTRY_U32_ARRAY_LEN("data-lanes",
port->data_lanes,
num_lanes);
}
}
ret = fwnode_property_count_u8(port_fwnode, "mipi-img-lane-polarities");
if (ret < 0) {
acpi_handle_debug(handle, "Lane polarity bytes missing\n");
} else if (ret * BITS_PER_TYPE(u8) < num_lanes + 1) {
acpi_handle_info(handle, "Too few lane polarity bits (%zu vs. %d)\n",
ret * BITS_PER_TYPE(u8), num_lanes + 1);
} else {
unsigned long mask = 0;
int byte_count = ret;
unsigned int i;
/*
* The total number of lanes is ACPI_DEVICE_CSI2_DATA_LANES + 1
* (data lanes + clock lane). It is not expected to ever be
* greater than the number of bits in an unsigned long
* variable, but ensure that this is the case.
*/
BUILD_BUG_ON(BITS_PER_TYPE(unsigned long) <= ACPI_DEVICE_CSI2_DATA_LANES);
if (byte_count > sizeof(mask)) {
acpi_handle_info(handle, "Too many lane polarities: %d\n",
byte_count);
byte_count = sizeof(mask);
}
fwnode_property_read_u8_array(port_fwnode, "mipi-img-lane-polarities",
val, byte_count);
for (i = 0; i < byte_count; i++)
mask |= (unsigned long)val[i] << BITS_PER_TYPE(u8) * i;
for (i = 0; i <= num_lanes; i++)
port->lane_polarities[i] = test_bit(i, &mask);
port->ep_props[NEXT_PROPERTY(ep_prop_index, EP_LANE_POLARITIES)] =
PROPERTY_ENTRY_U32_ARRAY_LEN("lane-polarities",
port->lane_polarities,
num_lanes + 1);
}
swnodes->nodes[ACPI_DEVICE_SWNODE_EP(port_index)] =
SOFTWARE_NODE("endpoint@0", swnodes->ports[port_index].ep_props,
&swnodes->nodes[ACPI_DEVICE_SWNODE_PORT(port_index)]);
if (port->crs_csi2_local)
init_csi2_port_local(adev, port, port_fwnode, ep_prop_index);
}
#define MIPI_IMG_PORT_PREFIX "mipi-img-port-"
static struct fwnode_handle *get_mipi_port_handle(struct fwnode_handle *adev_fwnode,
unsigned int port_nr)
{
char port_name[sizeof(MIPI_IMG_PORT_PREFIX) + 2];
if (snprintf(port_name, sizeof(port_name), "%s%u",
MIPI_IMG_PORT_PREFIX, port_nr) >= sizeof(port_name))
return NULL;
return fwnode_get_named_child_node(adev_fwnode, port_name);
}
static void init_crs_csi2_swnodes(struct crs_csi2 *csi2)
{
struct acpi_buffer buffer = { .length = ACPI_ALLOCATE_BUFFER };
struct acpi_device_software_nodes *swnodes = csi2->swnodes;
acpi_handle handle = csi2->handle;
unsigned int prop_index = 0;
struct fwnode_handle *adev_fwnode;
struct acpi_device *adev;
acpi_status status;
unsigned int i;
u32 val;
int ret;
/*
* Bail out if the swnodes are not available (either they have not been
* allocated or they have been assigned to the device already).
*/
if (!swnodes)
return;
adev = acpi_fetch_acpi_dev(handle);
if (!adev)
return;
adev_fwnode = acpi_fwnode_handle(adev);
/*
* If the "rotation" property is not present, but _PLD is there,
* evaluate it to get the "rotation" value.
*/
if (!fwnode_property_present(adev_fwnode, "rotation")) {
struct acpi_pld_info *pld;
status = acpi_get_physical_device_location(handle, &pld);
if (ACPI_SUCCESS(status)) {
swnodes->dev_props[NEXT_PROPERTY(prop_index, DEV_ROTATION)] =
PROPERTY_ENTRY_U32("rotation",
pld->rotation * 45U);
kfree(pld);
}
}
if (!fwnode_property_read_u32(adev_fwnode, "mipi-img-clock-frequency", &val))
swnodes->dev_props[NEXT_PROPERTY(prop_index, DEV_CLOCK_FREQUENCY)] =
PROPERTY_ENTRY_U32("clock-frequency", val);
if (!fwnode_property_read_u32(adev_fwnode, "mipi-img-led-max-current", &val))
swnodes->dev_props[NEXT_PROPERTY(prop_index, DEV_LED_MAX_MICROAMP)] =
PROPERTY_ENTRY_U32("led-max-microamp", val);
if (!fwnode_property_read_u32(adev_fwnode, "mipi-img-flash-max-current", &val))
swnodes->dev_props[NEXT_PROPERTY(prop_index, DEV_FLASH_MAX_MICROAMP)] =
PROPERTY_ENTRY_U32("flash-max-microamp", val);
if (!fwnode_property_read_u32(adev_fwnode, "mipi-img-flash-max-timeout-us", &val))
swnodes->dev_props[NEXT_PROPERTY(prop_index, DEV_FLASH_MAX_TIMEOUT_US)] =
PROPERTY_ENTRY_U32("flash-max-timeout-us", val);
status = acpi_get_name(handle, ACPI_FULL_PATHNAME, &buffer);
if (ACPI_FAILURE(status)) {
acpi_handle_info(handle, "Unable to get the path name\n");
return;
}
swnodes->nodes[ACPI_DEVICE_SWNODE_ROOT] =
SOFTWARE_NODE(buffer.pointer, swnodes->dev_props, NULL);
for (i = 0; i < swnodes->num_ports; i++) {
struct acpi_device_software_node_port *port = &swnodes->ports[i];
struct fwnode_handle *port_fwnode;
/*
* The MIPI DisCo for Imaging specification defines _DSD device
* properties for providing CSI-2 port parameters that can be
* accessed through the generic device properties framework. To
* access them, it is first necessary to find the data node
* representing the port under the given ACPI device object.
*/
port_fwnode = get_mipi_port_handle(adev_fwnode, port->port_nr);
if (!port_fwnode) {
acpi_handle_info(handle,
"MIPI port name too long for port %u\n",
port->port_nr);
continue;
}
init_csi2_port(adev, swnodes, port, port_fwnode, i);
fwnode_handle_put(port_fwnode);
}
ret = software_node_register_node_group(swnodes->nodeptrs);
if (ret < 0) {
acpi_handle_info(handle,
"Unable to register software nodes (%d)\n", ret);
return;
}
adev->swnodes = swnodes;
adev_fwnode->secondary = software_node_fwnode(swnodes->nodes);
/*
* Prevents the swnodes from this csi2 entry from being assigned again
* or freed prematurely.
*/
csi2->swnodes = NULL;
}
/**
* acpi_mipi_init_crs_csi2_swnodes - Initialize _CRS CSI-2 software nodes
*
* Use MIPI DisCo for Imaging device properties to finalize the initialization
* of CSI-2 software nodes for all ACPI device objects that have been already
* enumerated.
*/
void acpi_mipi_init_crs_csi2_swnodes(void)
{
struct crs_csi2 *csi2, *csi2_tmp;
list_for_each_entry_safe(csi2, csi2_tmp, &acpi_mipi_crs_csi2_list, entry)
init_crs_csi2_swnodes(csi2);
}
/**
* acpi_mipi_crs_csi2_cleanup - Free _CRS CSI-2 temporary data
*/
void acpi_mipi_crs_csi2_cleanup(void)
{
struct crs_csi2 *csi2, *csi2_tmp;
list_for_each_entry_safe(csi2, csi2_tmp, &acpi_mipi_crs_csi2_list, entry)
acpi_mipi_del_crs_csi2(csi2);
}

View File

@ -17,6 +17,8 @@
#include <acpi/processor.h>
#include <linux/uaccess.h>
#include "internal.h"
#ifdef CONFIG_CPU_FREQ
/* If a passive cooling situation is detected, primarily CPUfreq is used, as it
@ -26,12 +28,21 @@
*/
#define CPUFREQ_THERMAL_MIN_STEP 0
#define CPUFREQ_THERMAL_MAX_STEP 3
static DEFINE_PER_CPU(unsigned int, cpufreq_thermal_reduction_pctg);
static int cpufreq_thermal_max_step __read_mostly = 3;
#define reduction_pctg(cpu) \
per_cpu(cpufreq_thermal_reduction_pctg, phys_package_first_cpu(cpu))
/*
* Minimum throttle percentage for processor_thermal cooling device.
* The processor_thermal driver uses it to calculate the percentage amount by
* which cpu frequency must be reduced for each cooling state. This is also used
* to calculate the maximum number of throttling steps or cooling states.
*/
static int cpufreq_thermal_reduction_pctg __read_mostly = 20;
static DEFINE_PER_CPU(unsigned int, cpufreq_thermal_reduction_step);
#define reduction_step(cpu) \
per_cpu(cpufreq_thermal_reduction_step, phys_package_first_cpu(cpu))
/*
* Emulate "per package data" using per cpu data (which should really be
@ -71,7 +82,7 @@ static int cpufreq_get_max_state(unsigned int cpu)
if (!cpu_has_cpufreq(cpu))
return 0;
return CPUFREQ_THERMAL_MAX_STEP;
return cpufreq_thermal_max_step;
}
static int cpufreq_get_cur_state(unsigned int cpu)
@ -79,7 +90,7 @@ static int cpufreq_get_cur_state(unsigned int cpu)
if (!cpu_has_cpufreq(cpu))
return 0;
return reduction_pctg(cpu);
return reduction_step(cpu);
}
static int cpufreq_set_cur_state(unsigned int cpu, int state)
@ -92,7 +103,7 @@ static int cpufreq_set_cur_state(unsigned int cpu, int state)
if (!cpu_has_cpufreq(cpu))
return 0;
reduction_pctg(cpu) = state;
reduction_step(cpu) = state;
/*
* Update all the CPUs in the same package because they all
@ -113,7 +124,8 @@ static int cpufreq_set_cur_state(unsigned int cpu, int state)
if (!policy)
return -EINVAL;
max_freq = (policy->cpuinfo.max_freq * (100 - reduction_pctg(i) * 20)) / 100;
max_freq = (policy->cpuinfo.max_freq *
(100 - reduction_step(i) * cpufreq_thermal_reduction_pctg)) / 100;
cpufreq_cpu_put(policy);
@ -126,10 +138,29 @@ static int cpufreq_set_cur_state(unsigned int cpu, int state)
return 0;
}
static void acpi_thermal_cpufreq_config(void)
{
int cpufreq_pctg = acpi_arch_thermal_cpufreq_pctg();
if (!cpufreq_pctg)
return;
cpufreq_thermal_reduction_pctg = cpufreq_pctg;
/*
* Derive the MAX_STEP from minimum throttle percentage so that the reduction
* percentage doesn't end up becoming negative. Also, cap the MAX_STEP so that
* the CPU performance doesn't become 0.
*/
cpufreq_thermal_max_step = (100 / cpufreq_pctg) - 2;
}
void acpi_thermal_cpufreq_init(struct cpufreq_policy *policy)
{
unsigned int cpu;
acpi_thermal_cpufreq_config();
for_each_cpu(cpu, policy->related_cpus) {
struct acpi_processor *pr = per_cpu(processors, cpu);
int ret;
@ -190,7 +221,7 @@ static int acpi_processor_max_state(struct acpi_processor *pr)
/*
* There exists four states according to
* cpufreq_thermal_reduction_pctg. 0, 1, 2, 3
* cpufreq_thermal_reduction_step. 0, 1, 2, 3
*/
max_state += cpufreq_get_max_state(pr->id);
if (pr->flags.throttling)

View File

@ -2,14 +2,17 @@
/*
* ACPI device specific properties support.
*
* Copyright (C) 2014, Intel Corporation
* Copyright (C) 2014 - 2023, Intel Corporation
* All rights reserved.
*
* Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
* Darren Hart <dvhart@linux.intel.com>
* Rafael J. Wysocki <rafael.j.wysocki@intel.com>
* Sakari Ailus <sakari.ailus@linux.intel.com>
*/
#define pr_fmt(fmt) "ACPI: " fmt
#include <linux/acpi.h>
#include <linux/device.h>
#include <linux/export.h>
@ -800,28 +803,16 @@ static int acpi_get_ref_args(struct fwnode_reference_args *args,
{
u32 nargs = 0, i;
/*
* Find the referred data extension node under the
* referred device node.
*/
for (; *element < end && (*element)->type == ACPI_TYPE_STRING;
(*element)++) {
const char *child_name = (*element)->string.pointer;
ref_fwnode = acpi_fwnode_get_named_child_node(ref_fwnode, child_name);
if (!ref_fwnode)
return -EINVAL;
}
/*
* Assume the following integer elements are all args. Stop counting on
* the first reference or end of the package arguments. In case of
* neither reference, nor integer, return an error, we can't parse it.
* the first reference (possibly represented as a string) or end of the
* package arguments. In case of neither reference, nor integer, return
* an error, we can't parse it.
*/
for (i = 0; (*element) + i < end && i < num_args; i++) {
acpi_object_type type = (*element)[i].type;
if (type == ACPI_TYPE_LOCAL_REFERENCE)
if (type == ACPI_TYPE_LOCAL_REFERENCE || type == ACPI_TYPE_STRING)
break;
if (type == ACPI_TYPE_INTEGER)
@ -845,6 +836,44 @@ static int acpi_get_ref_args(struct fwnode_reference_args *args,
return 0;
}
static struct fwnode_handle *acpi_parse_string_ref(const struct fwnode_handle *fwnode,
const char *refstring)
{
acpi_handle scope, handle;
struct acpi_data_node *dn;
struct acpi_device *device;
acpi_status status;
if (is_acpi_device_node(fwnode)) {
scope = to_acpi_device_node(fwnode)->handle;
} else if (is_acpi_data_node(fwnode)) {
scope = to_acpi_data_node(fwnode)->handle;
} else {
pr_debug("Bad node type for node %pfw\n", fwnode);
return NULL;
}
status = acpi_get_handle(scope, refstring, &handle);
if (ACPI_FAILURE(status)) {
acpi_handle_debug(scope, "Unable to get an ACPI handle for %s\n",
refstring);
return NULL;
}
device = acpi_fetch_acpi_dev(handle);
if (device)
return acpi_fwnode_handle(device);
status = acpi_get_data_full(handle, acpi_nondev_subnode_tag,
(void **)&dn, NULL);
if (ACPI_FAILURE(status) || !dn) {
acpi_handle_debug(handle, "Subnode not found\n");
return NULL;
}
return &dn->fwnode;
}
/**
* __acpi_node_get_property_reference - returns handle to the referenced object
* @fwnode: Firmware node to get the property from
@ -887,6 +916,7 @@ int __acpi_node_get_property_reference(const struct fwnode_handle *fwnode,
const union acpi_object *element, *end;
const union acpi_object *obj;
const struct acpi_device_data *data;
struct fwnode_handle *ref_fwnode;
struct acpi_device *device;
int ret, idx = 0;
@ -910,16 +940,30 @@ int __acpi_node_get_property_reference(const struct fwnode_handle *fwnode,
args->fwnode = acpi_fwnode_handle(device);
args->nargs = 0;
return 0;
case ACPI_TYPE_STRING:
if (index)
return -ENOENT;
ref_fwnode = acpi_parse_string_ref(fwnode, obj->string.pointer);
if (!ref_fwnode)
return -EINVAL;
args->fwnode = ref_fwnode;
args->nargs = 0;
return 0;
case ACPI_TYPE_PACKAGE:
/*
* If it is not a single reference, then it is a package of
* references followed by number of ints as follows:
* references, followed by number of ints as follows:
*
* Package () { REF, INT, REF, INT, INT }
*
* The index argument is then used to determine which reference
* the caller wants (along with the arguments).
* Here, REF may be either a local reference or a string. The
* index argument is then used to determine which reference the
* caller wants (along with the arguments).
*/
break;
default:
@ -950,6 +994,24 @@ int __acpi_node_get_property_reference(const struct fwnode_handle *fwnode,
if (idx == index)
return 0;
break;
case ACPI_TYPE_STRING:
ref_fwnode = acpi_parse_string_ref(fwnode,
element->string.pointer);
if (!ref_fwnode)
return -EINVAL;
element++;
ret = acpi_get_ref_args(idx == index ? args : NULL,
ref_fwnode, &element, end,
num_args);
if (ret < 0)
return ret;
if (idx == index)
return 0;
break;
case ACPI_TYPE_INTEGER:
if (idx == index)

View File

@ -1981,7 +1981,7 @@ static void acpi_scan_init_hotplug(struct acpi_device *adev)
}
}
static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
static u32 acpi_scan_check_dep(acpi_handle handle)
{
struct acpi_handle_list dep_devices;
acpi_status status;
@ -1994,8 +1994,7 @@ static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
* 2. ACPI nodes describing USB ports.
* Still, checking for _HID catches more then just these cases ...
*/
if (!check_dep || !acpi_has_method(handle, "_DEP") ||
!acpi_has_method(handle, "_HID"))
if (!acpi_has_method(handle, "_DEP") || !acpi_has_method(handle, "_HID"))
return 0;
status = acpi_evaluate_reference(handle, "_DEP", NULL, &dep_devices);
@ -2041,7 +2040,13 @@ static u32 acpi_scan_check_dep(acpi_handle handle, bool check_dep)
return count;
}
static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
static acpi_status acpi_scan_check_crs_csi2_cb(acpi_handle handle, u32 a, void *b, void **c)
{
acpi_mipi_check_crs_csi2(handle);
return AE_OK;
}
static acpi_status acpi_bus_check_add(acpi_handle handle, bool first_pass,
struct acpi_device **adev_p)
{
struct acpi_device *device = acpi_fetch_acpi_dev(handle);
@ -2059,9 +2064,25 @@ static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
if (acpi_device_should_be_hidden(handle))
return AE_OK;
/* Bail out if there are dependencies. */
if (acpi_scan_check_dep(handle, check_dep) > 0)
return AE_CTRL_DEPTH;
if (first_pass) {
acpi_mipi_check_crs_csi2(handle);
/* Bail out if there are dependencies. */
if (acpi_scan_check_dep(handle) > 0) {
/*
* The entire CSI-2 connection graph needs to be
* extracted before any drivers or scan handlers
* are bound to struct device objects, so scan
* _CRS CSI-2 resource descriptors for all
* devices below the current handle.
*/
acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
ACPI_UINT32_MAX,
acpi_scan_check_crs_csi2_cb,
NULL, NULL, NULL);
return AE_CTRL_DEPTH;
}
}
fallthrough;
case ACPI_TYPE_ANY: /* for ACPI_ROOT_OBJECT */
@ -2084,10 +2105,10 @@ static acpi_status acpi_bus_check_add(acpi_handle handle, bool check_dep,
}
/*
* If check_dep is true at this point, the device has no dependencies,
* If first_pass is true at this point, the device has no dependencies,
* or the creation of the device object would have been postponed above.
*/
acpi_add_single_object(&device, handle, type, !check_dep);
acpi_add_single_object(&device, handle, type, !first_pass);
if (!device)
return AE_CTRL_DEPTH;
@ -2431,6 +2452,13 @@ static void acpi_scan_postponed_branch(acpi_handle handle)
acpi_walk_namespace(ACPI_TYPE_ANY, handle, ACPI_UINT32_MAX,
acpi_bus_check_add_2, NULL, NULL, (void **)&adev);
/*
* Populate the ACPI _CRS CSI-2 software nodes for the ACPI devices that
* have been added above.
*/
acpi_mipi_init_crs_csi2_swnodes();
acpi_bus_attach(adev, NULL);
}
@ -2499,12 +2527,22 @@ int acpi_bus_scan(acpi_handle handle)
if (!device)
return -ENODEV;
/*
* Set up ACPI _CRS CSI-2 software nodes using information extracted
* from the _CRS CSI-2 resource descriptors during the ACPI namespace
* walk above and MIPI DisCo for Imaging device properties.
*/
acpi_mipi_scan_crs_csi2();
acpi_mipi_init_crs_csi2_swnodes();
acpi_bus_attach(device, (void *)true);
/* Pass 2: Enumerate all of the remaining devices. */
acpi_scan_postponed();
acpi_mipi_crs_csi2_cleanup();
return 0;
}
EXPORT_SYMBOL(acpi_bus_scan);

View File

@ -366,6 +366,98 @@ struct acpi_device_data {
struct acpi_gpio_mapping;
#define ACPI_DEVICE_SWNODE_ROOT 0
/*
* The maximum expected number of CSI-2 data lanes.
*
* This number is not expected to ever have to be equal to or greater than the
* number of bits in an unsigned long variable, but if it needs to be increased
* above that limit, code will need to be adjusted accordingly.
*/
#define ACPI_DEVICE_CSI2_DATA_LANES 8
#define ACPI_DEVICE_SWNODE_PORT_NAME_LENGTH 8
enum acpi_device_swnode_dev_props {
ACPI_DEVICE_SWNODE_DEV_ROTATION,
ACPI_DEVICE_SWNODE_DEV_CLOCK_FREQUENCY,
ACPI_DEVICE_SWNODE_DEV_LED_MAX_MICROAMP,
ACPI_DEVICE_SWNODE_DEV_FLASH_MAX_MICROAMP,
ACPI_DEVICE_SWNODE_DEV_FLASH_MAX_TIMEOUT_US,
ACPI_DEVICE_SWNODE_DEV_NUM_OF,
ACPI_DEVICE_SWNODE_DEV_NUM_ENTRIES
};
enum acpi_device_swnode_port_props {
ACPI_DEVICE_SWNODE_PORT_REG,
ACPI_DEVICE_SWNODE_PORT_NUM_OF,
ACPI_DEVICE_SWNODE_PORT_NUM_ENTRIES
};
enum acpi_device_swnode_ep_props {
ACPI_DEVICE_SWNODE_EP_REMOTE_EP,
ACPI_DEVICE_SWNODE_EP_BUS_TYPE,
ACPI_DEVICE_SWNODE_EP_REG,
ACPI_DEVICE_SWNODE_EP_CLOCK_LANES,
ACPI_DEVICE_SWNODE_EP_DATA_LANES,
ACPI_DEVICE_SWNODE_EP_LANE_POLARITIES,
/* TX only */
ACPI_DEVICE_SWNODE_EP_LINK_FREQUENCIES,
ACPI_DEVICE_SWNODE_EP_NUM_OF,
ACPI_DEVICE_SWNODE_EP_NUM_ENTRIES
};
/*
* Each device has a root software node plus two times as many nodes as the
* number of CSI-2 ports.
*/
#define ACPI_DEVICE_SWNODE_PORT(port) (2 * (port) + 1)
#define ACPI_DEVICE_SWNODE_EP(endpoint) \
(ACPI_DEVICE_SWNODE_PORT(endpoint) + 1)
/**
* struct acpi_device_software_node_port - MIPI DisCo for Imaging CSI-2 port
* @port_name: Port name.
* @data_lanes: "data-lanes" property values.
* @lane_polarities: "lane-polarities" property values.
* @link_frequencies: "link_frequencies" property values.
* @port_nr: Port number.
* @crs_crs2_local: _CRS CSI2 record present (i.e. this is a transmitter one).
* @port_props: Port properties.
* @ep_props: Endpoint properties.
* @remote_ep: Reference to the remote endpoint.
*/
struct acpi_device_software_node_port {
char port_name[ACPI_DEVICE_SWNODE_PORT_NAME_LENGTH + 1];
u32 data_lanes[ACPI_DEVICE_CSI2_DATA_LANES];
u32 lane_polarities[ACPI_DEVICE_CSI2_DATA_LANES + 1 /* clock lane */];
u64 link_frequencies[ACPI_DEVICE_CSI2_DATA_LANES];
unsigned int port_nr;
bool crs_csi2_local;
struct property_entry port_props[ACPI_DEVICE_SWNODE_PORT_NUM_ENTRIES];
struct property_entry ep_props[ACPI_DEVICE_SWNODE_EP_NUM_ENTRIES];
struct software_node_ref_args remote_ep[1];
};
/**
* struct acpi_device_software_nodes - Software nodes for an ACPI device
* @dev_props: Device properties.
* @nodes: Software nodes for root as well as ports and endpoints.
* @nodeprts: Array of software node pointers, for (un)registering them.
* @ports: Information related to each port and endpoint within a port.
* @num_ports: The number of ports.
*/
struct acpi_device_software_nodes {
struct property_entry dev_props[ACPI_DEVICE_SWNODE_DEV_NUM_ENTRIES];
struct software_node *nodes;
const struct software_node **nodeptrs;
struct acpi_device_software_node_port *ports;
unsigned int num_ports;
};
/* Device */
struct acpi_device {
u32 pld_crc;
@ -384,6 +476,7 @@ struct acpi_device {
struct acpi_device_data data;
struct acpi_scan_handler *handler;
struct acpi_hotplug_context *hp;
struct acpi_device_software_nodes *swnodes;
const struct acpi_gpio_mapping *driver_gpios;
void *driver_data;
struct device dev;

View File

@ -489,6 +489,13 @@ struct software_node {
const struct property_entry *properties;
};
#define SOFTWARE_NODE(_name_, _properties_, _parent_) \
(struct software_node) { \
.name = _name_, \
.properties = _properties_, \
.parent = _parent_, \
}
bool is_software_node(const struct fwnode_handle *fwnode);
const struct software_node *
to_software_node(const struct fwnode_handle *fwnode);